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Shared Memory Parallel 
Programming

● Concurrent tasks share memory space
– i.e., one task can directly read and write another 

task’s data

● Usually required shared-memory architectures
● Operating Systems (OS) support parallel 

programming with
– Threads, Processes and mapping
– Synchronizations for coordinately data accesses
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Shared-Memory VS 
Distributed-Memory

● Shared-Memory: all 
processors access the same 
chunk of memory with the 
same address

● Distributed-memory: 
processors access different 
chunks of memory with the 
same address
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Shared-Memory Architectures

● Processors that physically or conceptually share memory 
chips (e.g., cache and DRAM)

● The common type of shared-memory architecture is called 
Symmetric multiprocessing (SMP), 
– All processors are directly connected to one memory
– Typical example: Multi-core CPUs  (UMA)

● Alternatively, for better scalability, Non-uniform Memory 
Architecture (NUMA) is used
– Memory is partitioned and distributed among processors
– Hardware provides an illusion that all processors are directly 

connected to all memory
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Shared Memory Architecture: 
Multi-core CPUs

● Multiple cores on the same chip
● All cores share one last-level 

cache (LLC)
● Cores are independent to each 

other
● Each core has private caches 
● All cores share all DRAM chips

– Data placement is not important

● Cores send messages and data to 
each other through Bus to 
coordinate their computations
– HW managed, no-user-involvement
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Shared Memory Architecture: 
Non-Uniform Mem Arch (NUMA)

● Multiple independent CPUs
– Nowadays, each CPU is usually a multi-core chip

● Each CPU has its own last-level cache and DRAM chips
– Data placement is important

● CPUs are connected using inter-connections, e.g.,
– Intel QuickPath Inter-connect (QPI)
– AMD HyperTransport

● CPUs send messages and data to each other through inter-
connections to coordinate
– HW managed, no-user-involvement
– Provides an illusion that all CPUs are directly connected to all DRAM  chips
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Shared Memory Architecture:
NUMA cont’d
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Operating System Support: 
Processes and Threads

● Operating Systems (OS) provide basic supports for writing shared-
memory parallel programs

● A Process is an instance of a computer program that is being 
executed. 

● A Thread is an instance of a sequential computer program that is 
being executed. 
– Threads are the basic unit for scheduling in modern OS
– A process contains at least one thread
– A process may contain multiple threads for parallel execution

● Threads of the same processes share memory space; i.e., they 
accesses the same chunk of memory with the same address 
– Threading represents the OS support for shared-memory programming
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Threads VS Processes

● Threads: shared 
memory space

● Processes: do not 
share memory space
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OS and HW Support: 
Synchronization Primitives

● Synchronization 
primitives help 
threads 
coordination 
accesses to 
shared data

● Mutex:
– Ensures only one 

thread may read 
or write to a 
shared memory at 
a time
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OS and HW Support: 
Synchronization Primitives cont’d

● Barriers:
– any thread 

must stop at a 
barrier and 
cannot proceed 
until all other 
threads reach 
this barrier.
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OS and HW Support: 
Synchronization Primitives cont’d

● There are more synchronization primitives:
– Atomic operations (HW)
– Semaphores / Locks (OS)
– Monitor / Condition variables (OS)
– We will learn them later
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