
1

Shared Memory Parallel
Programming Basics

Wei Wang

2

Shared Memory Parallel
Programming

● Concurrent tasks share memory space
– i.e., one task can directly read and write another

task’s data

● Usually required shared-memory architectures
● Operating Systems (OS) support parallel

programming with
– Threads, Processes and mapping
– Synchronizations for coordinately data accesses

3

Shared-Memory VS
Distributed-Memory

● Shared-Memory: all
processors access the same
chunk of memory with the
same address

● Distributed-memory:
processors access different
chunks of memory with the
same address

CPU0 CPU1

Memory

Data

Read Data
@ 0xffff0000

Read Data
@ 0xffff0000

CPU0 CPU1

Memory

Data

Read Data
@ 0xffff0000

Read Data
@ 0xffff0000

Memory

Data

4

Shared-Memory Architectures

● Processors that physically or conceptually share memory
chips (e.g., cache and DRAM)

● The common type of shared-memory architecture is called
Symmetric multiprocessing (SMP),
– All processors are directly connected to one memory
– Typical example: Multi-core CPUs (UMA)

● Alternatively, for better scalability, Non-uniform Memory
Architecture (NUMA) is used
– Memory is partitioned and distributed among processors
– Hardware provides an illusion that all processors are directly

connected to all memory

5

Shared Memory Architecture:
Multi-core CPUs

● Multiple cores on the same chip
● All cores share one last-level

cache (LLC)
● Cores are independent to each

other
● Each core has private caches
● All cores share all DRAM chips

– Data placement is not important

● Cores send messages and data to
each other through Bus to
coordinate their computations
– HW managed, no-user-involvement

Core0

Cache

Core1

Cache

Core2

Cache

Core3

Cache

Shared Cache

DRAM

Bus

aka
“Uncore”

6

Shared Memory Architecture:
Non-Uniform Mem Arch (NUMA)

● Multiple independent CPUs
– Nowadays, each CPU is usually a multi-core chip

● Each CPU has its own last-level cache and DRAM chips
– Data placement is important

● CPUs are connected using inter-connections, e.g.,
– Intel QuickPath Inter-connect (QPI)
– AMD HyperTransport

● CPUs send messages and data to each other through inter-
connections to coordinate
– HW managed, no-user-involvement
– Provides an illusion that all CPUs are directly connected to all DRAM chips

7

Shared Memory Architecture:
NUMA cont’d

Node0

Node1

Node2

Node3

Node6

Node5

Node4

Node7

I/OProcessor0 Processor3

Processor2

To other
nodes

Core CoreCore

L3 Cache

Memory
Controller

Hyper-
Transport

Core CoreCore

Processor1

8

Operating System Support:
Processes and Threads

● Operating Systems (OS) provide basic supports for writing shared-
memory parallel programs

● A Process is an instance of a computer program that is being
executed.

● A Thread is an instance of a sequential computer program that is
being executed.
– Threads are the basic unit for scheduling in modern OS
– A process contains at least one thread
– A process may contain multiple threads for parallel execution

● Threads of the same processes share memory space; i.e., they
accesses the same chunk of memory with the same address
– Threading represents the OS support for shared-memory programming

9

Threads VS Processes

● Threads: shared
memory space

● Processes: do not
share memory space

Memory

Data

Read Data
@ 0xffff0000

Read Data
@ 0xffff0000

Memory

Data

Read Data
@ 0xffff0000

Read Data
@ 0xffff0000

Memory

Data

Process

Thread0 Thread1

Process0 Process1

10

OS and HW Support:
Synchronization Primitives

● Synchronization
primitives help
threads
coordination
accesses to
shared data

● Mutex:
– Ensures only one

thread may read
or write to a
shared memory at
a time

Normal
Execution

Acquire Mutex

Access
shared Data

Release Mutex

Normal
Execution

Thread1
Waiting to
acquire
Mutex

Acquire Mutex

Normal
Execution

Access
shared Data

Release Mutex

Normal
Execution

Thread1 can only
acquire mutex until
Thread0 releases it

Thread0 Thread1

11

OS and HW Support:
Synchronization Primitives cont’d

● Barriers:
– any thread

must stop at a
barrier and
cannot proceed
until all other
threads reach
this barrier.

Normal
Execution

Normal
Execution

Normal
Execution

Access
shared Data

Release Mutex

Normal
Execution

Thread0 cannot
execute until
Thread1 also
reaches barrier

Thread0 Thread1

Ready for barrier

Ready for barrier

Thread0
waiting

12

OS and HW Support:
Synchronization Primitives cont’d

● There are more synchronization primitives:
– Atomic operations (HW)
– Semaphores / Locks (OS)
– Monitor / Condition variables (OS)
– We will learn them later

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

