
Parallel Computing 1

Parallel Shared Memory
Architecture:

 Coherence, Synchronization &
Ordering

Wei Wang

Parallel Computing 2

Shared Memory Architecture
● Shared memory architecture is the most common parallel

architecture today
– Multi-core CPUs
– Multi-processor servers

● Shared memory architectures rely on cache coherence to
coordinate accesses to shared data
– Cache coherence is the hardware policy to ensure data is access in a

synchronized fashion, i.e., atomically and consistently
– Software synchronization primitives are built based on the atomic

operations provided by hardware
● Correctly programming shared memory architectures also requires

knowledge of their memory ordering

Parallel Computing 3

Basic Cache Coherence

Parallel Computing 4

Cache Coherence
● Shared memory architectures

– must coordinate access to data that might have multiple copies
– In the case of multiple copies of data exist (e.g., each cache has a copy

of the same variable), they can easily become inconsistent
● Sequential consistency

– all data accesses appear to have been executed
● atomically
● in some sequential order: consistent with the order of operations in individual

threads
● corollary: each variable must appear to have only a single value at a time

● Modern shared memory architectures satisfy the above
requirements through cache coherence protocols

Parallel Computing 5

Invalidate V.S. Update Protocols

● Two types of cache coherence protocols

y = 2 y = 2

Core0:
load y

Core1:
load y

y = 2

y = 4 y = 2

Core0:
set y=4

y = 2
Invalidates

y = 2 y = 2

Core0:
load y

Core1:
load y

y = 2

y = 4 y = 4

Core0:
set y=4

y = 4
Updates

caches:

caches:

Parallel Computing 6

Invalidate V.S. Update Protocols

● Cost-benefit trade-off depends upon traffic pattern
– invalidation is worse when

● single producer of data and many consumers
– update is worse when

● multiple writes by one CPU before data is read by another
● a cache is filled with data that is not read again

– e.g., leftovers after thread or process migration

● Modern machines use invalidate protocols as the
default

Parallel Computing 7

Modern Invalidate Protocol:
MESI Protocol

● Each copy of data in cache is associated with a
state

● MESI stands for four states:
State Description
Modified Only one copy of the data exists, data is modified and different

from memory
Exclusive Only one copy of the data exists, data has the same value as the

code in memory
Shared Multiple copies of the data exist, all copies have the same value
Invalid The copy of data is invalid and should not be used

Parallel Computing 8

MESI Protocol Example

y=2 (E)

Core0:
load y

y = 2

y=4 (M) y=2 (I)

Core0:
set y=4

y = 2
Invalidates

y=2 (S) y=2 (S)

Core1:
load y

y = 2

y=4 (S) y=4 (S)

y = 2
data forward

Core1:
load y

caches:

caches:

data forward

Parallel Computing 9

MESI Transition Graph

MESI figure credit: http://sc.tamu.edu/Images/MESI.png
(Michael Thomadakis, Texas A&M)

Parallel Computing 10

MESI Transition Table

Original States Local Read Remote Read Local Write Remote Write
M M S M I
E E S M I
S S S M I
I E I M I

MESI state transition table for a cache line in various states. The first column is the old
state of the cache line, the first row is a possible operations, and the cells are the new
state of the cache line after the operation. This table is the same as the transition graph
in the previous slide.

Parallel Computing 11

Snoopy Cache Systems

● How does a cache adjust the states of its data?
– All caches are connected to a bus
– Broadcast all invalidate and read requests to the

bus
– Each core (and its cache) snoops the requests and

updates the states of its data accordingly

cache cache cache cache

core core core core

request snoop snoop snoop

data and address bus

Parallel Computing 12

Operation of Snoopy Caches
● Data operation requests

– Data write
● Broadcast invalidation, mark data as “Modified (M)”

– Data load
● Broadcast read request
● If data from another cache, mark data as “Shared (S)”
● If data from memory, mark data as “Exclusive (E)”

● Responses to requests
– Invalidate request snooped

● If a copy of data in cache, mark data as “Invalidate (I)”
– Read request snooped

● If a copy of data in cache, forward data to requesting cache, mark local data as “Shared
(S)”

Parallel Computing 13

Intel MESIF Protocol
● Besides MESI, Intel cache protocol also includes a Forward state.
● If a copy of data is shared

– one shared copy of the cache line is in the F state
– remaining copies of the cache line are in the S state

● Forward (F) state designates a single copy of data from which further
copies can be made
– MESI protocol does not specify which cache should forward data if there are

multiple copies of the data in multiple caches
– cache line in the F state will respond to a request for a copy of the cache line
– consider how one embodiment of the protocol responds to a read

● newly created copy is placed in the F state
● cache line previously in the F state is put in the S or the I state

Parallel Computing 14

Cache Coherence on Large-scale Shared
Memory Architecture

Parallel Computing 15

The Limitation of Bus

● Snoopy cache performance is limited by the
bandwidth of the bus
– There is a maximum number of requests can be

sent per unit time
● Bus is a bottleneck where there are large

number of cache that need to maintain coherent
– This especially true for multi-processor machines

● The solution is to directly connect caches

Parallel Computing 16

Evolution of Inter-processor/cache
connections

Before 2004, Front-side bus (FSB) handles
coherence requests. Each CPU/cache
handles coherence requests locally

Around 2005, Dual FSB provide higher
aggregated bus. But memory controller (MCH)
now must assist to handle snoop requests

Eventually, a dedicated bus is assigned to CPU
 for maximum bandwidth (around 2007). MCH
becomes very complex and a bottleneck due to
these direction connections.

After 2008, Intel QuickPath Interconnect (QPI)
provides direct connections between CPUs. AMD’s
counterpart is call HyperTransport (HT). Directory-
based cache coherence protocol is used here.

Figure credit: An Introduction to
Intel QuickPath Interconnect,
Robert A. Maddox, Gurbir Singh,
and Robert J. Safranek, Intel April
06, 2009

Parallel Computing 17

The Cost of Snoopy Coherence
Protocols

● Each coherence operation is sent to all
cores/processors, even those does not have
the data

● Scalability is bad:
– When there are large number of cores/processors,

caches and memory controller are overwhelmed by
handling cache requests

Parallel Computing 18

Directory Based Cache Coherence
Protocol

● Aiming at providing better scalability than snoopy
protocols

● Each cache has a hardware, called “directory”,
which tracks the states and coordinate the
accesses of some data.

● A piece of data is only tracked by one directory
of one CPU
– The directory/CPU is call the “home agent” or “home

processor” for this data

Parallel Computing 19

Illustration of Directory Based
Cache Coherence Protocol

cache
CPU

Dir cache
CPU

Dir

cache
CPU

Dir cache
CPU

Dir

Parallel Computing 20

Operations of Directory-based
Protocol: Source Snoop*

Figure credit: An Introduction to
Intel QuickPath Interconnect,
Robert A. Maddox, Gurbir Singh,
and Robert J. Safranek, Intel April
06, 2009

* While the name has “snoop”,
this is directory based protocol.
Names in computer science are
usually confusing.

Parallel Computing 21

Operations of Directory-based
Protocol: Home Snoop

Figure credit: An Introduction to
Intel QuickPath Interconnect,
Robert A. Maddox, Gurbir Singh,
and Robert J. Safranek, Intel April
06, 2009

Parallel Computing 22

AMD HT Assist (Probe filter)

● Similar to Intel Home snooping (AMD probably
is the first user (inventor?) of this technology)

Figure credit:
http://www.qdpma.com/systemarc
hitecture/SystemArchitecture_Opt
eron.html

Parallel Computing 23

Source Snoop VS Home Snoop
● Source snoop offers the lowest latency (fewer steps) for small

multiprocessor configurations.
– Technically, source snoop is a combination of directory-based and snoopy cache

coherence protocols
● Home snooping/HT Assist/Probe filter offers the best performance in

systems with a high number of agents.
– Home snooping requires knowing the home agent. This can be computed based on

data address.
– Home snooping requires home agent knows the current holder of data. This

requires additionally hardware to record current data holders.
● On AMD Magny-cours processor, part of L3 cache is used to record this information, reducing

cache size from 6MB to 5MB.

● Another common disadvantage of directory-based protocol is it requires
additional hardware for the directory.

Parallel Computing 24

Hardware Synchronization Instructions

Parallel Computing 25

Synchronization
● Coordinate sharing among threads

– Support mutually exclusive access to shared data, e.g., mutex,
lock and semaphores

– Ensure threads advance through computation phases together,
e.g., barriers

● Properly implementing all synchronization functions requires
hardware support, i.e., support for atomic operations.
– Modern architecture support atomic operations through coherence

protocols
– Older architectures may support atomic operations in other

memory hardware, such as DRAM

Parallel Computing 26

Atomic Operation with Cache
Coherence Protocol

● The sequence of operations when two cores want to atomically
increment an integer i (one possible implementation)

Steps Core0’s Cache
State

Core1’s Cache
State

Core0’s Operation Core1’s Operation

0 (initial) i=0 (S) i=0 (S)

1 i=0 (S) i=0 (S) Acquire bus Acquire bus (success)
2 i=0 (I) i=0 (I) Invalidate all copies of i
3 i=0 (I) i=0 (E) Re-read i as exclusive
4 i=0 (I) i=1 (M) Increment i
5 i=0 (I) i=1 (M) Acquire bus (success) Release bus
6 i=0 (I) i=1 (I) Invalidate all copies of i i written back to memory
7 i=1 (E) i=1 (I) Re-read i as exclusive
8 i=2 (M) i=1 (I) Increment i
9 i=2 (M) i=1 (I) Release bus

* Note that, technically any operations that use the bus require acquiring the bus first.

Parallel Computing 27

Hardware (HW) Synchronization
Primitives/Instructions

● Besides an atomic increment, hardware
provides quite a few atomic operations to
support the implementation of high-level
software synchronization primitives

● These atomic operations are provide to
software as instructions

Parallel Computing 28

Common Atomic Instructions
● *As a common practice, the following instructions are described as C functions. But they are only

instructions.
● test_and_set(void *M)

– Write 1 to the memory at location M
– Returns the old value of the memory at M

● swap(void *M, Val)
– Write Val to the memory at location M
– Returns the old value of the memory at M

● fetch_and_Ф(void *M, Val)
– Ф can be add, or, xor, sub …
– Let the old value of memory location M be old_val
– Replace the value at M with (old_val Ф Val)
– Return old_val

● compare_and_swap(void *M, target_val, val)
– Let the old value of memory location M be old_val
– If (old_val == target_val) then write Val to the memory at location &M
– Return True/1 if store was performed

Parallel Computing 29

Implement a Spinlock with Atomic
Instructions

● a spinlock is a lock which causes its caller waits in a loop
("spin") while repeatedly checking if the lock is available.

● Four implementations each uses on atomic instruction

function Lock(int *lock)
{
 while (test_and_set(lock) == 1);
}

function Lock(int *lock)
{
 while (swap(lock, 1) == 1);
}

function Lock(int *lock)
{
 while (compare_and_swap(lock, 0, 1) == false);
}

function Lock(int *lock)
{
 while (fetch_and_and(lock, 1) == 1);
}

Parallel Computing 30

Questions On Spinlock
Implementation

● How to release a lock?

Parallel Computing 31

Questions On Spinlock
Implementation

● How to release a lock?
– Just write a “0” to the lock. As long as the write is

less than 64-bit wide on modern 64-bit machines,
the write is always atomic.

Parallel Computing 32

Real Architecture Support for Atomic
Instructions

● x86 and x86-64
– Many instructions can be made atomic with prefix “LOCK”

● e.g., the exchange-and-add instruction XADD becomes atomic fetch_and_add when used
as “LOCK XADD”

● e.g., the compare-and-exchange instruction CMPXCHG becomes atomic
compare_and_exchange when used as “LOCK CMPXCHG”

● e.g., the exchange instruction XCHG becomes atomic swap when used as “LOCK XCHG”
● No test_and_set on x86, which can be easily simulated with “LOCK XCHG”

● ARM
– Has two instructions to construct atomic code sequence

● LDREX: load memory into register
● STREX: store register value into memory
● The use of LDREX starts an atomic operation sequence which ends with STREX

– Common atomic operations can be simulated with these instructions

Parallel Computing 33

Compiler Support for Atomic
Operations

● GCC provides a group of atomic intrinsics
– __sync_fetch_and_(add/sub/or/and/xor/nand)
– __sync_(add/sub/or/and/xor/nand)_and_fetch
– __sync_bool_compare_and_swap
– __sync_val_compare_and_swap
– __sync_lock_test_and_set
– Atomic intrinsics are automatically converted to

corresponding atomic instructions by GCC

Parallel Computing 34

Software Synchronization with Hardware Atomic
Operations

Parallel Computing 35

Approaches: Spinning vs. Blocking
● Blocking

– what: suspend execution until a resource is available
– advantage: frees up a processor for useful work

● important when # threads > # cores
– disadvantage: longer latency (context switch at a minimum)
– examples: pthread_mutex_lock/unlock/trylock

● Spinning
– what: repeatedly test a condition until it becomes true
– advantage: low latency
– disadvantage: ties up a processor core

● may displace useful computation
– examples: pthread_spin_lock/unlock/trylock

Parallel Computing 36

Approaches: Spinning vs. Blocking
cont’d

● Rule of thumb
– use spinning in a dedicated environment if # threads <=

cores
– use blocking in shared environment or if # threads > #

cores
● Blocking synchronizations are usually provided by

the Operating System (OS) today
● Internally, OS uses spinlock because hardware

does not directly support blocking synchronizations

Parallel Computing 37

Implementing a Spinlock

● Examples are on slide 29

Parallel Computing 38

Implementing a Blocking Lock
● Linux provides two functions:

– WAIT (addr, val)
● Checks if the value stored at the address addr is val, and if it is puts the current

thread to sleep.
● OS guarantee this operation is atomic

– WAKE (addr)*
● Wakes up one thread waiting on the address addr.

function Lock(int *lock)
{
 while(swap(lock,1)==1);
 WAIT(lock, 1);
}

function UnLock(int *lock)
{
 *lock = 0;
 WAKE(lock);
}

*Note that this is a simplified version of kernel WAKE function. The real Lock/UnLock implementation needs to be
slightly changed based on the actual WAKE function. A complete implementation can be found at
https://locklessinc.com/articles/mutex_cv_futex/

Parallel Computing 39

Combing Spinlock and Blocking
Lock

● Even when # threads > # cores, spinlock may still be
more efficient than blocking lock if
– Every thread releases the lock in a few cycles after acquiring it
– Because it may takes longer to make the WAIT system call

then just waiting for that few cycles
● A better locking solution is to combine spinlock and

blocking lock:
– First, spin for a few cycles and wait for the lock
– If lock is still not released, invoke WAIT and do blocking wait

Parallel Computing 40

Implement Barrier with Atomic
Operations

● A barrier data structure will always have at least two
members
– count: the number of threads have reached barrier
– total: the maximum number of threads that use this barrier

● The operations of a barrier wait:
– Update the the counter to indicate a new thread has arrived, i.e.,

count++
– If there are still threads that haven’t reached the barrier (i.e., count

< total), wait for these threads (i.e., loop until count == total)
– If all threads have arrived (i.e., count == total), reset counter to zero

(i.e., count == 0)

Parallel Computing 41

A Naive Implementation of Barrier

struct barrier{
 int count;
 int total;
};

void barrier_wait(struct barrier *bar)
{

/* increment the counter */
atomic_inc(bar→count);
/* wait if some threads are missing */
while(bar→count < bar→total){};
/* reset the counter*/
bar→count = 0;

}

Parallel Computing 42

A Naive Implementation of Barrier
cont’d

struct barrier{
 int count;
 int total;
};

void barrier_wait(struct barrier *bar)
{

/* increment the counter */
atomic_inc(bar→count);
/* wait if some threads are missing */
while(bar→count < bar→total){};
/* reset the counter*/
bar→count = 0;

}

To many threads reseting the counter. If one thread calls
the barrier again before another thread reseting it, the
value of count will be totally wrong.

Parallel Computing 43

A Better Implementation of Barrier

struct barrier{
 int count;
 int total;
};

void barrier_wait(struct barrier *bar)
{

/* increment the counter */
atomic_inc(bar→count);
/* wait if some threads are missing */
while(bar→count < bar→total){};
/* reset the counter*/
compare_and_swap(bar→count, bar→total, 0);

}

Only one thread will reset the counter.
Because compare_and_swap means:
 if(bar→count == bar→total){bar_count=0;}

Parallel Computing 44

A Better Implementation of Barrier
cont’d

Thread1: Thread2:
call barrier_wait: ↓ Halt
 atomic_inc(count);//count=1 ↓ Halt
 compare if(count < total)//true call barrier_wait:
 ↓ Halt atomic_inc(count);//count=2
 ↓ Halt compare if(count < total)//false
 ↓ Halt comp&swap(count,total,0)//count=0
 ↓ Halt call barrier_wait:
 ↓ Halt atomic_inc(count);//count=1
 compare if(count < total)//true compare if(count < total)//true
 compare if(count < total)//true compare if(count < total)//true
 compare if(count < total)//true compare if(count < total)//true
 compare if(count < total)//true compare if(count < total)//true
 Now Thread1 misses one barrier wakeup, and both threads stuck here

● However, there still is a problem with the
previous implementation

Tim
e

Parallel Computing 45

The Pool Barrier Implementation

● The problem with previous implementation is that
a thread may miss the event {count == total}.
– The solution is to let thread wait on some other flag

instead of “count”
● Add a new variable to the barrier

– seq: a sequence number, roughly indicates the number
of times that all threads have reach the barrier

– Let threads wait on this sequence number

Parallel Computing 46

The Pool Barrier Implementation
struct barrier{
 int count;
 int total;
 int seq;
};

void barrier_wait(struct barrier *bar)
{
 /* get current sequence number */

int cur_seq = bar->seq;
/* increment the counter */
old_count = fetch_and_add(bar→count,1);
if(old_count< (bar->total-1))

/* wait if some threads are missing */
while(cur_seq == bar→seq){};

else{ /*(bar→count == bar->total)*/
/* reset the counter and increment seq*/
bar→seq++;
bar→count = 0;

 }
}

Parallel Computing 47

The Pool Barrier Implementation
cont’d

struct barrier{
 int count;
 int total;
 int seq;
};

void barrier_wait(struct barrier *bar)
{
 /* get current sequence number */

int cur_seq = bar->seq;
/* increment the counter */
old_count = fetch_and_add(bar→count,1);
if(old_count< (bar->total-1))

/* wait if some threads are missing */
while(cur_seq == bar→seq){};

else{ /*(bar→count == bar->total)*/
/* reset the counter and increment seq*/
bar→seq++;
bar→count = 0;

 }
}

If a thread wakes up because of seq is
increased, but it calls barrier_wait again
before “count” is reset, deadlock still
occurs. In short, these two statements
has to be atomic

Parallel Computing 48

The Pool Barrier Implementation
cont’d

struct barrier{
 union{

struct
{

int seq;
int count;

};
unsigned long long reset;

};
 int total;
};

void barrier_wait(struct barrier *bar)
{
 /* get current sequence number */

int cur_seq = bar->seq;
/* increment the counter */
old_count = fetch_and_add(bar→count,1);
if(old_count< (bar->total-1))

/* wait if some threads are missing */
while(cur_seq == bar→seq){};

else{ /*(bar→count == bar->total)*/
/* reset the counter and increment seq at the same time*/
b→reset = b→seq + 1;

 }
}

A small C trick: use “union”
to create new variable “reset”
that occupies same memory
as seq and count;

Parallel Computing 49

Synchronization on Large-scale Shared Memory
Architecture

Parallel Computing 50

The Performance Bottleneck for Any
Synchronization

● Cache coherence protocol is not free
– Every coherence operation takes some time to

finish and it adds to execution time
● Synchronization eventually relies on a shared

object for communication
– E.g., a lock variable or a barrier counter
– Ensuring the coherence of a shared object adds to

execution time

Parallel Computing 51

Coherence Cost on Large-Scale
Shared Memory Machine

● The cost to ensure shared objects coherent is
extremely high on large-scale shared memory
machine
– Because, inter-processor connections are very slow

Core Core Core Core
Local$ Local$ Local$ Local$

Shared $

Core Core Core Core
Local$ Local$ Local$ Local$

Shared $

Processor 0 Processor 1

Onchip connection
@ 10x cycles
per operation

Offchip connection
@ 100x cycles
per operation

Parallel Computing 52

Optimizing Synchronization on
Large-scale Shared Mem Machine

● The common and general idea is to disperse a
shared object
– instead of using one shared object, create multiple

shared objects.
– Each shared object is local to one core or processor
– Each core/processor mostly only use its local

shared objects

Parallel Computing 53

MCS Lock
● By John Mellor-crummey and Michael Scott

– Hence MCS
● The lock is similar to spin-lock
● The idea is to create a lock object for each

thread/core, and each thread/core only spinning on
it own copy of lock object
– Thus, eliminate spinning on remote shared object and

eliminate coherence operations
● Lock objects are managed with a shared-list

Parallel Computing 54

MCS Lock: Step 1

● Initially, the list of lock objects is empty

● Thread A tries to acquire the lock and is
successful
– A create a node in the list with a flag – “locked by

other (threads)” – and next pointer

Tail

NULL

Tail

Locked by
Other: 0 next

A’s node

Parallel Computing 55

MCS Lock: Step 2
● Thread B tries to lock the lock

– It creates a node for itself
– If founds the linked list has node(s), so it assumes the lock is locked

● with an atomic swap to the tail pointer to 1) set the tail pointer to B’s node and
check if the tail pointer was NULL before the swap

– B marks its “locked by other” to True and set A’s next pointer pointing to
B’s node

– B starts to spin on its own “locked by other” flag

Tail

Locked by
Other: 0 next

A’s node

NULLLocked by
Other: 1 next

B’s node

Parallel Computing 56

MCS Lock: Step 3
● A releases the lock

– A check to see if its next node is NULL
– If it is NULL, set tail to NULL

● An atomic compare_and_swap is used: if (tail == A’node) {set tail to NULL}
● If atomic compare_and_swap fails, wait until A’s next node is not NULL

– If A’s next node is not NULL, set its next node’s “lock by other” flags
to false

● In this example, B’s flags is set to false and B can think it acquires the lock

Tail

Locked by
Other: 0 next

A’s node

NULLLocked by
Other: 0 next

B’s node

Flag set to 0 by A

Parallel Computing 57

Distributed Barrier
● Each processor has a local counter to counter how

many threads on this processor has reached the barrier
● Only when all threads on this processor has reached the

barrier, the global barrier counter is updated.
– By using local barriers, we reduce the number of global

counter updates, thus reducing the # of coherence operations

Core Core Core Core
Local$ Local$ Local$ Local$

Shared $

Core Core Core Core
Local$ Local$ Local$ Local$

Shared $

Processor 0 Processor 1

Local Counter Local Counter

Global Counter

Parallel Computing 58

Separate Wait Queues

● For blocking lock, OS is involved
● In addition to the shared lock variable, OS also

maintain a wait queue for each lock
● The wait queue is also a shared object and can

become performance bottleneck
● OS can implement a queue local to each

processor/core to mitigate the performance cost
of updating/en-queuing/dequeuing a global queue

Parallel Computing 59

Memory Models and Weak Ordering

Parallel Computing 60

What is a Memory Model
● A contract between a program and any hardware and software that reorders

operations in a program execution
● In the context of parallelism, a memory model governs interactions between

threads and shared memory
– atomicity, ordering, visibility

● Weak memory models: any load/store operation can be reordered with
another, as long as the reordering doesn’t affect single thread execution
– i.e., as long as reordering does not affect data dependency
– read/write, read/read, write/read, write/write

● Why weak memory models? performance!
– reordering of accesses by compiler, e.g., register allocation
– reordering by hardware: don’t wait for operations to globally complete before

continuing

Parallel Computing 61

A Weak Order Example

● In producer/consumer model, producer
updates:
– A flag the indicates there are new products
– Data that represents the products

Application code:
Update product_data
Update flag

Execution order:
Update flag
Update product_data

Parallel Computing 62

The Problem with Weak Memory
Order

● In the producer/consumer example:

● For certain applications, the order of memory
updates is also important, which is broken by
the weak memory order.

Execution order:
Update flag
Update product_data

Consumer sees the flag updated and
assumes data is ready, which is not true.

Parallel Computing 63

Enforcing Memory Order
● To ensure memory order correctness, hardware provides

memory barrier or memory fence
– A memory barrier is a type of barrier instruction that causes a

CPU enforce an ordering constraint on memory operations
issued before and after the barrier instruction.

– This typically means that operations issued prior to the barrier
are guaranteed to be performed before operations issued after
the barrier.

● Compilers may also provide memory fence intrinsics
– These intrinsics may or may not depend on hardware

instructions

Parallel Computing 64

Fixing Producer/Consumer Model
with Memory Fence

● Add a memory fence instruction after updating
product data

Application code:
Update product_data
memory fence instruction
Update flag

Execution order:
Update product_data

 CPU wait for
 updates to
 finish

Update flag

Parallel Computing 65

Memory Fence Implementations

● x86 and x86-64
– MFENCE: the memory fence instruction
– LFENCE: Load fence; memory fence for load

instructions only
– SFENCE: Store fence; memory fence for store

instructions only
● GCC

– __sync_synchronize

Parallel Computing 66

Lock-free Programming and Transactional
Memory

Parallel Computing 67

The Problem with Locks
● Dead lock
● Priority Inversion

– Low-priority thread holding a lock can prevents a high-priority thread from executing, resulting in a mid-priority
thread to run

● Convoying/Thundering herd
– Case 1 (convoying): Many threads contending for a lock; one thread holding the lock uses up its time slice and

gets context switched out; other threads wake up only to fail to acquired the lock; time is wasted on waking up the
waiting threads

– Case 2 (thundering herd): Many waiting threads wake up; only one thread succeeded to acquire the lock; the rest
threads wake up only to fail to acquired the lock; time is wasted on waking up the waiting threads

● Async-Signal Safety
– Holding a lock while interrupted by a signal and tries to acquire the same lock in the single handler

● Kill-tolerant availability
– How to safely kill a thread holding a lock?

● Pre-emption tolerance
– What if a thread holding a lock being pre-empted?

● Performance and scalability

Parallel Computing 68

Lock-free Programming
● Coordinated and safe access to shared data without the use

of synchronization primitives
– This definition is kind of vague and inaccurate...

● Still requires some hardware support (e.g., atomic
instructions and memory barriers)
– Essentially programming with only atomic instructions/barriers

● Also known as lockless or non-blocking programming
● Some additional readings:

– http://preshing.com/20120612/an-introduction-to-lock-free-program
ming/

– https://devblogs.microsoft.com/oldnewthing/20141127-00/?p=43523

http://preshing.com/20120612/an-introduction-to-lock-free-programming/
http://preshing.com/20120612/an-introduction-to-lock-free-programming/

Parallel Computing 69

A Simple Lock-free Stack

● Basic element type for the stack

● Simple push with compare&swap

struct node{
node *next;
int data;

}

struct node *head; //top of the stack

void push(int v)
{

struct node *n = new struct node(t);
do{

n→next = head;
}while(!compare&swap(&head, n→next, n));

}

if(head == n->next)
 head = n

Parallel Computing 70

A Simple Lock-free Stack

● A simple pop with compare&swap
int pop()
{

struct node *n = head;
while(n){

if(compare&swap(&head, n, n→next))
return n→data;

n = head;
}

return not_a_vale;
}

if(head == n)
 head = n->next

Parallel Computing 71

The ABA Problem

● What happens is pop() is interrupted between
getting n→next and compare&swap?
int pop()
{

struct node *n = head;
while(n){

if(compare&swap(&head, n, n→next))
return n→data;

else
 n = head;

}

return not_a_vale;
}

There may be some problem
if after n→next is
read and before compare&swap,
some one removes and reuses n

Parallel Computing 72

The ABA Problem cont’d
Thread1: Thread2:
call pop(): ↓ Halt
 n = A //read A from head ↓ Halt
 read A→next call pop():
 ↓ Halt pops A
 ↓ Halt dealloc A
 ↓ Halt alloc node C, OS reuses A’s memory
 ↓ Halt call pop():
 ↓ Halt pops B
 ↓ Halt call push(C)
 compare&swap with A→next succeed ↓ Halt
 Although compare&swap will success, but the new head points to
 A→next instead of C->next

Parallel Computing 73

The solution to ABA Problem

● Use some bits of the next pointer to keep a tag
– Not all 64 bits in a pointer is required, we can use

some bits as a tag
– Or use a compare&swap that is larger than 64bits,

and add tag in the compare&swap
● Defer memory reclamation

Parallel Computing 74

Other Examples of Lock-free
Programming

● The MCS lock implementation we have seen is lock-free
● Technically speaking, spinning locks implementation is lock-free
● Linux’s Read-copy-update (RCU)

– Many kernel objects are shared and constantly updated, using locks to protect
them are too expensive.

– Instead of locks, using basic atomic instructions for object updates
– Deleting objects are tricky without locks, since writes to complex objects cannot

be done with simple atomic instructions
– To delete an object

● Remove pointers to the old object so that no new threads can read the old object
● Wait for all threads are done reading the old object (doable in a non-preemptive kernel –

Linux prohibits context switch for kernel threads holding lock)
● Delete the original object

Parallel Computing 75

Designing Lock-free Algorithms
● The reason we use locks

– To protect accesses to shared data
– Shared data may be much larger than any atomic instructions can

handle
– We need a way to use small atomic memory updates to protect much

larger data
● Lock is a straight-forward and kind of a brute-force way of doing it

● Lock-free algorithms
– Similar to using locks, convert the protection of large shared data to a

small atomic memory update
– Instead of a lock variable, find a small part of the shared data or some

other flags as the target for atomic update

Parallel Computing 76

Common Use Case of Lock-free
Programming

● Designing original lock-free algorithms is hard
● People usually use existing lock-free data

structures
– Link-list, stack, queue etc.

● Not all synchronizations can be replaced with
lock-free algorithms

● Lock-free algorithms usually provides better
scalability and performance than using locks

Parallel Computing 77

Transactional Memory
● Similar to database transactions:

– A database transaction is a sequence of operations performed
as a single logical unit of work atomically and consistently.

● Transactional memory allows a sequence of memory
operations performed atomically and consistently.

● Transactional memory requires hardware support
– Intel officially support transactional memory from Skylake (2015).

 with transaction():
 a -= b;
 b += c; three ops guaranteed to be atomic and consist
 C = 0;

Parallel Computing 78

Implementation Transactional
Memory

● Similar to database transactions, an undo log is
created at the beginning of execution of a
transaction If one memory operation fails, the
memory is restored using the undo log.
– The implementation is very hard. Intel Haswell was

supposed to be the first Intel CPU supporting TM,
but it was later found that the implementation is
buggy.

Parallel Computing 79

The Benefits of Transactional
Memory

● Eliminate locks
– Completely free from deadlock
– Simplify programming

● Better performance
– Fully hardware-supported, no need to rely on slow

OS system calls to maintain correct concurrency
– Fast on low-contended environment due to the lack

of locks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

