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Supplement Text book for 
Decomposition and Concurrency

● Introduction to Parallel Computing (2nd Edition) 
by Ananth Grama, Anshul Gupta, George 
Karypis, Vipin Kumar. Chapter 3

● Slides have all the information you need. 
Textbook is not necessary. This textbook here is 
just in case you really need some extra 
readings.
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Basic Concepts of Decomposition and 
Concurrency
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Typical Steps of Designing Parallel 
Algorithms

● Identify what pieces of work can be performed 
concurrently

● Partition concurrent work onto independent 
processors

● Distribute a program’s input, output, and 
intermediate data

● Coordinate accesses to shared data/memory: avoid 
conflicts

● Ensure proper order of work using synchronization
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Typical Steps of Designing Parallel 
Algorithms cont’d

● Why typical? Some steps can be omitted
– For shared-memory parallel programming model, 

there is no need to distributed data
– Fro message passing parallel programming model, 

there is no need to coordinate shared memory
– Processor partition may be done automatically
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Decomposing Work for Parallel 
Execution

● Identify and divide work into tasks that can be 
executed concurrently

● There are several ways to decompose a 
problem

● Tasks may depends on each other, e.g., one 
task may need the results of other tasks
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Decomposing Work for Parallel 
Execution cont’d

● Task dependency graph:
– Node = task
– Edge = dependency

T1

T2

T3

T4

T5

T6

T7
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Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b
● Easy to decompose: each row of A times vector b gives an element of y
● Simple decomposition:

– Task size is uniform
– No dependencies between task
– All tasks share b

A b y
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Decomposition Example: Logical 
Expression Evaluation

● Evaluate: Y = (A == B) and (C != D) and (E or F)

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result
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Decomposition Example: Logical 
Expression Evaluation cont’d

● Evaluate: Y = (A == B) and (C != D) and (E or F)

T1: A== B T2: C!= D T3: E or F

T5: and

T4: and

Result

Alternative dependency graph
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Granularity of Task Decomposition

● Granularity = task size
– Fine-grain = small tasks, large number of tasks
– Coarse-grain = large tasks, small number of tasks
– Choose the proper granularity based on the problem and hardware 

● Coarse-grained Matrix-Vector Multiplication: each task process three 
rows of a

A b y
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Degree of Concurrency

● Definition: number of tasks that can execute in parallel
– May change during program execution

● Metrics
– maximum degree of concurrency: largest # concurrent 

tasks at any point in the execution
– average degree of concurrency: average number of tasks 

that can be processed in parallel

● Degree of concurrency vs. task granularity
– inverse relationship
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Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b

A b y

Question: Is 10 the maximum concurrency possible?
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Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b

A b y

Question: Is 10 the maximum concurrency possible?
A: No, the maximum can be 100, as each task takes 
one element of A and one element of b and computes 
their product. 
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Critical Path

● Edge in task dependency graph represents task 
serialization

● Critical path = longest path through graph
● Critical path length = lower bound on parallel 

execution time
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Example: Logical Expression 
Evaluation

● What is the critical path?
● What is the maximum concurrency?
● What is the minimum execution time?

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result
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Example: Logical Expression 
Evaluation

● What is the critical path? ==> Red lines
● What is the maximum concurrency? ==> 3 (T1, T2, T3 are concurrent)
● What is the minimum execution time? ==> 3 (There are three levels)

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result
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Example: Matrix-Vector 
Multiplication

● Assuming each task takes one row of A and all B and computes on element of y
● What is the maximum concurrency?
● What is the minimum execution time? 

A b y
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Example: Matrix-Vector 
Multiplication

● Assuming each task takes one row of A and all B and computes on element of y
● What is the maximum concurrency? ==> 10 (10 rows of A)
● What is the minimum execution time? ==> 1

A b y
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Limits on Parallel Performance

● What bounds parallel execution time?
– maximum task concurrency, e.g. matrix-vector multiplication example ≤ 

100 concurrent tasks
– dependencies between tasks
– parallelization overheads, e.g., cost of communication between tasks
– fraction of application work that can’t be parallelized

● Metrics for parallel performance
– Speedup = T1/Tp

– Parallel efficiency = T
1
/(pT

p
)

– T
1
: sequential execution time; T

p
: parallel execution time; p: number of 

processors used
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Tasks, Threads and Mapping

● Generally
– # of tasks > # threads available
– parallel algorithm must map tasks to threads

● Why threads rather than cores?
– One thread may process more than one task

● thread = processing or computing agent that performs work
● assign collection of tasks and associated data to a thread

– Operating System maps threads to physical cores/processors
● More than one thread may execute on one core

● Fundamentally, a task may or may not use all of the computation power of a core, so 
we group several tasks into a thread, and map several threads to a core
– Threads/Tasks may be blocked by communication and I/O. Therefore, they cannot use the full 

power of a core.
– Communication and I/O costs are usually unknown before execution.
– Threads are added as an extra layer to communicate with OS
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Tasks, Threads and Mapping cont’d

● Mapping tasks to threads is critical for parallel 
performance

● On what basis should one choose mappings?
– using task dependency graphs

● schedule independent tasks on separate threads
– minimum idling
– optimal load balance

– Minimize communication cost
● Put tasks that communicate to each other in one thread
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Tasks, Threads and Mapping cont’d

● A good mapping should:
– Map independent tasks to different threads
– Assign tasks on critical path to threads ASAP
– Minimize communication cost between threads

● Difficulty: criteria often conflict with one another
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Task Mapping Example 

● Tasks on the same-level can be executed simultaneously
● Tasks on critical path are sequential and can be executed on 

the same core

T1: A== B
Core 0

T2: C!= D
Core 1

T3: E or F
Core 2

T4: and
Core 0

T5: and
Core 0

Result
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Decomposition Techniques
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Decomposition Techniques

● No single decomposition technique works for all 
problems

● A variety of techniques are used in practice
– Recursive decomposition
– Data decomposition
– Exploratory decomposition
– Speculative decomposition
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Recursive Decomposition

● Similarly to recursive algorithms
● Example: Finding the minimum integer from an array 

A[n].
– Recursive algorithm for finding the minimum:

(1) If n == 1 (i.e., only one element), return the only element as the 
minimum. Otherwise, go to step (2).

(2) Partition A into two [n/2] sub-arrays

(3) Find the minimums of the two sub-arrays
• Recursively solved using this algorithm

(4) Pick the smaller of the two sub-array minimums as the minimum 
of the original array A[n]
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Recursive Decomposition cont’d

● Task dependency graph of this recursive 
finding-min algorithm

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

Min:5 Min:7 Min:9 Min:0 Min:2 Min:8 Min:1 Min:4

Min:5 Min:0

Min:0

Min:2 Min:1

Min:1

Min:0
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Summary of Recursive 
Decomposition

● Steps for recursive decomposition
1.Decompose a problem into a set of sub-problems

2.Recursively decompose each sub-problem

3.Stop decomposition when minimum desired 
subproblem size reached
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Data Decomposition

● Essentially partition the data into multiple parts and 
have each task process on part of the data

● Data can be 
– input data 
– output data 
– Intermediate data

● Data can be partitioned in different ways
– appropriate partitioning is critical to parallel performance
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Decomposition Based on Input Data

● Applicable if each output is computed as a 
function of the input

● Associate a task with each input data partition
– task performs computation on its part of the data
– subsequent processing combines partial results 

from earlier tasks
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Decomposition Based on Input Data 
cont’d

● Example: Matrix-vector multiplication

A b y
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Decomposition Based on Output 
Data

● If each element of the output can be computed 
independently

● Partition the output data across tasks
● Have each task perform the computation for its 

outputs
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Decomposition Based on Output 
Data cont’d

● Example: matrix muplication: C = A x B
● Computation of C can be partitioned into four 

tasks:

– Task1:
– Task2:
– Task3:
– Task4:

(
A1,1 A1,2

A2,1 A2,2
)×(

B1,1B1,2

B2,1B2,2
)=(
C1,1C1,2

C2,1c2,2
)

C1,1=A1,1⋅B1,1+A1,2⋅B2,1

C1,2=A1,1⋅B1,2+A1,2⋅B2,2

C2,1=A2,1⋅B1,1+A2,2⋅B2,1

C2,2=A2,1⋅B1,2+A2,2⋅B2,2
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Intermediate Data Partitioning

● If computation is a sequence of transforms
– Input data computed to intermediate data, then 

intermediate data computed to output data

● Can be decomposed based on data for 
intermediate stages
– Usually employed to reduce communication cost 

(e.g., reduce the cost to communicate intermediate 
results)
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Intermediate Data Partitioning cont’d

● Example: matrix muplication: C = A x B
● Two staged algorithm:

– Stage1:

– Stage2:

(
A1,1 A1,2

A2,1 A2,2
)×(

B1,1B1,2

B2,1B2,2
)=((

D1,1,1D1,1,2

D1,2,1D1,2,2
)

(
D2,1,1D2,1,2

D2,2,1D2,2,2
))

(
D1,1,1D1,1,2

D1,2,1D1,2,2
)+(
D2,1,1D2,1,2

D2,2,1D2,2,2
)=(
C1,1C1,2

C2,1c2,2
)
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Intermediate Data Partitioning cont’d

● Example: matrix muplication: C = A x B
● Tasks:

Task 1:                            Task 2:
Task 3:                            Task 4:
Task 5:                            Task 6:
Task 7:                            Task 8:
Task 9:                            Task 10:
Task 11:                          Task 12:

D1,1,1=A1,1⋅B1,1 D2,1,1=A1,2⋅B2,1

D1,1,2=A1,1⋅B1,2 D2,1,2=A1,2⋅B2,2

D1,2,1=A2,1⋅B1,1 D2,2,1=A2,2⋅B2,1

D1,2,2=A2,1⋅B1,2 D2,2,2=A2,2⋅B2,2

C1,1=D1,1,1+D2,1,1 C1,2=D1,1,2+D2,1,2

C2,1=D1,2,1+D2,2,1 C2,2=D1,2,2+D2,2,2
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Summary of Data Decomposition

● Partition the data, and let each task work on 
one part of the data

● Can be decomposed based on
– Input data
– Output data
– Intermediate data
– Which partition is better depends on the problem, 

data structure and hardware structure 
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Exploratory Decomposition

● Usually used in exploring a search space for 
the solution
– Problem decomposition reflects the shape of 

execution, i.e., the shape of the search space

● Examples
– Discrete optimization (Integer Programming)
– Theorem proving
– Game plays



40

Exploratory Decomposition cont’d

● Example: 15 puzzle

● From computer to solve a 15 puzzle, the 
computer has to search for a solution 

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12
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Exploratory Decomposition cont’d

● Computer search for 15 puzzle solution. Search 
Tree after the first move

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 15 11

13 14 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 15 11

13 14 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

Final 
Solution
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Exploratory Decomposition cont’d

● To find a solution, a computer has to search the solution tree one level at a 
time, until a solution is found

● Each level can be processed in parallel
– Each tree node is a task

● The number of tasks at each level depends on the previous states, i.e., the 
task count and decomposition is not known before each level is processed

● The total number of tasks to be processed is also unknown at the beginning
– Therefore the performance is hard to anticipate
– Parallel algorithms with exploratory decomposition may experience no speedup (over 

sequential algorithms), super-linear speedup or anything in between
– In some extreme cases, parallel algorithms with exploratory decomposition may even 

experience slow down comparing to their corresponding sequential algorithms.
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Speculative Decomposition

● Dependencies between tasks are not always known a-priori
– makes it impossible to identify independent tasks

● Conservative approach
– identify independent tasks only when no dependencies left

● Optimistic (speculative) approach
– schedule tasks even when they may potentially be erroneous

● Drawbacks for each
– conservative approaches

● may yield little concurrency

– optimistic approaches
● may require a roll-back mechanism if a speculation is wrong
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Hybrid Decomposition

● Use multiple decomposition strategies together
● Often used to improve concurrency or reduce parallel 

overhead
● Example: Find the minimum of an array

– Recursive decomposition may generate too many tasks, more 
tasks than the processors; too many tasks incurs high 
scheduling/communication cost

– A hybrid decomposition for this problem can be – first  use input 
data decomposition to get several minimums, then use 
recursively decomposition to find the minimum of the minimums
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Hybrid Decomposition

● Example: determine the minimum of an array

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

0 1

0 1

Step 1: use input 
data decomposition 
to partition input 
data into two arrays 
and find the min of  
each array

Step 2: put the two 
minimums into one 
array and find their 
minimum using 
recursive 
decomposition

Min:0 Min:1

Min:1Min:0

Final result Min:0
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Characteristics of Tasks and Interactions
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Characteristics of Tasks

● Key characteristics
– Generation strategy
– Associated work
– Associated data size

● Affect performance of parallel algorithm
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Characteristic 1: Task Generation

● Static task generation
– Tasks are identified before execution
– Typically decomposed using data or recursive decomposition
– Examples

● Matrix operations
● Graph algorithms on static graph
● Image processing

● Dynamic task generation
– Task are identified during execution
– Typically decomposed using exploratory or speculative decompositions
– Examples

● Games, puzzles
● Simulations
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Characteristic 2: Task Work Size

● Uniform: all tasks have the same size
● Non-uniform

– Sometimes sizes are known or can be estimated 
before execution

– Sometime not
● Examples:

– Quick sort
– Games, puzzles 
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Characteristic 3: Task Data Size

● Large data and small data
– Usually data is compared with computation

● Cost (time) of data communication  V.S. cost (time) of computation

– Large Data: Data > Computation
● Ties task to a thread/core to avoid communication

– Small Data: Data < Computation
● Tasks can be easily migrated (e.g., migrate to a faster processor when 

the processor becomes available)

● Data size != input size != output size
– Intermediate data can be larger than both input and output

● Example: 15 puzzle, 
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Task Interactions 

● Four orthogonal types of task interactions
– Static vs Dynamic
– Regular vs Irregular
– Read-only vs Read-write
– One-sided vs Two-sided
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Static vs Dynamic Interactions

● Static interactions
– Tasks and their interactions are known before 

execution
– Algorithms are easy to design

● Dynamic Interactions
– Timing and interacting tasks are unknown before 

execution
– Algorithms difficult to design
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Regular vs Irregular Interactions

● Regular Interactions:
– Interactions have a pattern that can be described with a 

function
● Examples: mesh, ring

– Regular patterns can be exploited for efficient 
implementation

● Schedule communication to avoid conflicts on network links

● Irregular Interactions:
– Lack  a well defined topology
– Modeled by a graph
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Regular vs Irregular Interactions 
cont’d

● Example of regular interaction: Heat propagation of a metal 
plate

The temperature of a cell t[i,j] = ½ t[i, j+1], i.e., a cell’s 
temperature is half of the temperature of its adjacent cell

Heat
Src
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Regular vs Irregular Interactions 
cont’d

● Example of irregular communication: water flow 
in a sewer systems ( an arrow represents a 
pipe and a circle represents an intersection)

1 4

3

7

62

5

5 gal/min

1 gal/min

2 gal/min 3 gal/min

5 gal/min

3 gal/min

8 gal/min
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Read-only vs Read-write 
Interactions

● Read-only interactions
– Tasks only read data from other tasks

● Read-write interactions
– Read and write data of other tasks
– More difficult to code, requires synchronization to 

void multiple tasks writing to one data at the same 
time
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One-sided vs Two-sided Interactions

● One-sided
– Initiated and completed by only one task. Usually 

requires one of the following functions to implement,
● READ or GET
● WRITE or PUT

● Two-sided
– Both tasks coordinate in an interaction. Usually 

requires two functions to implement
● SEND and RECEIVE
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Mapping Techniques for Load Balancing
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Mapping Techniques

● Mapping: 
– Assign concurrent tasks to threads for execution
– Assign concurrent threads to processors/cores for execution
– Essentially, assigning tasks to processors/cores

● Overheads from (bad) mappings
– Serialization (idling)
– Communication

● Goal of Mapping
– Optimize performance and minimize overheads

● Conflicting objectives:
– Reduce communication ==> increase idling
– Reduce idling ==> increase communication
– Good mapping find a sweet point between idling and communication
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Mapping to Minimize Idling

● Should try to minimize idling and balance load 
simultaneously

● Balancing load does not automatically minimize 
idling
– Tasks sizes are hard to know
– Other overheads: task scheduling, communication 

etc.
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Mapping to Minimize Idling

● Static mapping:
– Mapping tasks to threads/processors before execution
– Requirements: a good estimation of task sizes
– Finding the optimal mapping is NP hard (similar to bin 

packing problem)

● Dynamic mapping:
– Map tasks to threads/processors during execution
– Why

● Tasks are generated at run-time
● Tasks sizes are unknown (usually true)



62

Schemes for Static Mapping

● Data partitioning
● Task graph partitioning
● Hierarchical strategies
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Mapping Based on Data Partitioning

● Similar to data based decomposition – assign a 
chunk of data and its computation to one 
thread/processor

● Example: Matrix multiplication
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Mappings Based on Task Graph

● Partition tasks in task dependency graph, each 
partition is mapped to one thread/processor

● Example: Water flow in sewer pipes

1 4

3

7

62

5

Thread 1

Thread 2
Mapping

Partition
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Mappings Based on Task Graph

● Optimal partitioning for general task-
dependency graph
– NP-hard problem
– Excellent heuristics exist for structured graphs
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Hierarchical Mapping

● Sometimes a single-level mapping is 
inadequate

● Hierarchical approach
– use a task mapping at the top level
– data partitioning within each task
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Schemes for Dynamic Mapping

● Dynamic mapping, a.k.a., dynamic load 
balancing
– Load balancing is the primary motivation for 

dynamic mapping

● Styles
– Centralized
– Distributed
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Centralized Dynamic Mapping

● Threads types: main threads or worker threads
● General strategy

– when a worker runs out of work → request more from the main thread

● Advantage
– Easy to implement

● Disadvantage
– Main thread may become bottleneck for large # of threads

● Approach
– chunk scheduling: thread picks up several of tasks at once

● large chunk sizes may cause significant load imbalances
● gradually decrease chunk size as the computation progresses
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Distributed Dynamic Mapping

● All threads as peers
● Each thread can send or receive work from other threads

– avoids centralized bottleneck
– Hard to implement

● Four critical design questions
– how are sending and receiving threads paired together?
– who initiates work transfer?
– how much work is transferred?
– when is a transfer triggered?

● Ideal answers can be application specific
● The most popular distributed dynamic mapping: “work stealing”

– An idle thread steal work/task from another busy thread
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Methods for Minimizing Interaction Overheads
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Minimizing Interaction Overheads: 
Principles

● Maximize data locality
– don’t fetch data you already have
– restructure computation to reuse data promptly

● Minimize volume of data exchange
– partition dependency graph to minimize edge crossings

● Minimize frequency of communication
– try to aggregate messages where possible

● Minimize contention and hot-spots
– use decentralized techniques (avoidance)
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Minimizing Interaction Overheads: 
Techniques

● Overlap communication with computation
– For one thread on each processor, non-blocking communication 

primitives/functions
● overlap communication with your own computation
● prefetch remote data to hide latency

– For multiple threads share one processor
● Schedule threads waiting for communication out-of processor, and schedule  other 

threads to run on the processor

● Replicate data or computation to reduce communication
● Use group communication instead of point-to-point primitives
● Issue multiple communications and overlap their latency (reduces 

exposed latency)
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Hardware Consideration for Mapping and 
Communication
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Hardware Considerations for 
Mapping and Communication

● In practice, hardware adds additional constraints for mapping and communication
– It is common that hardware is the primary reason that a mapping/communication strategy 

is chosen

● Examples of hardware constraints
– Differences in the computation power of processors

● More powerful processors handle more tasks

– Differences of inter-processors/cores connections
● Fast: shared-cache/DRAM
● Median: On-board (motherboard) inter-processor connections
● Slow: LAN/network

– Processors connection topology, e.g., mesh or ring
● Minimize communication distance
● Avoid congestion

– Resource contention
● Contention for shared cache space
● Contention for shared memory bandwidth
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Parallel Algorithm Model
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Parallel Algorithm Model

● Definition: ways of structuring a parallel 
algorithm

● Aspects of a model
– decomposition
– mapping technique
– strategy to minimize interactions
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Common Parallel Algorithm 
Templates

● Data parallel
– each task performs similar operations on different data
– typically statically map tasks to threads or processes

● Task graph
– use task dependency graph relationships to promote locality, or reduce interaction costs

● Main-worker
– one or more main threads generate work
– allocate it to worker threads
– allocation may be static or dynamic

● Pipeline / producer-consumer
– pass a stream of data through a sequence of workers
– each performs some operation on it

● Hybrid
– apply multiple models hierarchically, or
– apply multiple models in sequence to different phases
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Summary of Parallel Algorithm 
Design

● Basic Concepts
– Task dependency graph
– Degree of concurrency, granularity, critical path, limits on parallel performance
– Tasks, threads, processors and mapping
– Metrics: speedup and parallel efficiency

● Characteristics of tasks and interactions 
● Decomposition Techniques
● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication  
● Parallel Models
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Summary of Parallel Algorithm 
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions 

– Characteristics: statically/dynamically generated, data size, computation 
size

– Interactions: static vs dynamic, regular vs irregular, read-only vs read-write, 
one-sided vs two-sided

● Decomposition Techniques
● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication 
● Parallel Models



80

Summary of Parallel Algorithm 
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions
● Decomposition Techniques

– Recursive
– Data
– Exploratory
– Speculative
– Hybrid

● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication 
● Parallel Models
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Summary of Parallel Algorithm 
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions
● Decomposition Techniques
● Mapping Techniques

– Static
– Dynamic
– Hierarchical

● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication 
● Parallel Models 
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