
1

Parallel Algorithm Design:
Decomposition and Concurrency

Wei Wang

2

Supplement Text book for
Decomposition and Concurrency

● Introduction to Parallel Computing (2nd Edition)
by Ananth Grama, Anshul Gupta, George
Karypis, Vipin Kumar. Chapter 3

● Slides have all the information you need.
Textbook is not necessary. This textbook here is
just in case you really need some extra
readings.

3

Basic Concepts of Decomposition and
Concurrency

4

Typical Steps of Designing Parallel
Algorithms

● Identify what pieces of work can be performed
concurrently

● Partition concurrent work onto independent
processors

● Distribute a program’s input, output, and
intermediate data

● Coordinate accesses to shared data/memory: avoid
conflicts

● Ensure proper order of work using synchronization

5

Typical Steps of Designing Parallel
Algorithms cont’d

● Why typical? Some steps can be omitted
– For shared-memory parallel programming model,

there is no need to distributed data
– Fro message passing parallel programming model,

there is no need to coordinate shared memory
– Processor partition may be done automatically

6

Decomposing Work for Parallel
Execution

● Identify and divide work into tasks that can be
executed concurrently

● There are several ways to decompose a
problem

● Tasks may depends on each other, e.g., one
task may need the results of other tasks

7

Decomposing Work for Parallel
Execution cont’d

● Task dependency graph:
– Node = task
– Edge = dependency

T1

T2

T3

T4

T5

T6

T7

8

Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b
● Easy to decompose: each row of A times vector b gives an element of y
● Simple decomposition:

– Task size is uniform
– No dependencies between task
– All tasks share b

A b y

9

Decomposition Example: Logical
Expression Evaluation

● Evaluate: Y = (A == B) and (C != D) and (E or F)

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result

10

Decomposition Example: Logical
Expression Evaluation cont’d

● Evaluate: Y = (A == B) and (C != D) and (E or F)

T1: A== B T2: C!= D T3: E or F

T5: and

T4: and

Result

Alternative dependency graph

11

Granularity of Task Decomposition

● Granularity = task size
– Fine-grain = small tasks, large number of tasks
– Coarse-grain = large tasks, small number of tasks
– Choose the proper granularity based on the problem and hardware

● Coarse-grained Matrix-Vector Multiplication: each task process three
rows of a

A b y

12

Degree of Concurrency

● Definition: number of tasks that can execute in parallel
– May change during program execution

● Metrics
– maximum degree of concurrency: largest # concurrent

tasks at any point in the execution
– average degree of concurrency: average number of tasks

that can be processed in parallel

● Degree of concurrency vs. task granularity
– inverse relationship

13

Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b

A b y

Question: Is 10 the maximum concurrency possible?

14

Decomposition Example: Matrix-
Vector Multiplication

● 10x10 matrix A multiply 10*1 vector b

A b y

Question: Is 10 the maximum concurrency possible?
A: No, the maximum can be 100, as each task takes
one element of A and one element of b and computes
their product.

15

Critical Path

● Edge in task dependency graph represents task
serialization

● Critical path = longest path through graph
● Critical path length = lower bound on parallel

execution time

16

Example: Logical Expression
Evaluation

● What is the critical path?
● What is the maximum concurrency?
● What is the minimum execution time?

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result

17

Example: Logical Expression
Evaluation

● What is the critical path? ==> Red lines
● What is the maximum concurrency? ==> 3 (T1, T2, T3 are concurrent)
● What is the minimum execution time? ==> 3 (There are three levels)

T1: A== B T2: C!= D T3: E or F

T4: and

T5: and

Result

18

Example: Matrix-Vector
Multiplication

● Assuming each task takes one row of A and all B and computes on element of y
● What is the maximum concurrency?
● What is the minimum execution time?

A b y

19

Example: Matrix-Vector
Multiplication

● Assuming each task takes one row of A and all B and computes on element of y
● What is the maximum concurrency? ==> 10 (10 rows of A)
● What is the minimum execution time? ==> 1

A b y

20

Limits on Parallel Performance

● What bounds parallel execution time?
– maximum task concurrency, e.g. matrix-vector multiplication example ≤

100 concurrent tasks
– dependencies between tasks
– parallelization overheads, e.g., cost of communication between tasks
– fraction of application work that can’t be parallelized

● Metrics for parallel performance
– Speedup = T1/Tp

– Parallel efficiency = T
1
/(pT

p
)

– T
1
: sequential execution time; T

p
: parallel execution time; p: number of

processors used

21

Tasks, Threads and Mapping

● Generally
– # of tasks > # threads available
– parallel algorithm must map tasks to threads

● Why threads rather than cores?
– One thread may process more than one task

● thread = processing or computing agent that performs work
● assign collection of tasks and associated data to a thread

– Operating System maps threads to physical cores/processors
● More than one thread may execute on one core

● Fundamentally, a task may or may not use all of the computation power of a core, so
we group several tasks into a thread, and map several threads to a core
– Threads/Tasks may be blocked by communication and I/O. Therefore, they cannot use the full

power of a core.
– Communication and I/O costs are usually unknown before execution.
– Threads are added as an extra layer to communicate with OS

22

Tasks, Threads and Mapping cont’d

● Mapping tasks to threads is critical for parallel
performance

● On what basis should one choose mappings?
– using task dependency graphs

● schedule independent tasks on separate threads
– minimum idling
– optimal load balance

– Minimize communication cost
● Put tasks that communicate to each other in one thread

23

Tasks, Threads and Mapping cont’d

● A good mapping should:
– Map independent tasks to different threads
– Assign tasks on critical path to threads ASAP
– Minimize communication cost between threads

● Difficulty: criteria often conflict with one another

24

Task Mapping Example

● Tasks on the same-level can be executed simultaneously
● Tasks on critical path are sequential and can be executed on

the same core

T1: A== B
Core 0

T2: C!= D
Core 1

T3: E or F
Core 2

T4: and
Core 0

T5: and
Core 0

Result

25

Decomposition Techniques

26

Decomposition Techniques

● No single decomposition technique works for all
problems

● A variety of techniques are used in practice
– Recursive decomposition
– Data decomposition
– Exploratory decomposition
– Speculative decomposition

27

Recursive Decomposition

● Similarly to recursive algorithms
● Example: Finding the minimum integer from an array

A[n].
– Recursive algorithm for finding the minimum:

(1) If n == 1 (i.e., only one element), return the only element as the
minimum. Otherwise, go to step (2).

(2) Partition A into two [n/2] sub-arrays

(3) Find the minimums of the two sub-arrays
• Recursively solved using this algorithm

(4) Pick the smaller of the two sub-array minimums as the minimum
of the original array A[n]

28

Recursive Decomposition cont’d

● Task dependency graph of this recursive
finding-min algorithm

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

Min:5 Min:7 Min:9 Min:0 Min:2 Min:8 Min:1 Min:4

Min:5 Min:0

Min:0

Min:2 Min:1

Min:1

Min:0

29

Summary of Recursive
Decomposition

● Steps for recursive decomposition
1.Decompose a problem into a set of sub-problems

2.Recursively decompose each sub-problem

3.Stop decomposition when minimum desired
subproblem size reached

30

Data Decomposition

● Essentially partition the data into multiple parts and
have each task process on part of the data

● Data can be
– input data
– output data
– Intermediate data

● Data can be partitioned in different ways
– appropriate partitioning is critical to parallel performance

31

Decomposition Based on Input Data

● Applicable if each output is computed as a
function of the input

● Associate a task with each input data partition
– task performs computation on its part of the data
– subsequent processing combines partial results

from earlier tasks

32

Decomposition Based on Input Data
cont’d

● Example: Matrix-vector multiplication

A b y

33

Decomposition Based on Output
Data

● If each element of the output can be computed
independently

● Partition the output data across tasks
● Have each task perform the computation for its

outputs

34

Decomposition Based on Output
Data cont’d

● Example: matrix muplication: C = A x B
● Computation of C can be partitioned into four

tasks:

– Task1:
– Task2:
– Task3:
– Task4:

(
A1,1 A1,2

A2,1 A2,2
)×(

B1,1B1,2

B2,1B2,2
)=(
C1,1C1,2

C2,1c2,2
)

C1,1=A1,1⋅B1,1+A1,2⋅B2,1

C1,2=A1,1⋅B1,2+A1,2⋅B2,2

C2,1=A2,1⋅B1,1+A2,2⋅B2,1

C2,2=A2,1⋅B1,2+A2,2⋅B2,2

35

Intermediate Data Partitioning

● If computation is a sequence of transforms
– Input data computed to intermediate data, then

intermediate data computed to output data

● Can be decomposed based on data for
intermediate stages
– Usually employed to reduce communication cost

(e.g., reduce the cost to communicate intermediate
results)

36

Intermediate Data Partitioning cont’d

● Example: matrix muplication: C = A x B
● Two staged algorithm:

– Stage1:

– Stage2:

(
A1,1 A1,2

A2,1 A2,2
)×(

B1,1B1,2

B2,1B2,2
)=((

D1,1,1D1,1,2

D1,2,1D1,2,2
)

(
D2,1,1D2,1,2

D2,2,1D2,2,2
))

(
D1,1,1D1,1,2

D1,2,1D1,2,2
)+(
D2,1,1D2,1,2

D2,2,1D2,2,2
)=(
C1,1C1,2

C2,1c2,2
)

37

Intermediate Data Partitioning cont’d

● Example: matrix muplication: C = A x B
● Tasks:

Task 1: Task 2:
Task 3: Task 4:
Task 5: Task 6:
Task 7: Task 8:
Task 9: Task 10:
Task 11: Task 12:

D1,1,1=A1,1⋅B1,1 D2,1,1=A1,2⋅B2,1

D1,1,2=A1,1⋅B1,2 D2,1,2=A1,2⋅B2,2

D1,2,1=A2,1⋅B1,1 D2,2,1=A2,2⋅B2,1

D1,2,2=A2,1⋅B1,2 D2,2,2=A2,2⋅B2,2

C1,1=D1,1,1+D2,1,1 C1,2=D1,1,2+D2,1,2

C2,1=D1,2,1+D2,2,1 C2,2=D1,2,2+D2,2,2

38

Summary of Data Decomposition

● Partition the data, and let each task work on
one part of the data

● Can be decomposed based on
– Input data
– Output data
– Intermediate data
– Which partition is better depends on the problem,

data structure and hardware structure

39

Exploratory Decomposition

● Usually used in exploring a search space for
the solution
– Problem decomposition reflects the shape of

execution, i.e., the shape of the search space

● Examples
– Discrete optimization (Integer Programming)
– Theorem proving
– Game plays

40

Exploratory Decomposition cont’d

● Example: 15 puzzle

● From computer to solve a 15 puzzle, the
computer has to search for a solution

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

41

Exploratory Decomposition cont’d

● Computer search for 15 puzzle solution. Search
Tree after the first move

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 15 11

13 14 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 15 11

13 14 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

1 2 3 4
5 6 7 8
9 10 11

13 14 15 12

Final
Solution

42

Exploratory Decomposition cont’d

● To find a solution, a computer has to search the solution tree one level at a
time, until a solution is found

● Each level can be processed in parallel
– Each tree node is a task

● The number of tasks at each level depends on the previous states, i.e., the
task count and decomposition is not known before each level is processed

● The total number of tasks to be processed is also unknown at the beginning
– Therefore the performance is hard to anticipate
– Parallel algorithms with exploratory decomposition may experience no speedup (over

sequential algorithms), super-linear speedup or anything in between
– In some extreme cases, parallel algorithms with exploratory decomposition may even

experience slow down comparing to their corresponding sequential algorithms.

43

Speculative Decomposition

● Dependencies between tasks are not always known a-priori
– makes it impossible to identify independent tasks

● Conservative approach
– identify independent tasks only when no dependencies left

● Optimistic (speculative) approach
– schedule tasks even when they may potentially be erroneous

● Drawbacks for each
– conservative approaches

● may yield little concurrency

– optimistic approaches
● may require a roll-back mechanism if a speculation is wrong

44

Hybrid Decomposition

● Use multiple decomposition strategies together
● Often used to improve concurrency or reduce parallel

overhead
● Example: Find the minimum of an array

– Recursive decomposition may generate too many tasks, more
tasks than the processors; too many tasks incurs high
scheduling/communication cost

– A hybrid decomposition for this problem can be – first use input
data decomposition to get several minimums, then use
recursively decomposition to find the minimum of the minimums

45

Hybrid Decomposition

● Example: determine the minimum of an array

5 7 9 0 2 8 1 4

5 7 9 0 2 8 1 4

0 1

0 1

Step 1: use input
data decomposition
to partition input
data into two arrays
and find the min of
each array

Step 2: put the two
minimums into one
array and find their
minimum using
recursive
decomposition

Min:0 Min:1

Min:1Min:0

Final result Min:0

46

Characteristics of Tasks and Interactions

47

Characteristics of Tasks

● Key characteristics
– Generation strategy
– Associated work
– Associated data size

● Affect performance of parallel algorithm

48

Characteristic 1: Task Generation

● Static task generation
– Tasks are identified before execution
– Typically decomposed using data or recursive decomposition
– Examples

● Matrix operations
● Graph algorithms on static graph
● Image processing

● Dynamic task generation
– Task are identified during execution
– Typically decomposed using exploratory or speculative decompositions
– Examples

● Games, puzzles
● Simulations

Parallel Computing 49

Characteristic 2: Task Work Size

● Uniform: all tasks have the same size
● Non-uniform

– Sometimes sizes are known or can be estimated
before execution

– Sometime not
● Examples:

– Quick sort
– Games, puzzles

50

Characteristic 3: Task Data Size

● Large data and small data
– Usually data is compared with computation

● Cost (time) of data communication V.S. cost (time) of computation

– Large Data: Data > Computation
● Ties task to a thread/core to avoid communication

– Small Data: Data < Computation
● Tasks can be easily migrated (e.g., migrate to a faster processor when

the processor becomes available)

● Data size != input size != output size
– Intermediate data can be larger than both input and output

● Example: 15 puzzle,

51

Task Interactions

● Four orthogonal types of task interactions
– Static vs Dynamic
– Regular vs Irregular
– Read-only vs Read-write
– One-sided vs Two-sided

52

Static vs Dynamic Interactions

● Static interactions
– Tasks and their interactions are known before

execution
– Algorithms are easy to design

● Dynamic Interactions
– Timing and interacting tasks are unknown before

execution
– Algorithms difficult to design

53

Regular vs Irregular Interactions

● Regular Interactions:
– Interactions have a pattern that can be described with a

function
● Examples: mesh, ring

– Regular patterns can be exploited for efficient
implementation

● Schedule communication to avoid conflicts on network links

● Irregular Interactions:
– Lack a well defined topology
– Modeled by a graph

54

Regular vs Irregular Interactions
cont’d

● Example of regular interaction: Heat propagation of a metal
plate

The temperature of a cell t[i,j] = ½ t[i, j+1], i.e., a cell’s
temperature is half of the temperature of its adjacent cell

Heat
Src

55

Regular vs Irregular Interactions
cont’d

● Example of irregular communication: water flow
in a sewer systems (an arrow represents a
pipe and a circle represents an intersection)

1 4

3

7

62

5

5 gal/min

1 gal/min

2 gal/min 3 gal/min

5 gal/min

3 gal/min

8 gal/min

56

Read-only vs Read-write
Interactions

● Read-only interactions
– Tasks only read data from other tasks

● Read-write interactions
– Read and write data of other tasks
– More difficult to code, requires synchronization to

void multiple tasks writing to one data at the same
time

57

One-sided vs Two-sided Interactions

● One-sided
– Initiated and completed by only one task. Usually

requires one of the following functions to implement,
● READ or GET
● WRITE or PUT

● Two-sided
– Both tasks coordinate in an interaction. Usually

requires two functions to implement
● SEND and RECEIVE

58

Mapping Techniques for Load Balancing

59

Mapping Techniques

● Mapping:
– Assign concurrent tasks to threads for execution
– Assign concurrent threads to processors/cores for execution
– Essentially, assigning tasks to processors/cores

● Overheads from (bad) mappings
– Serialization (idling)
– Communication

● Goal of Mapping
– Optimize performance and minimize overheads

● Conflicting objectives:
– Reduce communication ==> increase idling
– Reduce idling ==> increase communication
– Good mapping find a sweet point between idling and communication

60

Mapping to Minimize Idling

● Should try to minimize idling and balance load
simultaneously

● Balancing load does not automatically minimize
idling
– Tasks sizes are hard to know
– Other overheads: task scheduling, communication

etc.

61

Mapping to Minimize Idling

● Static mapping:
– Mapping tasks to threads/processors before execution
– Requirements: a good estimation of task sizes
– Finding the optimal mapping is NP hard (similar to bin

packing problem)

● Dynamic mapping:
– Map tasks to threads/processors during execution
– Why

● Tasks are generated at run-time
● Tasks sizes are unknown (usually true)

62

Schemes for Static Mapping

● Data partitioning
● Task graph partitioning
● Hierarchical strategies

63

Mapping Based on Data Partitioning

● Similar to data based decomposition – assign a
chunk of data and its computation to one
thread/processor

● Example: Matrix multiplication

64

Mappings Based on Task Graph

● Partition tasks in task dependency graph, each
partition is mapped to one thread/processor

● Example: Water flow in sewer pipes

1 4

3

7

62

5

Thread 1

Thread 2
Mapping

Partition

65

Mappings Based on Task Graph

● Optimal partitioning for general task-
dependency graph
– NP-hard problem
– Excellent heuristics exist for structured graphs

66

Hierarchical Mapping

● Sometimes a single-level mapping is
inadequate

● Hierarchical approach
– use a task mapping at the top level
– data partitioning within each task

67

Schemes for Dynamic Mapping

● Dynamic mapping, a.k.a., dynamic load
balancing
– Load balancing is the primary motivation for

dynamic mapping

● Styles
– Centralized
– Distributed

68

Centralized Dynamic Mapping

● Threads types: main threads or worker threads
● General strategy

– when a worker runs out of work → request more from the main thread

● Advantage
– Easy to implement

● Disadvantage
– Main thread may become bottleneck for large # of threads

● Approach
– chunk scheduling: thread picks up several of tasks at once

● large chunk sizes may cause significant load imbalances
● gradually decrease chunk size as the computation progresses

69

Distributed Dynamic Mapping

● All threads as peers
● Each thread can send or receive work from other threads

– avoids centralized bottleneck
– Hard to implement

● Four critical design questions
– how are sending and receiving threads paired together?
– who initiates work transfer?
– how much work is transferred?
– when is a transfer triggered?

● Ideal answers can be application specific
● The most popular distributed dynamic mapping: “work stealing”

– An idle thread steal work/task from another busy thread

70

Methods for Minimizing Interaction Overheads

71

Minimizing Interaction Overheads:
Principles

● Maximize data locality
– don’t fetch data you already have
– restructure computation to reuse data promptly

● Minimize volume of data exchange
– partition dependency graph to minimize edge crossings

● Minimize frequency of communication
– try to aggregate messages where possible

● Minimize contention and hot-spots
– use decentralized techniques (avoidance)

72

Minimizing Interaction Overheads:
Techniques

● Overlap communication with computation
– For one thread on each processor, non-blocking communication

primitives/functions
● overlap communication with your own computation
● prefetch remote data to hide latency

– For multiple threads share one processor
● Schedule threads waiting for communication out-of processor, and schedule other

threads to run on the processor

● Replicate data or computation to reduce communication
● Use group communication instead of point-to-point primitives
● Issue multiple communications and overlap their latency (reduces

exposed latency)

73

Hardware Consideration for Mapping and
Communication

74

Hardware Considerations for
Mapping and Communication

● In practice, hardware adds additional constraints for mapping and communication
– It is common that hardware is the primary reason that a mapping/communication strategy

is chosen

● Examples of hardware constraints
– Differences in the computation power of processors

● More powerful processors handle more tasks

– Differences of inter-processors/cores connections
● Fast: shared-cache/DRAM
● Median: On-board (motherboard) inter-processor connections
● Slow: LAN/network

– Processors connection topology, e.g., mesh or ring
● Minimize communication distance
● Avoid congestion

– Resource contention
● Contention for shared cache space
● Contention for shared memory bandwidth

75

Parallel Algorithm Model

76

Parallel Algorithm Model

● Definition: ways of structuring a parallel
algorithm

● Aspects of a model
– decomposition
– mapping technique
– strategy to minimize interactions

77

Common Parallel Algorithm
Templates

● Data parallel
– each task performs similar operations on different data
– typically statically map tasks to threads or processes

● Task graph
– use task dependency graph relationships to promote locality, or reduce interaction costs

● Main-worker
– one or more main threads generate work
– allocate it to worker threads
– allocation may be static or dynamic

● Pipeline / producer-consumer
– pass a stream of data through a sequence of workers
– each performs some operation on it

● Hybrid
– apply multiple models hierarchically, or
– apply multiple models in sequence to different phases

78

Summary of Parallel Algorithm
Design

● Basic Concepts
– Task dependency graph
– Degree of concurrency, granularity, critical path, limits on parallel performance
– Tasks, threads, processors and mapping
– Metrics: speedup and parallel efficiency

● Characteristics of tasks and interactions
● Decomposition Techniques
● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication
● Parallel Models

79

Summary of Parallel Algorithm
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions

– Characteristics: statically/dynamically generated, data size, computation
size

– Interactions: static vs dynamic, regular vs irregular, read-only vs read-write,
one-sided vs two-sided

● Decomposition Techniques
● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication
● Parallel Models

80

Summary of Parallel Algorithm
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions
● Decomposition Techniques

– Recursive
– Data
– Exploratory
– Speculative
– Hybrid

● Mapping Techniques
● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication
● Parallel Models

81

Summary of Parallel Algorithm
Design cont’d

● Basic Concepts
● Characteristics of Tasks and Interactions
● Decomposition Techniques
● Mapping Techniques

– Static
– Dynamic
– Hierarchical

● Minimizing Communication/Interaction Techniques
● Hardware considerations for mapping and communication
● Parallel Models

82

Acknowledgement

● Slides based on John Mellor-Crummey’s
Parallel Computing class at Rice University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

