
1

Distributed Memory Programming
with MPI

Wei Wang

2

MPI: the Message Passing Interface

● Standard library for message-passing
– Portable

● There are several MPI implementations, we will use MPICH for this class

– almost ubiquitously available
– high performance
– C and Fortran APIs, also available in Java, Python, and R

● MPI standard defines
– syntax of library routines (APIs)
– semantics of library routines (APIs)

● Details
– MPI routines, data-types, and constants are prefixed by “MPI_”

● Simple to get started
– fully-functional programs using only six library routines

3

Scope of the MPI Standards
● Communication contexts
● Datatypes
● Point-to-point communication
● Collective communication (synchronous, non-blocking)
● Process groups
● Process topologies
● Environmental management and inquiry
● The Info object
● Process creation and management
● One-sided communication (refined for MPI-3)
● External interfaces
● Parallel I/O
● Language bindings for Fortran, C and C++
● Profiling interface (PMPI)

4

What We Will Learn

● MPI management routines
– Initialize and finalize MPI run-time
– Get execution environment information

● Point-to-Point Communication Routines
– Send and receive messages

● Collective Communication Routines
– Broadcasting, gather/scatter, reduction

● Derived and customs data types
● Grouped communications
● Virtual Topologies

5

Compiling MPI Programs

● Compile MPI program with the “mpicc” command
– mpicc mpi_program.c -o mpi_executable

● mpicc is just a wrapper of another compiler with
additional options to support MPI routines
– “mpicc -show” gives you the actual compiler command
– e.g., on fox servers, mpicc = “gcc -I/usr/lib/openmpi/include

-I/usr/lib/openmpi/include/openmpi -pthread -L/usr//lib
-L/usr/lib/openmpi/lib -lmpi -ldl -lhwloc”

– The actual options may be different on each installation

6

Executing MPI Programs

● MPI programs should be started with “mpirun” or “mpiexec”
command
– mpirun [-np PE] [--hostfile <filename>] <pgm>

● -np PE: defines how many (PE) processes to use
● -hostfile: defines the servers to use to execute. If no hostfile, then the job

will only run on local server
– For this class, use no hostfile

● pgm: is the MPI program to execution, along with “pgm’s” command line
options

● E.g., “mpirun -np 2 MPI_executable -cmdopt” executes “MPI_executable”
with 2 processes and passes “cmdopt” to it as a command line option.

– For most implementation, mpiexec is the same as mpirun

7

MPI Management Routines

8

MPI_Init

● Initializes the MPI execution environment.
● This function must be called in every MPI program, must be

called before any other MPI functions and must be called
only once in an MPI program.

● If you have strange errors in your program, it may be that you
do not call MPI_init at the beginning of your code.
– The MPI Standard does not say what a program can do before an

MPI_Init or after an MPI_Finalize. In the Open MPI implementation,
it should do as little as possible. In particular, avoid anything that
changes the external state of the program, such as opening files,
reading standard input, or writing to standard output.

9

MPI_Init cont’d

● Syntex:

● For C programs, MPI_Init may be used to pass the
command line arguments to all processes, although
this is not required by the standard and is
implementation dependent.
– Most of the time, you do not need to pass in any

parameters
– Also, note there is some difference between “MPI_Init”

and standard C entry function “main”

int MPI_Init(int *argc, char **argv[])

10

MPI_Comm_size

● Returns the total number of MPI processes in the
specified communicator,
– A MPI communicator defines a group of processes

participated in certain communications.
– The most common communicator MPI_COMM_WORLD.

MPI_COMM_WORLD represents the communication in
which all processes are participating.

– If the communicator is MPI_COMM_WORLD, then it
represents the number of MPI tasks available to your
application.

11

MPI_Comm_size cont’d

● Syntax:

● Parameters:
– Input parameter: comm, the MPI communicator
– Output parameter: size, the number of processes

participating in this communicator

int MPI_Comm_size(MPI_Comm comm, int *size)

12

MPI_Comm_rank

● Returns the rank (id) of the calling MPI process
within the specified communicator.
– For n processes, the rank can be 0 to (n-1)
– Similar to MPI_Comm_size, a communicator is

required.
– For a given process, if it participate in multiple

communicators, this process may receive different
ranks/ids in each communicator group.

13

MPI_Comm_rank cont’d

● Syntax:

● Parameters:
– Input parameter: comm, the MPI communicator
– Output parameter: rank, the rank/id of the calling

process

int MPI_Comm_rank(MPI_Comm comm, int *rank)

14

MPI_Get_processor_name

● Returns the name of the processor on which
the calling process is running
– Note that, this function usually (and more accurately

speaking) returns the host name of the server on
which the calling process is running

– However, because implementation difference, some
implementation of MPI may not return the host
name.

15

MPI_Get_processor_name cont’d

● Syntax:

● Parameters:
– Output parameter: name, the string buffer that holds

the processor name; make sure your buffer is long
enough or it may cause buffer overflow

– Output parameter: resultlen, the length of the
returned processor name

int MPI_Get_processor_name(char *name,
 int *resultlen)

16

MPI_Finalize

● Terminates the MPI execution environment.
● This function should be the last MPI routine

called in every MPI program - no other MPI
routines may be called after it.

● Syntax:
int MPI_Finalize(void)

17

Code Example

● Example (MPI_management.c):
int main (int argc, char *argv[])
{

int proc_cnt, proc_id, len;
char host_name[MPI_MAX_PROCESSOR_NAME];

/* initialize MPI */
MPI_Init(&argc, &argv);

/* query execution environment */
MPI_Comm_size(MPI_COMM_WORLD, &proc_cnt);
MPI_Comm_rank(MPI_COMM_WORLD, &proc_id);

MPI_Get_processor_name(host_name, &len);

printf ("Hello from process %d on %s!\n", proc_id, host_name);

if(proc_id == 0)
printf("MASTER: Number of MPI tasks is: %d\n", proc_cnt);

/* cleanup */
MPI_Finalize();

}

18

Some Less-used Management
Functions

● MPI_abort
– Terminates all MPI processes associated with a communicator.

● MPI_Get_version
– Returns the version and subversion of the MPI standard that's implemented by

the library.

● MPI_Initialized
– Check if MPI_init has been called

● MPI_Wtime
– Returns an elapsed wall clock time in seconds (double precision) on the calling

processor.

● MPI_Wtick
– Returns the resolution in seconds (double precision) of MPI_Wtime.

19

Point-to-Point Communications

20

Point-to-Point Communication

● Communication between one process with another
process

● Message-based communication (the M in MPI
means “message”)

● Involves several types of send and receive functions
– Asynchronous send (buffered) and synchronous sends

(may also be buffered)
– Blocking and non-blocking send/receive functions
– Combined send/receives

21

Basic Blocking Send

● Blocking: send function will not return until
message is copied into buffer
– Will buffered send cause dead-lock?

● Asynchronous: send function may return before
the message is received by the receiving process
– Note that the asynchronism is implementation

dependent, i.e., in some implementation, MPI_send
may be blocked until the message is received

● Function name: MPI_send

22

Blocking Asynchronous Send cont’d

● Syntax:

● Parameters (all are input parameters):
– buf: the buffer that holds the message
– count: number of data elements in the message
– datatype: the type of the data elements, MPI has several built in data types
– dest: the rank/id of the receiving process
– tag: tag of this message; usually used as sequence id of the message
– comm: communicator, e.g., MPI_COMM_WORLD

int MPI_Send(const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm)

23

Blocking Asynchronous Send cont’d

● Some MPI built-in data types:
– MPI_CHAR
– MPI_SHORT
– MPI_INT
– MPI_LONG
– MPI_LONG_LONG_INT
– MPI_UNSIGNED
– MPI_FLOAT
– MPI_DOUBLE
– MPI_LONG_DOUBLE

● A full list can be found at:
https://computing.llnl.gov/tutorials/mpi/#Derived_Data_Types

● Custom types are also supported

https://computing.llnl.gov/tutorials/mpi/#Derived_Data_Types

24

Basic Blocking Receive

● Blocking: receive function will not return until
message is indeed receive
– Will blocking receive cause dead-lock?

● Function: MPI_recv

25

Basic Blocking Receive cont’d

● Syntax:

● Input parameters:
– count: maximum number of data elements can be hold by buf
– datatype: the type of the data elements
– source: the rank/id of the sending process
– tag: tag of the receiving message; must match the tag used in MPI_send
– comm: communicator, e.g., MPI_COMM_WORLD

● Output parameters:
– buf: the buffer that holds the received message
– status: the status of the receive invocation

int MPI_recv(const void *buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status)

26

Basic Blocking Receive cont’d

● Note on the tag:
– If the sender process sends multiple messages at the same time

(recall that send is asynchronous), each message should has an
unique tag.

– When invoking the MPI_recv, receiver process must specify which
message it wants to receive by specifying the tag of the message

● Note on the order of send/receive code of two processes
that send messages to each other
– Because blocking receive can cause deadlock, it is important that

these two processes do not get in to blocking receive at the same
time

27

Blocking Send and Receive
Example

● Code example: MPI_block_comm.c

28

Non-blocking Send

● Non-blocking: send returns almost immediately, it does not wait for
any communication events to complete, including buffer copying.

● Non-blocking operations simply "request" the MPI library to perform
the operation when it is able. The user can not predict when that
will happen.

● It is unsafe to modify the application buffer (your variable space)
until you know for a fact the requested non-blocking operation was
actually performed by the library.
– "wait" routines are provided to check if send has complete

● Non-blocking communications are primarily used to overlap
computation with communication and exploit possible performance
gains.

29

Non-blocking Send cont’d

● Syntax:

● Input parameters:
– buf, count, datatype, dest, tag, and comm are the same as

MPI_Send

● Output parameters
– request: a handle of this request, used later to determine if

send has finished

int MPI_Isend(const void *buf,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm,
 MPI_Request *request)

30

Non-blocking Receive

● Non blocking: receive function returns
immediately, even if the message has not been
received

● Process must check later if the message has
been received or not

31

Non-blocking Receive cont’d

● Syntax:

● Except “request” all other parameters are the
same as MPI_recv

● Output parameter:
– request: a handle of this request, used later to

determine if receive has finished

int MPI_Irecv(const void *buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Request *request)

32

Non-blocking Send/Receive:
Checking Request Status

● MPI provides several APIs to wait on requests:
– MPI_Wait: wait on a single requests, blocking wait
– MPI_Waitall: wait on multiple requests, blocking

wait
– MPI_Test: tests if a request has finished, non-

blocking

33

MPI_Wait:

● Syntax:

● Input parameter:
– request: the request handle of a non-blocking send or receive;

the output parameter “request” of MPI_Isend or MPI_Irecv

● Output parameter:
– status: the status of the request

● Note: when MPI_Wait returns, the request has finished,
although it may succeed or fail.

int MPI_Wait(MPI_Request *request,
 MPI_Status *status)

34

MPI_Waitall:

● Syntax:

● Input parameter:
– Count: the number of requests in “array_of_requests”
– array_of_requests: array of handles of non-blocking sends or receives;

may contain both send and receive requests at the same time

● Output parameter:
– array_of_statuses: the array of the statuses of the requests

● Note: when MPI_Waitall returns, all requests have finished,
although they may succeed or fail.

int MPI_Waitall(int count,
 MPI_Request array_of_requests[],
 MPI_Status array_of_statuses[])

35

MPI_Test:

● Syntax:

● Input parameter:
– request: the request handle of a non-blocking send or receive; the

output parameter “request” of MPI_Isend or MPI_Irecv

● Output parameter:
– flag: true if operation completed
– status: the status of the request

● Note: when MPI_Test returns, the request may not have
finished

int MPI_Test(MPI_Request *request,
 int *flag,

 MPI_Status *status)

36

Non-blocking Example

● Code example 1: MPI_nonblock_comm.c
● Code example 2: MPI_nonblock_comm_2.c

37

Blocking vs Non-blocking
Communication

● Blocking communication:
– It is easier to code, there is no logic break in the

send/receive process
– Blocking may cause idling

● Non-block communication
– More difficult to code; send/receive logic interleaves

with other logics and computations
– Non-blocking overlaps communication with

computation, reduces idling

38

MPI_Status

● MPI_Status is data structure (a C struct) holding
information of request status.

● It has at least the following members:
– MPI_SOURCE: rank/id of the sender process
– MPI_TAG: tag of the message
– MPI_ERROR: error status, such as,

● MPI_SUCCESS: request is successful
● MPI_ERR_RANK: invalid rank
● MPI_ERR_TYPE: invalid data type

39

Combined Send and Receive

● It is not uncommon that a process engaged in
continuous bi-directional communications that it
sends and receives messages back to back

● Coding bi-directional communication can be
tricky due to the possibility of dead lock

● MPI provides API to send and receive messages
simultaneously to simplify programming
– The API uses blocking send and receive

40

Combined Send and Receive cont’d

● Syntax:

● Parameters are essentially the combination of
MPI_Send and MPI_Recv

int MPI_Sendrecv(const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 int dest,
 int sendtag,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int source,
 int recvtag,
 MPI_Comm comm,
 MPI_Status *status)

41

Combined Send and Receive cont’d

● Code Example: MPI_comb_sendrecv.c

42

Collective Communication

43

Collective Communication Routines

● Collective communication routines are use to
dissipate or collect data, or to synchronize
operations among processes

● Common routines for:
– Barrier synchronization
– Broadcast data
– Scatter data
– Gather data
– Reduce

44

MPI_Barrier

● Similar to Pthread barrier, MPI_Barrier creates
a barrier synchronization for all processes in a
communication group

● Syntax:

● Input parameters:
– comm: communicator, e.g., MPI_COMM_WORLD

int MPI_Barrier (MPI_Comm comm)

45

MPI_Bcast

● Broadcasts (sends) a message from one
process all other processes in a communication
group.

● Both the
broadcaster and
the receivers use
the same function
for this communi-
cation

46

MPI_Bcast

● Syntax:

● Input/output parameter:
– buffer: for broadcaster, this is the buffer holding the data to be

broadcasted; for receiver, this is the buffer receiving the broadcasted
data

● Input parameters:
– count: number of elements in the message
– datatype: data type of the elements
– root: rank/id of the broadcaster
– comm: comm: communicator, e.g., MPI_COMM_WORLD

int MPI_Bcast(void *buffer,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

47

MPI_Bcast cont’d

● Code example: MPI_bcast.c

48

MPI_Scatter

● Distributes distinct messages from a single
source task to each task in the group.

● Both the
distributer and
the receivers use
the same function
for this communi-
cation

49

MPI_Scatter cont’d

● Syntax:

● Input parameter:
– sendbuf: the buffer holding the data to be scattered
– sendcnt: number of elements to send to each process
– sendtype: data type of the elements to be scattered
– root: rank/id of the owner of all data
– comm: comm: communicator, e.g., MPI_COMM_WORLD

int MPI_Scatter(void *sendbuf,
 int sendcnt,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcnt,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

50

MPI_Scatter cont’d

● Syntax:

● Input parameter cont’d:
– recvcnt: number of elements to receive for each

process
– recvtype: data type of the elements to be received

● Output parameter:
– recvbuf: the buffer holding the data to be received

int MPI_Scatter(void *sendbuf,
 int sendcnt,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcnt,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

51

MPI_Scatter cont’d

● Code example: MPI_scatter.c

52

MPI_Gather

● Gathers distinct messages from each task in the
group to a single destination task.

● This routine is the reverse operation of
MPI_Scatter.

● Both the collector and
the sender use
the same function
for this communi-
cation

53

MPI_Gather cont’d

● Syntax:

● Input parameter:
– sendbuf: the buffer holding the data to be sent to the

gathering process
– sendcnt: number of elements in the send buffer
– sendtype: data type of the elements to send
– root: rank/id of the gathering process
– comm: comm: communicator, e.g., MPI_COMM_WORLD

int MPI_Gather(void *sendbuf,
 int sendcnt,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcnt,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

54

MPI_Gather cont’d

● Syntax:

● Input parameter cont’d:
– recvcnt: number of elements to gather from each

process
– recvtype: data type of the elements to be gathered

● Output parameter:
– recvbuf: the buffer holding the data to be gathered

int MPI_Gather(void *sendbuf,
 int sendcnt,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcnt,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

55

MPI_Gather cont’d

● Code example: MPI_gather.c

56

MPI_Allgather

● Similary to MPI_Gather, except that every
process retain a copy of gathered data

● All processes use
the same function
for this communi-
cation

57

MPI_Allgather cont’d

● Syntax:

● Input parameters:
– sendbuf: the buffer holding the data to be sent
– sendcnt: number of elements in the send buffer
– sendtype: data type of the elements to send
– recvcnt: number of elements to receive from each process
– comm: comm: communicator, e.g., MPI_COMM_WORLD

● Output parameter:
– recvbuf: the buffer holding gathered data

int MPI_Allgather(void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

58

MPI_Allgather cont’d

● Code example: MPI_allgather.c

59

MPI_Reduce

● Applies a reduction operation on all tasks in the
group and places the result in one task.

● Similar to the reduction operation in OpenMP
● All participating

processes use
the same function
for this communi-
cation

60

MPI_Reduce cont’d

● Syntax:

● Input parameter:
– sendbuf: the buffer holding the data for reduction
– count: number of elements in the send buffer
– datatype: data type of the elements to send
– op: the reduction operation
– root: rank/id of the process holding the result
– comm: comm: communicator, e.g., MPI_COMM_WORLD

● Output parameter:
– recvbuf: the buffer holding the reduction result

int MPI_Reduce(void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op, op
 int root,
 MPI_Comm comm)

61

MPI_Reduction cont’d

● Builtin reduction operations (for explanation -- https://linux.die.net/man/3/mpi_land) :
– MPI_MAX
– MPI_MIN
– MPI_SUM
– MPI_PROD
– MPI_LAND
– MPI_BAND
– MPI_LOR
– MPI_BOR
– MPI_LXOR
– MPI_BXOR
– MPI_MINLOC
– MPI_MAXLOC

● Custom operations are also allowed

https://linux.die.net/man/3/mpi_land

62

MPI_Reduce cont’d

● Code example: MPI_reduce.c

63

MPI_Allreduce

● Applies a reduction operation on all tasks in the
group and places the result in alls tasks.

● All participating
processes use
the same function
for this communi-
cation

64

MPI_Allreduce cont’d

● Syntax:

● Input parameter:
– sendbuf: the buffer holding the data for reduction
– count: number of elements in the send buffer
– datatype: data type of the elements to send
– op: the reduction operation
– comm: comm: communicator, e.g., MPI_COMM_WORLD

● Output parameter:
– recvbuf: the buffer holding the reduction result

int MPI_Allreduce(void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op, op
 MPI_Comm comm)

65

MPI_Allreduce cont’d

● Code example: MPI_allreduce.c

66

Derived Types and Custom Operations

67

Derived Types and Custom
Operations

● Although MPI provides many built-in types and
operations, it is common that a problem
requires to communicate data in custom types
and perform custom operations on custom data.
– Just like defining custom types and overriding

operations with arrays, structures and classes in C
and C++

● MPI provides functions to defined both custom
types and operations.

68

Derived Data

● Similar to structs, classes and arrays, custom data types
in MPI are usually defined based on the built-in types
– So the custom data are called “derived data” in MPI, i.e.,

derived from built-in types

● Flavors of Derived data
– Contiguous – similar to array
– Vector – similar to contigous, with gaps in the array
– Index – similar to contigous, except the array is partitioned

into blocks
– Struct – similar to C struct

69

Derived Struct

● MPI derived structs are partitioned into blocks
– A block is a group of variables of the same type
struct item{

 int id;
 int count;

 double weight;
 double quality;

 float price;

};

Block 1

Block 2

Block 3

70

Derived Struct cont’d

● Each block is identified by its data type, length
(number of internal variables) and offset
struct item{

 int id;
 int count;

 double weight;
 double quality;

 float price;

};

Block 1: type: MPI_INT

Block 2: type: MPI_DOUBLE

Block 3: type: MPI_FLOAT

71

Derived Struct cont’d

● Each block is identified by its data type, length
(number of internal variables) and offset
struct item{

 int id;
 int count;

 double weight;
 double quality;

 float price;

};

Block 1: len: 2 (ints)

Block 2: len: 2 (doubles)

Block 3: len: 1 (float)

72

Derived Struct cont’d

● Each block is identified by its data type, length
(number of internal variables) and offset
– Offset: beginning location of the block

struct item{

 int id;
 int count;

 double weight;
 double quality;

 float price;

};

Block 1: offset: 0

Block 2: offset: (after) the size of 2 MPI_INT

Block 3: offset: (after) the size of 2 MPI_INT+2 MPI_DOUBLE

73

Derived Struct cont’d

● To get the actual size of a MPI built-in type
(such as MPI_INT and MPI_double), call
MPI_Type_extent

● To create a custom MPI derived struct, call
“MPI_Type_struct” and pass in the informations
of the blocks

74

Derived Struct cont’d

● Syntax:

● Input parameters:
– Count: the number of blocks
– Blocklens: array with the length of each block
– Offsets: array with the offset of each block
– old_types: array with the MPI built-in type of each block

● Output parameters:
– new_type: the new MPI type for this struct

int MPI_Type_struct(int count,
 int blocklens[],
 MPI_Aint offsets[],
 MPI_Datatype old_types[],
 MPI_Datatype *newtype)

75

Derived Struct cont’d

● Syntax:

● Input parameter:
– Datatype: the built-in MPI data type

● Output parameter:
– Extent: the size of the built-in MPI data type

int MPI_Type_Extent(MPI_Datatype datatype,
 MPI_Aint *extent)

76

Derived Struct cont’d

● Computing the offsets for block 2 and 3 in the
previous example:
MPI_Aint block2_offset, block3_offset;
MPI_Aint mpi_int_size, mpi_dbl_size;

/* get the sizes of MPI_INT and MPI_DOUBLE */
MPI_Type_extent(MPI_INT, &mpi_int_size);
MPI_Type_extent(MPI_DOUBLE, &mpi_dbl_size);

/* compute the offsets */
block2_offset = 2 * mpi_int_size;
block3_offset = 2 * mpi_int_size + 2 * mpi_dbl_size;

77

Derived Struct cont’d

● Code to create the derived struct (using the
offsets from previous slide)

MPI_Datatype new_type; // the new type

int count = 3; // three blocks

int blocklens[3] = {2,2,1}; //lengths of the blocks

MPI_Aint offsets[3] = {0, block2_offset, block3_offset};

MPI_Datatypes oldtypes[3] = {MPI_INT, MPI_DOUBLE,
MPI_FLOAT}; // three blocks are of int, double and float types

/* create the new type */
MPI_Type_struct(count, blocklens, offsets, oldtypes,
&newt_type);

78

Custom Operation

● MPI allows creating custom operations to be
used in reductions on derived or built-in types

● MPI allows commutative and non-commutative
operations
– But all operations are assumed to be associative

79

Custom Operation cont’d
● An illustration of the commutative reduction

procedure:
● Four processes, operation is op, each process has

in_data to be reduced on

In_Data

op

op

In_Data

Middle
Result In_Data

op

In_Data
Middle
Result

Final
Result

80

Custom Operation cont’d
● An illustration of the commutative reduction procedure with an

array of data from each process

In_DataIn_DataIn_DataIn_DataIn_DataIn_Data

Middle
Result

Middle
Result

Middle
Result

Middle
Result

Middle
Result

Middle
Result

In_DataIn_DataIn_DataIn_DataIn_DataIn_Data
op

In_DataIn_DataIn_DataIn_DataIn_DataIn_Data

Middle
Result

Middle
Result

Middle
Result

Middle
Result

Middle
Result

Middle
Result

In_DataIn_DataIn_DataIn_DataIn_DataIn_Data

Final
Result

Final
Result

Final
Result

Final
Result

Final
Result

Final
Result

op

op

Data from Proc 0

Data from Proc 1

Data from Proc 2

Data from Proc 3

81

Custom Operation cont’d

● For any custom operation,
– MPI passes in two arrays of operands

● One operand array is from a process, the other one may
or may not be an array of middle results

– The custom operation return the result array

82

Custom Operation cont’d

● Every custom MPI operation should be a function in this
format:

● Input parameters:
– in_data_array: the array of one operands; typed (void *), so it can

hold data of any type
– len: the length of the array
– datatype: the type of the operands

● Input/out parameter:
– inout_data_array: as an input parameter, it holds the array of the

other operands; as an output parameter, the results should be in this
paramter

void your_op_name(void * in_data_array,
 void * inout_data_array,
 int * len,
 MPI_Datatype * datatype);

83

Custom Operation cont’d

● An example: sum the price and weight of data
of struct item (from slide 69)
void sum_all(void * in_data_array,
 void * inout_data_array,
 int * len,
 MPI_Datatype * datatype)
{
 // convert void * to struct item start
 struct item *in = in_data_array;
 struct item *inout = inout_data_array;
 struct item tmp;
 int i;

 for(i = 0; i < len; i++){
 // sum weight and price
 tmp.weight = in[i].weight + inout[i].weight;
 tmp.price = in[i].price + inout[i].price
 // set result to the output array
 inout[i] = tmp;
 }
}

84

Custom Operation cont’d

● To register the custom operation with MPI, use API
“MPI_Op_create”

● Syntax:

● Input parameters:
– user_fn: the name of the custom operation function
– commute: 1 if commutative; 0 if not commutative.

● Output parameter:
– Op: the handle of the custom operation

int MPI_Op_create(MPI_User_function *user_fn,
 int commute,
 MPI_Op *op)

85

Custom Operation cont’d

● An example of registering the custom operation
of summing prices and weights:
MPI_Op custom_sum_op;

MPI_Op_create(sum_all, 1, &custom_sum_op);

86

Combining Derived Data and
Custom Operation

● Code Example: MPI_custom_type_op.c

87

User Defined Communication Groups

88

User Defined Communication
Groups

● User defined communication groups provide
better control over communication to optimize
performance or simplify coding
– Allow you to organize tasks, based upon function,

into task groups.
– Enable collective communications operations

across a subset of related tasks.
– Provide basis for implementing user defined virtual

topologies

89

Groups vs Communicator

● A group is an ordered set of processes. A group is
always associated with a communicator object.

● A communicator encompasses a group of processes
that may communicate with each other.

● From the programmer's perspective, a group and a
communicator are one. The group routines are
primarily used to specify which processes should be
used to construct a communicator.

90

Defining Custom Groups

● Typically, a new group is created from an existing group.
In particular, created from the all-in group represented by
MPI_COMM_WORLD

0

21 3

4 5

6 7

0
2

1

3

4 5

6 7

MPI_COMM_WORLD

Group 1

Group 2

0
2

1

3

0 1

2 3

comm1

comm2

Processes have
new ids in new

group

Processes have
new IDs in new

group

91

Defining Custom Groups cont’d

● Note that a process can participate in multiple
groups, and it may have different IDs in each group.

0

21 3

4 5

6 7

0
2

1

3

4 5

6 7

MPI_COMM_WORLD

Group 1

Group 2

0
2

1

3

0 1

2 3

comm1

comm2Processes have
new ids in new

group

This process’ ID is 6 in
MPI_COMM_WORLD, but

2 in comm2

92

The Procedure of Defining a New
Group

● Extract the group handler from an old group.
● Create the new group using the old group’s

handle and,
– The IDs of processes that go to the new group
– The number of processes in the new group

● Create a new communicator from the new
group.

93

Extracting the Handle of an Old
Group

● Syntax:

● Input parameter:
– comm: the communicator of the old group

● Output parameter:
– group: the handle of the old group

int MPI_Comm_group(MPI_Comm comm,
 MPI_Group *group)

94

Creating a New Group from an Old
Group

● Syntax:

● Input parameter:
– group: the handle of the old group
– n: number of processes in the new group
– Ranks: IDs (in the old group) of the processes that are to be

included the new group

● Output parameter:
– new_group: the handle of the new group

int MPI_Group_incl(MPI_Group group,
 int n,
 const int ranks[],
 MPI_Group *newgroup)

95

Create a Communicator for A New
Group

● Syntax:

● Input parameter:
– comm: the communicator of the old group
– Group: the handle of the new group

● Output parameter:
– newcomm: the communicator of the new group

int MPI_Comm_create(MPI_Comm comm,
 MPI_Group group,
 MPI_Comm *newcomm)

96

Example of Creating A New Group

● Example: creating a new group using
processes 4, 5, 6 and 7 of the old all-in group
// IDs of the procs in the old group that are to be
// included in the new group
int ranks[4] = {4,5,6,7};
// handles of the old and new groups
MPI_Group orig_group, new_group;
MPI_Comm new_comm; //communicator of the new group

// get the group handle of the all-in group
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

// create the new group
MPI_Group_incl(orig_group, 4, ranks, &new_group);

// craete the new communicator
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);

97

Complete Code Example

● Code example: MPI_group.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

