Parallel Algorithm Design Case Study: Sparse Matrix Vector Multiplication

Wei Wang

A Slightly More Complex Parallel Algorithm

- So far the examples we have seen are all very simple and naive
- Sparse matrix operations are popular in parallel algorithm studies
 - A sparse matrix is a matrix in which most of the elements are zero
 - Sparse matrices are very common in nature
 - Sparse matrices have many temporal ans spatial optimization opportunities
- The case study here is still a very simple case of sparse matrix operations

A Example of Sparse Matrix Vector Multiplication

None-zero element

3

A Example of Sparse Matrix Vector Multiplication – Task Decomposition

- Task partitioning: each task computes one element of y
 - Task0: y[0] = A[0,0] * b[0] + A[0,1] * b[1] + A[0,4] * b[4] + A[0,8] * b[8]
 - Task1: y[1] = A[1,0] * b[0] + A[1,1] * b[1] + A[1,2] * b[2] + A[1,5] * b[5] + A[1,6] * b[6]
 - Task2: y[2] = A[2,1] * b[1] + A[2,2] * b[2] + A[2,3] * b[3] + A[1,5] * b[5] + A[1,6] * b[6]
 - Task3: y[3] = A[3,2] * b[2] + A[3,3] * b[3] + A[3,7] * b[7]
 - Task4: y[4] = A[4,0] * b[0] + A[4,4] * b[4] + A[4,5] * b[5] + A[4,8] * b[8] + A[4,9] * b[9]
 - Task5: y[5] = A[5,1] * b[1] + A[5,2] * b[2] + A[5,4] * b[4] + A[5,5] * b[5] + A[5,6] * b[6] + A[5,9] * b[9]
 - Task6: y[6] = A[6,1] * b[1] + A[6,2] * b[2] + A[6,5] * b[5] + A[6,6] * b[6] + A[6,7]*b[7] + A[6,8] * b[8] + A[6,9] * b[9] + A[6,10] * b[10] + A[6,11] * b[11]
 - Task7: y[7] = A[7,3] * b[3] + A[7,6] * b[6] + A[7,7] * b[7]
 - Task8: y[8] = A[8,0] * b[0] + A[8,4] * b[4] + A[8,6] * b[6] + A[8,8] * b[8]
 - Task9: y[9] = A[9,4] * b[4] + A[9,5] * b[5] + A[9,6] * b[6] + A[9,9] * b[9] + A[9,10] * b[10]
 - Task10: y[10] = A[10,6] * b[6] + A[10,8] * b[8] + A[10,9] * b[9]
 - Task11: y[11] = A[11,6] * b[6] + A[11,11] * b[11]

A Example of Sparse Matrix Vector Multiplication – Task Dependency

Tasks are all independent

A Example of Sparse Matrix Vector Multiplication – Data Assignment

- For Task_i,
 - It is assigned with all data associated with row i of A, i.e., A[i, *]
 - It is assigned with y[i]
 - It is also assigned with b[i]
 - A common strategy in case b is a very large vector, and replicating b's data at each task in impractical

A Example of Sparse Matrix Vector Multiplication – Communication

- Because b[i] is assigned to Task_i, Task_i has to send b[i] to any other tasks who uses b[i]
 - e.g., Task₀ has to send b[0] to Task₁, Task₄, and Task₈
- Task interaction graph illustrate the communication between tasks

A Example of Sparse Matrix Vector Multiplication – Task Interaction

A Example of Sparse Matrix Vector Multiplication – Task Mapping

Total 13 elements are sent