Lexical Analysis

Wel Wang

CS5363
PL and Compilers

Where We Are

Lexical Analysis

2 Machine
Code

CS5363
PL and Compilers

Textbook Chapters

* Dragon Book
- Chapters 3.1, 3.3, 3.4, and 3.8

CS5363
PL and Compilers

An Example of Scanning

CS5363
PL and Compilers

Lexical Analysis

* Lexical analysis recognize the basic lexemes of
source code.

* For example,

while (137 < 1)
++1;

0]
e

wh e (137 < i)Wl

CS5363
PL and Compilers

Scanning a Source File

while (137 < i)W\
1

Read in one

character at
a time

WIRe (137 < i) i
1

After reading

“while”, a keyword
is found

CS5363
PL and Compilers

Scanning a Source File cont.

WIRe (137 < i)\ i
1

The piece of the original program
from which we made the token is
called a

This is called a . You can

think of it as an enumerated type

representing what logical entity we
read out of the source code.

CS5363
PL and Compilers

Scanning a Source File cont.

L (137 < i) e i

Sometimes we will discard a lexeme

rather than storing it for later use.
Here, we ignore whitespace, since it
has no bearing on the meaning of
the program

CS5363
PL and Compilers

Scanning a Source File cont.

Illlllllﬂﬂﬂ

For most punctuations, we can directly
use their ascii values to represent
themselves, instead of enumerated

types

CS5363
PL and Compilers

Scanning a Source File cont.

Illllllllﬂﬂﬂ

Some tokens can have that
store extra information about the
token. Here we store which integer is

represented.

CS5363
PL and Compilers

10

Scanning a Source File cont.

The tokens after all lexemes are
scanned. Note that identifiers also
have associated values, where are
the variable names.

CS5363
PL and Compilers

11

Goals of Lexical Analysis

* Convert from physical description of a program into
sequence of

~ Each token represents one logical piece of the source
file — a keyword, the name of a variable, etc.

~— Each token Is associated with a
~ The actual text of the token: “137,” “Int,” etc.

* Each token may have optional

~ Extra information derived from the text — perhaps a
numeric value.

* The token sequence will be used In the parser to
recover the program structure

CS5363 12
PL and Compilers

Scanning is Hard

CS5363
PL and Compilers

13

Choosing Tokens

e What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++tk) A
cout << k << endl;

I

CS5363
PL and Compilers

14

Choosing Good Tokens cont.

* Very much dependent on the language.
* Typically:
— Give keywords their own tokens.

— Give different punctuation symbols their own
tokens.

— Group lexemes representing identifiers, numeric
constants, strings, etc. into their own groups.

* Discard irrelevant information (whitespace,
comments)

CS5363
PL and Compilers

15

Scanning Is Hard

* FORTRAN: Whitespace Is irrelevant

DO 5 I = 1,25
= 1.25

e Can be difficult to tell when to partition input.

CS5363
PL and Compilers

Scanning is Hard cont.

* C++: Nested template declarations

vector <vector<int>> myVector

- Or,

vector < vector < int >> myVector

~ Or,

(vector < (vector < ()))

— Again, can be difficult to determine w

CS5363
PL and Compilers

nere to split.

17

Scanning is Hard cont.

* PL/1: Keywords can be used as identifiers.

THEN THEN = ELSE; ELSE = IF

e Can be difficult to determine how to label
lexemes.

CS5363
PL and Compilers

Associating Lexemes with Tokens

CS5363
PL and Compilers

19

L exemes and Tokens

* Tokens give a way to categorize lexemes by what
Information they provide.

* Some tokens might be associated with only a
single lexeme:

— Tokens for keywords like if and while probably only
match those lexemes exactly.

* Some tokens might be associated with lots of
different lexemes:

— All variable names, all possible numbers, all possible
strings, etc.

CS5363
PL and Compilers

20

Sets of Lexemes

e |dea: Associate a set of lexemes with each
token.

* We might associate the “number” token with the
set{O,1,2,...,10,11,12, ... }

* We might associate the “string” token with the
Set { llll, Ilall, llbll, "C", . }

* We might associate the token for the keyword
while with the set { while }.

CS5363 21
PL and Compilers

Expressing the Sets of Lexemes

For most languages, we use Regular Expressions
(RE) to express the sets of lexemes.

Regular expressions are a family of descriptions
that can be used to capture certain languages (the
regular languages).

Often provide a compact and human-readable
description of the language.

Used as the basis for numerous software systems,
Including the flex tool we will use In this course.

Recall the REs are recognized with DFA and NFA.

CS5363 22
PL and Compilers

Examples of REs in Compllers

* Aninteger hasonly O, 1, 2, ..., 9
- That is, the RE for integer Is [0-9]+

* An identifier (ID) must starts with a letter, and
may contain letters, numbers and underscore
- RE for ID is then [A-Za-z]([A-Za-z0-9)*

CS5363
PL and Compilers

23

A Challenge In Scanning

 How do we determine which lexemes are
associlated with each token?

CS5363
PL and Compilers

24

Assoclating Lexemes with Tokens

s “for” an identifier or a keyword?
s “fort” an identifier or a keyword?
How can a scanner tell the difference?

Conflict Resolution:
— Assume all tokens are specified as regular expressions.
— Algorithm:

— Tiebreaking rule one: .
* Always match the longest possible prefix of the remaining text

CS5363 25
PL and Compilers

Implementing Longest Match

* Glven a set of regular expressions, how can we
use them to implement maximum munch?

* |dea:
— Convert expressions to NFAs.

- Run all NFAs in parallel, keeping track of the last
match.

- When all automata get stuck, report the last match
and restart the search at that point.

CS5363 26
PL and Compilers

Implementing Longest Match cont.

T Double double

start D o)
start D 0 u b I e P
start >

DoUBDoOU I ¢

CS5363
PL and Compilers

27

Implementing Longest Match cont.

T Double double

start D 0]

start D 0 u b I e P
+ WQ
start >

]

Iilﬂﬂlﬂﬂllﬂ

CS5363 28
PL and Compilers

Implementing Longest Match cont.

T Double double

start D 0]

start D 0 u b I e P
-9 & o 0 0 0 o
start >

]
E?EEEIIE

CS5363 29
PL and Compilers

Implementing Longest Match cont.

T _DO do
T Double double
T Mystery [A-Za-z]

§t§rt D o)

When reading “U”, NFA 1
and 3 accepts “Do” and “D”,
NFA 2 rejects. So the longest
match is “DO”

IIEEEIIH

CS5363 30
PL and Compilers

More Tiebreaking

* When two regular expressions apply, choose
the one with the greater “priority.”

e Simple priority system: pick the rule that was
defined first.

* E.g., “Int” matches both T Identifier and T _Int.
If we give T_Int higher priority, then “Int” Is
considered to be T _Int.

* In Flex, rules defined earlier has higher priority.

CS5363 31
PL and Compilers

No Rule Matches

* We know what to do if multiple rules match.
* What Iif nothing matches?

* Trick: Add a “catch-all” rule with lowest priority
that matches any character and reports an
error.

CS5363
PL and Compilers

32

Summary of Conflict Resolution

Construct an automaton for each regular
expression.

Scan the input, keeping track of the last known
match in each automaton.

~ It is possible to merge these automata into on
deterministic automaton.

Break ties by choosing higher-precedence
matches.

Have a catch-all rule to handle errors.

CS5363
PL and Compilers

33

Acknowledgement

* This lectures Is based on the Compiler slides of
Keith Schwarz.

CS5363 34
PL and Compilers

