
CS5363
PL and Compilers

1

Lexical Analysis

Wei Wang

CS5363
PL and Compilers

2

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

CS5363
PL and Compilers

3

Textbook Chapters

● Dragon Book
– Chapters 3.1, 3.3, 3.4, and 3.8

CS5363
PL and Compilers

4

An Example of Scanning

CS5363
PL and Compilers

5

Lexical Analysis

● Lexical analysis recognize the basic lexemes of
source code.

● For example,

w h i l e (1 3 7 < i) \n \t + + i ;

T_While (T_IntConst < T_Ident) ++ T_Ident ;
137 i i

while (137 < i)
++i;

CS5363
PL and Compilers

6

Scanning a Source File

w h i l e (1 3 7 < i) \n \t + + i ;

w h i l e (1 3 7 < i) \n \t + + i ;

Read in one
character at
a time

T_While
After reading
“while”, a keyword
is found

CS5363
PL and Compilers

7

Scanning a Source File cont.

w h i l e (1 3 7 < i) \n \t + + i ;

T_While
The piece of the original program
from which we made the token is
called a lexeme.

This is called a token. You can
think of it as an enumerated type
representing what logical entity we
read out of the source code.

CS5363
PL and Compilers

8

Scanning a Source File cont.

w h i l e (1 3 7 < i) \n \t + + i ;

T_While

Sometimes we will discard a lexeme
rather than storing it for later use.
Here, we ignore whitespace, since it
has no bearing on the meaning of
the program

CS5363
PL and Compilers

9

Scanning a Source File cont.

w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

For most punctuations, we can directly
use their ascii values to represent
themselves, instead of enumerated
types

CS5363
PL and Compilers

10

Scanning a Source File cont.

w h i l e (1 3 7 < i) \n \t + + i ;

T_While (

Some tokens can have attributes that
store extra information about the
token. Here we store which integer is
represented.

T_IntConst
137

CS5363
PL and Compilers

11

Scanning a Source File cont.

w h i l e (1 3 7 < i) \n \t + + i ;

T_While (T_IntConst < T_Ident) ++ T_Ident ;
137 i i

The tokens after all lexemes are
scanned. Note that identifiers also
have associated values, where are
the variable names.

CS5363
PL and Compilers

12

Goals of Lexical Analysis

● Convert from physical description of a program into
sequence of tokens.
– Each token represents one logical piece of the source

file – a keyword, the name of a variable, etc.
– Each token is associated with a lexeme.
– The actual text of the token: “137,” “int,” etc.

● Each token may have optional attributes.
– Extra information derived from the text – perhaps a

numeric value.
● The token sequence will be used in the parser to

recover the program structure

CS5363
PL and Compilers

13

Scanning is Hard

CS5363
PL and Compilers

14

Choosing Tokens

● What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
 cout << k << endl;
}

for { int } << ; = < ([)] ++

Identifier

IntegerConstant

CS5363
PL and Compilers

15

Choosing Good Tokens cont.

● Very much dependent on the language.
● Typically:

– Give keywords their own tokens.
– Give different punctuation symbols their own

tokens.
– Group lexemes representing identifiers, numeric

constants, strings, etc. into their own groups.
● Discard irrelevant information (whitespace,

comments)

CS5363
PL and Compilers

16

Scanning is Hard

● FORTRAN: Whitespace is irrelevant

● Can be difficult to tell when to partition input.

DO 5 I = 1,25
DO5I = 1.25

CS5363
PL and Compilers

17

Scanning is Hard cont.

● C++: Nested template declarations

– Or,

– Or,

– Again, can be difficult to determine where to split.

vector <vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

CS5363
PL and Compilers

18

Scanning is Hard cont.

● PL/1: Keywords can be used as identifiers.

● Can be difficult to determine how to label
lexemes.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

CS5363
PL and Compilers

19

Associating Lexemes with Tokens

CS5363
PL and Compilers

20

Lexemes and Tokens

● Tokens give a way to categorize lexemes by what
information they provide.

● Some tokens might be associated with only a
single lexeme:
– Tokens for keywords like if and while probably only

match those lexemes exactly.
● Some tokens might be associated with lots of

different lexemes:
– All variable names, all possible numbers, all possible

strings, etc.

CS5363
PL and Compilers

21

Sets of Lexemes

● Idea: Associate a set of lexemes with each
token.

● We might associate the “number” token with the
set { 0, 1, 2, …, 10, 11, 12, … }

● We might associate the “string” token with the
set { "", "a", "b", "c", … }

● We might associate the token for the keyword
while with the set { while }.

CS5363
PL and Compilers

22

Expressing the Sets of Lexemes

● For most languages, we use Regular Expressions
(RE) to express the sets of lexemes.

● Regular expressions are a family of descriptions
that can be used to capture certain languages (the
regular languages).

● Often provide a compact and human-readable
description of the language.

● Used as the basis for numerous software systems,
including the flex tool we will use in this course.

● Recall the REs are recognized with DFA and NFA.

CS5363
PL and Compilers

23

Examples of REs in Compilers

● An integer has only 0, 1, 2, …, 9
– That is, the RE for integer is [0-9]+

● An identifier (ID) must starts with a letter, and
may contain letters, numbers and underscore
– RE for ID is then [A-Za-z]([A-Za-z0-9_)*

CS5363
PL and Compilers

24

A Challenge in Scanning

● How do we determine which lexemes are
associated with each token?

CS5363
PL and Compilers

25

Associating Lexemes with Tokens

● Is “for” an identifier or a keyword?
● Is “fort” an identifier or a keyword?
● How can a scanner tell the difference?
● Conflict Resolution:

– Assume all tokens are specified as regular expressions.
– Algorithm: Left-to-right scan.
– Tiebreaking rule one: Longest match.

● Always match the longest possible prefix of the remaining text

CS5363
PL and Compilers

26

Implementing Longest Match

● Given a set of regular expressions, how can we
use them to implement maximum munch?

● Idea:
– Convert expressions to NFAs.
– Run all NFAs in parallel, keeping track of the last

match.
– When all automata get stuck, report the last match

and restart the search at that point.

CS5363
PL and Compilers

27

Implementing Longest Match cont.
T_DO do
T_Double double
T_Mystery [A-Za-z]

start D o

start D o u b l e

start ∑

D o U B D o u l e

CS5363
PL and Compilers

28

Implementing Longest Match cont.
T_DO do
T_Double double
T_Mystery [A-Za-z]

start D o

start D o u b l e

start ∑

D o U B D o u l e

CS5363
PL and Compilers

29

Implementing Longest Match cont.
T_DO do
T_Double double
T_Mystery [A-Za-z]

start D o

start D o u b l e

start ∑

D o U B D o u l e

CS5363
PL and Compilers

30

Implementing Longest Match cont.
T_DO do
T_Double double
T_Mystery [A-Za-z]

start D o

start D o u b l e

start ∑

D o U B D o u l e

When reading “U”, NFA 1
and 3 accepts “Do” and “D”,
NFA 2 rejects. So the longest
match is “DO”

CS5363
PL and Compilers

31

More Tiebreaking

● When two regular expressions apply, choose
the one with the greater “priority.”

● Simple priority system: pick the rule that was
defined first.

● E.g., “int ” matches both T_Identifier and T_Int.
If we give T_Int higher priority, then “int” is
considered to be T_Int.

● In Flex, rules defined earlier has higher priority.

CS5363
PL and Compilers

32

No Rule Matches

● We know what to do if multiple rules match.
● What if nothing matches?
● Trick: Add a “catch-all” rule with lowest priority

that matches any character and reports an
error.

CS5363
PL and Compilers

33

Summary of Conflict Resolution

● Construct an automaton for each regular
expression.

● Scan the input, keeping track of the last known
match in each automaton.
– It is possible to merge these automata into on

deterministic automaton.
● Break ties by choosing higher-precedence

matches.
● Have a catch-all rule to handle errors.

CS5363
PL and Compilers

34

Acknowledgement

● This lectures is based on the Compiler slides of
Keith Schwarz.

