Lexical Analysis

Wel Wang

CS5363
PL and Compilers



Where We Are

Lexical Analysis

2 Machine
Code
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Textbook Chapters

* Dragon Book
- Chapters 3.1, 3.3, 3.4, and 3.8
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An Example of Scanning
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Lexical Analysis

* Lexical analysis recognize the basic lexemes of
source code.

* For example,

while (137 < 1)
++1;

0]
e

wh e (137 < i)Wl
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Scanning a Source File

while (137 < i)W\
1

Read in one

character at
a time

WIRe (137 < i) i
1

After reading

“while”, a keyword
is found
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Scanning a Source File cont.

WIRe (137 < i)\ i
1

The piece of the original program
from which we made the token is
called a

This is called a . You can

think of it as an enumerated type

representing what logical entity we
read out of the source code.
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Scanning a Source File cont.

L (137 < i) e i

Sometimes we will discard a lexeme

rather than storing it for later use.
Here, we ignore whitespace, since it
has no bearing on the meaning of
the program
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Scanning a Source File cont.

Illlllllﬂﬂﬂ

For most punctuations, we can directly
use their ascii values to represent
themselves, instead of enumerated

types
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Scanning a Source File cont.

Illllllllﬂﬂﬂ

Some tokens can have that
store extra information about the
token. Here we store which integer is

represented.
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Scanning a Source File cont.

The tokens after all lexemes are
scanned. Note that identifiers also
have associated values, where are
the variable names.
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Goals of Lexical Analysis

* Convert from physical description of a program into
sequence of

~ Each token represents one logical piece of the source
file — a keyword, the name of a variable, etc.

~— Each token Is associated with a
~ The actual text of the token: “137,” “Int,” etc.

* Each token may have optional

~ Extra information derived from the text — perhaps a
numeric value.

* The token sequence will be used In the parser to
recover the program structure
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Scanning is Hard
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Choosing Tokens

e What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++tk) A
cout << k << endl;

I
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Choosing Good Tokens cont.

* Very much dependent on the language.
* Typically:
— Give keywords their own tokens.

— Give different punctuation symbols their own
tokens.

— Group lexemes representing identifiers, numeric
constants, strings, etc. into their own groups.

* Discard irrelevant information (whitespace,
comments)

CS5363
PL and Compilers

15



Scanning Is Hard

* FORTRAN: Whitespace Is irrelevant

DO 5 I = 1,25
= 1.25

e Can be difficult to tell when to partition input.
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Scanning is Hard cont.

* C++: Nested template declarations

vector <vector<int>> myVector

- Or,

vector < vector < int >> myVector

~ Or,

(vector < (vector < ( ) ))

— Again, can be difficult to determine w
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Scanning is Hard cont.

* PL/1: Keywords can be used as identifiers.

THEN THEN = ELSE; ELSE = IF

e Can be difficult to determine how to label
lexemes.
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Associating Lexemes with Tokens
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L exemes and Tokens

* Tokens give a way to categorize lexemes by what
Information they provide.

* Some tokens might be associated with only a
single lexeme:

— Tokens for keywords like if and while probably only
match those lexemes exactly.

* Some tokens might be associated with lots of
different lexemes:

— All variable names, all possible numbers, all possible
strings, etc.
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Sets of Lexemes

e |dea: Associate a set of lexemes with each
token.

* We might associate the “number” token with the
set{O,1,2,...,10,11,12, ... }

* We might associate the “string” token with the
Set { llll, Ilall, llbll, "C", . }

* We might associate the token for the keyword
while with the set { while }.
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Expressing the Sets of Lexemes

For most languages, we use Regular Expressions
(RE) to express the sets of lexemes.

Regular expressions are a family of descriptions
that can be used to capture certain languages (the
regular languages).

Often provide a compact and human-readable
description of the language.

Used as the basis for numerous software systems,
Including the flex tool we will use In this course.

Recall the REs are recognized with DFA and NFA.
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Examples of REs in Compllers

* Aninteger hasonly O, 1, 2, ..., 9
- That is, the RE for integer Is [0-9]+

* An identifier (ID) must starts with a letter, and
may contain letters, numbers and underscore
- RE for ID is then [A-Za-z]([A-Za-z0-9 )*
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A Challenge In Scanning

 How do we determine which lexemes are
associlated with each token?
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Assoclating Lexemes with Tokens

s “for” an identifier or a keyword?
s “fort” an identifier or a keyword?
How can a scanner tell the difference?

Conflict Resolution:
— Assume all tokens are specified as regular expressions.
— Algorithm:

— Tiebreaking rule one: .
* Always match the longest possible prefix of the remaining text
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Implementing Longest Match

* Glven a set of regular expressions, how can we
use them to implement maximum munch?

* |dea:
— Convert expressions to NFAs.

- Run all NFAs in parallel, keeping track of the last
match.

- When all automata get stuck, report the last match
and restart the search at that point.
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Implementing Longest Match cont.

T Double double

start D o)
start D 0 u b I e P
start >

DoUBDoOU I ¢
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Implementing Longest Match cont.

T Double double

start D 0]

start D 0 u b I e P
+ WQ
start >

]

Iilﬂﬂlﬂﬂllﬂ
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Implementing Longest Match cont.

T Double double

start D 0]

start D 0 u b I e P
-9 & o 0 0 0 o
start >

]
E?EEEIIE
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Implementing Longest Match cont.

T _DO do
T Double double
T Mystery [A-Za-z]

§t§rt D o)

When reading “U”, NFA 1
and 3 accepts “Do” and “D”,
NFA 2 rejects. So the longest
match is “DO”

IIEEEIIH
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More Tiebreaking

* When two regular expressions apply, choose
the one with the greater “priority.”

e Simple priority system: pick the rule that was
defined first.

* E.g., “Int” matches both T Identifier and T _Int.
If we give T_Int higher priority, then “Int” Is
considered to be T _Int.

* In Flex, rules defined earlier has higher priority.
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No Rule Matches

* We know what to do if multiple rules match.
* What Iif nothing matches?

* Trick: Add a “catch-all” rule with lowest priority
that matches any character and reports an
error.
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Summary of Conflict Resolution

Construct an automaton for each regular
expression.

Scan the input, keeping track of the last known
match in each automaton.

~ It is possible to merge these automata into on
deterministic automaton.

Break ties by choosing higher-precedence
matches.

Have a catch-all rule to handle errors.
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