Finite State Machine and Regular
Expressions

Wel Wang

CS5363
PL and Compilers

Textbook Chapters

* This lecture corresponds to the chapters of 3.3
(regular expression), 3.6/3.7 (finite automata)
and 3.5 (flex) of the Dragon book.

CS5363
PL and Compilers

Lexical Analysis

* Lexical analysis Is the first step taken by a
compiler

* Lexical analysis recognizes the tokens, such as
identifiers, constants and keywords

* Lexical analysis Is essentially pattern matching,
which is achieved with regular expression and
finite automata (state machines).

CS5363
PL and Compilers

Pattern Matching Basics

Pattern matching is a well studied area
~Inite Automata constructed and used for all
pattern matching tasks, e.qg.,

— String matching / processing

~ Lexical analysis

Regular expressions (RE) are used to simplify
pattern expression

_ex or Flex are used to automatically convert
patterns (RE) to finite automata to executable
programs

CS5363
PL and Compilers

What We WiIll Learn

* Regular expression

* Finite Automata
— Deterministic/Non-deterministic finite automata
— Conversion from Non-deterministic to deterministic
— Minimizing deterministic finite automata

e Flex

- Write flex grammar to convert regular expression to
a program that performs pattern matching

CS5363
PL and Compilers

Regular Expression

* Regular expression is an algebraic way to describe
patterns/strings, more formally, languages.
* Regular expression contains:

— Regular characters: means the character itself; most
letters are regular characters

— Special characters: special operations on regular
characters

* £l1s a special character represents empty string —
a string without any character

CS5363 6
PL and Compilers

Regular Expression: Regular
Characters

* Most letters, numbers and some punctuations
are normal characters

* E.g., regular expression abc matches string
“abc”, and only that string

* E.g., regular expression x87z matches string
“x872”, and only that string

CS5363
PL and Compilers

Regular Expression: Sub-
expression and Concatenation

 Parentheses '(and ')’ mark an subexpression

- e.g., regular expression (abc) matches string
*abc”, and only that string

- e.g., regular expression (x87z) matches string
“x872”, and only that string

* Subexpressions and regular characters can be
concatenated into one regular expression

- e.d., regular expression (x87z)mu (abc) matches
string “x87zmuabc”, and only that string

CS5363
PL and Compilers

Regular Expression: Special
Characters

e *> matches zero or more of a sub-expression

- e.g., ab* matching any string starts with an a,
following by zero or more b's, such as “a”, “ab”,
“abb”, “abbb”, “abbbb” ...

- e.g., (ab) * matching any string that repeats “ab”,
Including the empty string, such as g, “ab”, “abab”,
“ababab”, “abababab” ...

CS5363
PL and Compilers

Regular Expression: Special
Characters cont'd

* +. matches one or more of a sub-expression

- e.g., ab+ matching any string starts with an a,
following by one or more b's, such as “ab”, “abb”,
“abbb”, “abbbb” ...

- e.g., (ab) + matching any string that repeats “ab”,
excluding the empty string, such as “ab”, “abab”,
“ababab”, “abababab” ...

CS5363
PL and Compilers

10

Regular Expression: Special
Characters cont'd

matches one or another
e.g., ab | bc matches “ab” or “bc”
e.g., x(10]01) x matches “x10x” or “x01x”

: matches one character

e.g., a.b matches any 3-character tring starts with
a and ends with b, such as “acb”, “axb”, “alb” ...

e.g. a. *b matches any strings starts with a and
ends with b, such as “axxxb”, “ab”, “a098xb” ...

CS5363 1
PL and Compilers

Regular Expression: Special
Characters cont'd

* [and]. matches a single character that Is
contained within the brackets.

- e.g., a[bc]d, matches “abd” or “acd”

- e.g., x[0-9]y, matches any string starts with x,
ends with y, and has one digit in middle, I.e., “x0y”,
“le", “X2y”, . “X9y”

- e.g., 0 [a-zA-7]1, matches any string starts with O,
ends with 1, and has letter in middle, suc as, “0Ox1”,
Hoqlﬂ, “OL]_”’ .

CS5363 12
PL and Compilers

Regular Expression: Special
Characters cont'd

* [*and | : matches any character that is not
contained within the brackets

- e.g., xyz[~abc], matches any 4-character string
starts with “xvyz” and does not end with an a, b or c.

* { and }. specifies the number of occurrence of
subexpression

- e.g., a{3, 5}, matches any string with 3to 5 a's

- e.g., [0-91{2, 9}, matches any string with 2 to 9
digits

CS5363 13
PL and Compilers

Regular Expression: Special
Characters cont'd

* There are more special characters, defined by
various standards. You can find them online.

* Sometimes, you need to put “\” before a special
character for it to be recognized a special
character

— e.d., basic regular syntax of POSIX

* Sometimes, you need to put “\” before a special
character for it to recognized a regular character

— e.g., extended reqgular syntax of POSIX

CS5363
PL and Compilers

14

Some Regqular Expression
Examples
* A phone number;
- [0-91{3,3}\-[0-9]{3,3}\-[0-9]{4,4}

* An email address with only lower case
characters, numbers, dot and @

- [a-z][a-z0-9]*@[a-z0-9\.]*[a-Z]

CS5363
PL and Compilers

15

Finite-state Automata

Finite-state Automata is a simple idealized machine used
to recognize patterns within input strings

Non-deterministic Finite Automata (NFA):

~— Used to convert regular expressions into finite-state
automata

Deterministic Finite Automata (DFA):

~— Converted from NFA for better implementation of pattern
matching

~— NFA and DFA are equivalent in pattern matching

Constructing DFA is the standard aﬁproach for arbitrary
pattern matching or substring matching

CS5363 16
PL and Compilers

A Finite Automaton Example

* This automaton matches any string with a substring “ab”
— “S”Is the start state
— “ab” Is the acceptance state (a match found)
~ “reJ” Is the rejection state (no match found)

~— An arrow represents a state change based on input
character

Any other
char

Any other a
char

CS5363 17
PL and Compilers

Non-deterministic Finite Automata

* A non-deterministic finite automaton is 5-tuple:
M=1{Q, 2,9, q, F}

* Q Is a finite set of states

* 5 Is a finite set of permissible input characters
* 0 IS a mapping from Q x > to Q

e g, € Q, the start state

 F < Q Is the set of final states

CS5363
PL and Compilers

18

Converting RE to NFA

 Thompson's constructions
* Only one start state, one one final state

No arcs from outside except
those from “S”,

no arcs leaving except
those to “F”

CS5363
PL and Compilers

19

Converting RE to NFA cont'd

* A NFA matches one character input c

* A NFA matches an empty string: this is why
NFA is non-deterministic. Because of the
empty input, a NFA can in either “S” or “F”
state

€
—0 -@

CS5363
PL and Compilers

20

Converting RE to NFA cont'd

e Union of two NFAs (for[] and '|")

- l.e., RE1|RE2. Let N1 be rRE1's NFA, N2 be RE2'S
NFA

CS5363
PL and Compilers

21

Converting RE to NFA cont'd

e Concatenation of two NFAs

— i1.e.,REI1IRE2. Let N1 be RE1'S NFA, N2 be RE2's
NFA

CS5363
PL and Compilers

22

Converting RE to NFA cont'd

* ANFA matches RE1* (zero or more
occurrence of pattern RE1)

e How about RE1+7?

CS5363
PL and Compilers

23

A NFA Example

* Regular expressmn [ab]9*[cd]

HG:

o 0 .
C@H@Jﬁe

CS5363
PL and Compilers

24

Deterministic Finite Automata

* NFA Is every hard to implement, because,
- The € transition
- For certain state and input there is no move

* Deterministic Finite Automata (DFA)
- Removes the € transition,

- For each state and an input character, there is one
and only one transition to a next state

 Every NFA can be converted into a DFA

CS5363
PL and Compilers

25

Deterministic Finite Automata cont'd

* A deterministic finite automaton is 5-tuple:
M=1{Q, 2,9, q, F}

* The elements have similar meanings as those
in NFA

CS5363
PL and Compilers

26

A DFA Example

* Regular expression: [ab]9*[cd]
c,d

Any input not
marked goes to
rejection

c,d

CS5363
PL and Compilers

27

Minimizing DFA

There is a DFA with minimal states for any pattern

Minimal DFA can be found by reducing a non-minimal
DFA with DFA minimization algorithms

Minimal DFA requires fewer memory to implement
Example: [ab]9*[cd]

CS5363
PL and Compilers

28

Flex — A Lexical Analyzer Generator

* Glven a pattern, flex automatically generate a
C-program that can scan over an input string,
and find the substrings that match the pattern

* Flex specification is composed of rules
(patterns) and actions
- Rules define what patterns to match
- Actions define what to do with matched substrings

C source file that Executable that
implement performs pattern
the pattern matching matching
and actions and actions

rules and actions

in plain text,
* | file

CS5363
PL and Compilers

29

Flex File Syntax

Flex syntax:

o\°

{
/* Extra includes and variable declarations
in C syntax */

o\°
—

/* definitions for short cuts*/

/* rules and actions*/

Patterns/rules { /*actions in C */ }
/* user code in C */

CS5363
PL and Compilers

30

Flex File Syntax

* Flex syntax with examples:

% {
/* Extra includes and variable declarations
in C syntax */
#include <stdio.h>
int global_counter = 0;

(e]
5}

/* name definitions */
DIGIT [0-9] /* declaration DIGIT to be a single number */

S o

/* rules and actions*/

/* in Flex, declared names are put in {} to use */

/* yytext is a predefined flex variable with the wvalue of
matched substring */

{DIGIT}+ { printf (“found %s\n”, yytext);}

[oe)
5%

/* user code in C */

int main() { yylex(); return 0;} /* yylex() starts scanning*/

CS5363
PL and Compilers

31

Flex Compilation

* Compile a flex with the following command
- flex flex_source.l
- A C file named lex.yy.c will be generated

 Then compile the lex.yy.c with gcc

* Example demonstration: phone number
matching

CS5363
PL and Compilers

32

