
CS5363
PL and Compilers

1

Finite State Machine and Regular 
Expressions

Wei Wang



CS5363
PL and Compilers

2

Textbook Chapters

● This lecture corresponds to the chapters of 3.3 
(regular expression), 3.6/3.7 (finite automata) 
and 3.5 (flex) of the Dragon book.



CS5363
PL and Compilers

3

Lexical Analysis

● Lexical analysis is the first step taken by a 
compiler

● Lexical analysis recognizes the tokens, such as 
identifiers, constants and keywords

● Lexical analysis is essentially pattern matching, 
which is achieved with regular expression and 
finite automata (state machines).



CS5363
PL and Compilers

4

Pattern Matching Basics

● Pattern matching is a well studied area
● Finite Automata constructed and used for all 

pattern matching tasks, e.g.,
– String matching / processing
– Lexical analysis

● Regular expressions (RE) are used to simplify 
pattern expression

● Lex or Flex are used to automatically convert 
patterns (RE) to finite automata to executable 
programs



CS5363
PL and Compilers

5

What We Will Learn

● Regular expression
● Finite Automata

– Deterministic/Non-deterministic finite automata 
– Conversion from Non-deterministic to deterministic
– Minimizing deterministic finite automata

● Flex
– Write flex grammar to convert regular expression to 

a program that performs pattern matching



CS5363
PL and Compilers

6

Regular Expression

● Regular expression is an algebraic way to describe 
patterns/strings, more formally, languages.

● Regular expression contains:
– Regular characters: means the character itself; most 

letters are regular characters
– Special characters: special operations on regular 

characters
● ε is a special character represents empty string –  

a string without any character



CS5363
PL and Compilers

7

Regular Expression: Regular 
Characters

● Most letters, numbers and some punctuations 
are normal characters

● E.g., regular expression abc matches string 
“abc”, and only that string

● E.g., regular expression x87z matches string 
“x87z”, and only that string



CS5363
PL and Compilers

8

Regular Expression: Sub-
expression and Concatenation

● Parentheses '(' and ')' mark an subexpression
– e.g., regular expression (abc) matches string 

“abc”, and only that string
– e.g., regular expression (x87z) matches string 

“x87z”, and only that string

● Subexpressions and regular characters can be 
concatenated into one regular expression
– e.g., regular expression (x87z)mu(abc) matches 

string “x87zmuabc”, and only that string



CS5363
PL and Compilers

9

Regular Expression: Special 
Characters

● *: matches zero or more of a sub-expression
– e.g., ab* matching any string starts with an a, 

following by zero or more b's, such as “a”, “ab”, 
“abb”, “abbb”, “abbbb” … 

– e.g., (ab)* matching any string that repeats “ab”, 
including the empty string, such as ε, “ab”, “abab”, 
“ababab”, “abababab” … 



CS5363
PL and Compilers

10

Regular Expression: Special 
Characters cont'd

● +: matches one or more of a sub-expression
– e.g., ab+ matching any string starts with an a, 

following by one or more b's, such as “ab”, “abb”, 
“abbb”, “abbbb” … 

– e.g., (ab)+ matching any string that repeats “ab”, 
excluding the empty string, such as “ab”, “abab”, 
“ababab”, “abababab” … 



CS5363
PL and Compilers

11

Regular Expression: Special 
Characters cont'd

● | : matches one or another
– e.g., ab|bc matches “ab” or “bc”
– e.g., x(10|01)x matches “x10x” or “x01x”

● . : matches one character
– e.g., a.b matches any 3-character tring starts with 
a and ends with b, such as “acb”, “axb”,  “a0b” …

– e.g. a.*b matches any strings starts with a and 
ends  with b, such as “axxxb”, “ab”, “a098xb” … 



CS5363
PL and Compilers

12

Regular Expression: Special 
Characters cont'd

● [ and ]: matches a single character that is 
contained within the brackets.
– e.g., a[bc]d, matches “abd” or “acd”
– e.g., x[0-9]y, matches any string starts with x, 

ends with y, and has one digit in middle, i.e., “x0y”, 
“x1y”, “x2y”, … , “x9y”

– e.g., 0[a-zA-Z]1, matches any string starts with 0, 
ends with 1, and has letter in middle, suc as, “0x1”, 
“0q1”, “0L1”, … 



CS5363
PL and Compilers

13

Regular Expression: Special 
Characters cont'd

● [^ and ] : matches any character that is not 
contained within the brackets
– e.g., xyz[^abc], matches any 4-character string 

starts with “xyz” and does not end with an a, b or c.
● { and }: specifies the number of occurrence of 

subexpression
– e.g., a{3,5}, matches any string with 3 to 5 a's
– e.g., [0-9]{2,9}, matches any string with 2 to 9 

digits



CS5363
PL and Compilers

14

Regular Expression: Special 
Characters cont'd

● There are more special characters, defined by 
various standards. You can find them online.

● Sometimes, you need to put “\” before a special 
character for it to be recognized a special 
character
– e.g., basic regular syntax of POSIX

● Sometimes, you need to put “\” before a special 
character for it to recognized a regular character
– e.g., extended regular syntax of POSIX



CS5363
PL and Compilers

15

Some Regular Expression 
Examples

● A phone number;
– [0-9]{3,3}\-[0-9]{3,3}\-[0-9]{4,4}

● An email address with only lower case 
characters, numbers, dot and @
– [a-z][a-z0-9]*@[a-z0-9\.]*[a-z]



CS5363
PL and Compilers

16

Finite-state Automata 

● Finite-state Automata is a simple idealized machine used 
to recognize patterns within input strings

● Non-deterministic Finite Automata (NFA):
– Used to convert regular expressions into finite-state 

automata
● Deterministic Finite Automata (DFA):

– Converted from NFA for better implementation of pattern 
matching

– NFA and DFA are equivalent in pattern matching
● Constructing DFA is the standard approach for arbitrary 

pattern matching or substring matching



CS5363
PL and Compilers

17

A Finite Automaton Example

● This automaton matches any string with a substring “ab”
– “S” is the start state
– “ab” is the acceptance state (a match found)
– “rej” is the rejection state (no match found)
– An arrow represents a state change based on input 

character

S a ab

Any other 
char

b

Any other 
char

a

a



CS5363
PL and Compilers

18

Non-deterministic Finite Automata

● A non-deterministic finite automaton is 5-tuple:
M = {Q, ∑, δ, q

0
, F}

● Q is a finite set of states
● ∑ is a finite set of permissible input characters
● δ is a mapping from Q x ∑ to Q

● q
0
 ∈

 
 Q, the start state

● F ⊆ Q is the set of final states



CS5363
PL and Compilers

19

Converting RE to NFA

● Thompson's constructions
● Only one start state, one one final state

No arcs from outside except
those from “S”,

no arcs leaving except
those to “F”

S F



CS5363
PL and Compilers

20

Converting RE to NFA cont'd

● A NFA matches one character input c

● A NFA matches an empty string: this is why 
NFA is non-deterministic. Because of the 
empty input, a NFA can in either “S” or “F” 
state

S
c

F

S F
ε



CS5363
PL and Compilers

21

Converting RE to NFA cont'd

● Union of two NFAs (for [ ] and '|')
– i.e., RE1|RE2. Let N1 be RE1's NFA, N2 be RE2's 

NFA

S F

N1

N2

S1 F1

S2
ε

ε

ε

ε

F2



CS5363
PL and Compilers

22

Converting RE to NFA cont'd

● Concatenation of two NFAs 
– i.e.,RE1RE2. Let N1 be RE1's NFA, N2 be RE2's 

NFA

S F

N1

N2

S1

S2

ε

ε

ε F1

F2



CS5363
PL and Compilers

23

Converting RE to NFA cont'd

● A NFA matches  RE1* (zero or more 
occurrence of pattern RE1)

● How about RE1+?

S FN1S1

ε

εε
F1

ε



CS5363
PL and Compilers

24

A NFA Example

● Regular expression: [ab]9*[cd]

S

F

0

2 3

1

4

8 7 5

9

10

12 13

11

14

ε

ε ε

ε
ε

ε

ε ε

ε

ε

ε

ε

6

ε

ε

a

b

9

c

d



CS5363
PL and Compilers

25

Deterministic Finite Automata

● NFA is every hard to implement, because, 
– The ε transition
– For certain state and input there is no move

● Deterministic Finite Automata (DFA) 
– Removes the ε transition, 
– For each state and an input character, there is one 

and only one transition to a next state 

● Every NFA can be converted into a DFA 



CS5363
PL and Compilers

26

Deterministic Finite Automata cont'd 

● A deterministic finite automaton is 5-tuple:
M = {Q, ∑, δ, q

0
, F}

● The elements have similar meanings as those 
in NFA



CS5363
PL and Compilers

27

A DFA Example

● Regular expression: [ab]9*[cd]

S

0

1

2 F

Any input not 
marked goes to 
rejection

9

9

9

c,d

c,d

b

a

c,d



CS5363
PL and Compilers

28

Minimizing DFA

● There is a DFA with minimal states for any pattern
● Minimal DFA can be found by reducing a non-minimal 

DFA with DFA minimization algorithms
● Minimal DFA requires fewer memory to implement
● Example: [ab]9*[cd]

S 0 1 F

9

9 c,d

c,d

a,b

rej
c,d,9

a,b

a,b



CS5363
PL and Compilers

29

Flex – A Lexical Analyzer Generator

● Given a pattern, flex automatically generate a 
C-program that can scan over an input string, 
and find the substrings that match the pattern

● Flex specification is composed of rules 
(patterns) and actions
– Rules define what patterns to match
– Actions define what to do with matched substrings

rules and actions
in plain text, 

*.l file

C source file that
implement

the pattern matching
and actions

Executable that 
performs pattern 

matching
and actions

flex gcc



CS5363
PL and Compilers

30

Flex File Syntax

● Flex syntax:
%{

/* Extra includes and variable declarations 
   in C syntax */

%}

/* definitions for short cuts*/ 

%%

/* rules and actions*/
Patterns/rules { /*actions in C */ }

%%
/* user code in C */



CS5363
PL and Compilers

31

Flex File Syntax

● Flex syntax with examples:
%{

/* Extra includes and variable declarations 
   in C syntax */
#include <stdio.h>
int global_counter = 0;

%}

/* name definitions */ 
DIGIT [0-9] /* declaration DIGIT to be a single number */
%%
/* rules and actions*/
/* in Flex, declared names are put in {} to use */
/* yytext is a predefined flex variable with the value of 
matched substring */
{DIGIT}+ { printf(“found %s\n”, yytext);}

%%
/* user code in C */
int main() { yylex(); return 0;} /* yylex() starts scanning*/



CS5363
PL and Compilers

32

Flex Compilation

● Compile a flex with the following command
– flex flex_source.l
– A C file named lex.yy.c will be generated

● Then compile the lex.yy.c with gcc
● Example demonstration: phone number 

matching


