

Finite State Machine and Regular Expressions

Wei Wang

Textbook Chapters

- This lecture corresponds to the chapters of 3.3 (regular expression), 3.6/3.7 (finite automata) and 3.5 (flex) of the Dragon book.

Lexical Analysis

- Lexical analysis is the first step taken by a compiler
- Lexical analysis recognizes the tokens, such as identifiers, constants and keywords
- Lexical analysis is essentially pattern matching, which is achieved with regular expression and finite automata (state machines).

Pattern Matching Basics

- Pattern matching is a well studied area
- Finite Automata constructed and used for all pattern matching tasks, e.g.,
 - String matching / processing
 - Lexical analysis
- Regular expressions (RE) are used to simplify pattern expression
- Lex or Flex are used to automatically convert patterns (RE) to finite automata to executable programs

What We Will Learn

- Regular expression
- Finite Automata
 - Deterministic/Non-deterministic finite automata
 - Conversion from Non-deterministic to deterministic
 - Minimizing deterministic finite automata
- Flex
 - Write flex grammar to convert regular expression to a program that performs pattern matching

Regular Expression

- Regular expression is an algebraic way to describe patterns/strings, more formally, languages.
- Regular expression contains:
 - Regular characters: means the character itself; most letters are regular characters
 - Special characters: special operations on regular characters
- ϵ is a special character represents empty string – a string without any character

Regular Expression: Regular Characters

- Most letters, numbers and some punctuations are normal characters
- E.g., regular expression abc matches string “abc”, and only that string
- E.g., regular expression x87z matches string “x87z”, and only that string

Regular Expression: Sub-expression and Concatenation

- Parentheses '(' and ')' mark an subexpression
 - e.g., regular expression (abc) matches string “abc”, and only that string
 - e.g., regular expression (x87z) matches string “x87z”, and only that string
- Subexpressions and regular characters can be concatenated into one regular expression
 - e.g., regular expression (x87z) mu (abc) matches string “x87zmuabc”, and only that string

Regular Expression: Special Characters

- $*$: matches zero or more of a sub-expression
 - e.g., ab^* matching any string starts with an a , following by zero or more b 's, such as “a”, “ab”, “abb”, “abbb”, “abbbb” ...
 - e.g., $(ab)^*$ matching any string that repeats “ab”, including the empty string, such as ϵ , “ab”, “abab”, “ababab”, “abababab” ...

Regular Expression: Special Characters cont'd

- $+$: matches one or more of a sub-expression
 - e.g., ab^+ matching any string starts with an a , following by one or more b 's, such as “ab”, “abb”, “abbb”, “abbbb” ...
 - e.g., $(ab)^+$ matching any string that repeats “ab”, excluding the empty string, such as “ab”, “abab”, “ababab”, “abababab” ...

Regular Expression: Special Characters cont'd

- | : matches one or another
 - e.g., $ab | bc$ matches “ab” or “bc”
 - e.g., $x (10 | 01) x$ matches “x10x” or “x01x”
- . : matches one character
 - e.g., $a . b$ matches any 3-character string starts with a and ends with b, such as “acb”, “axb”, “a0b” ...
 - e.g. $a .^* b$ matches any strings starts with a and ends with b, such as “axxxb”, “ab”, “a098xb” ...

Regular Expression: Special Characters cont'd

- [and]: matches a single character that is contained within the brackets.
 - e.g., $a[bc]d$, matches “abd” or “acd”
 - e.g., $x[0-9]y$, matches any string starts with x , ends with y , and has one digit in middle, i.e., “x0y”, “x1y”, “x2y”, …, “x9y”
 - e.g., $0[a-zA-Z]1$, matches any string starts with 0, ends with 1, and has letter in middle, suc as, “0x1”, “0q1”, “0L1”, …

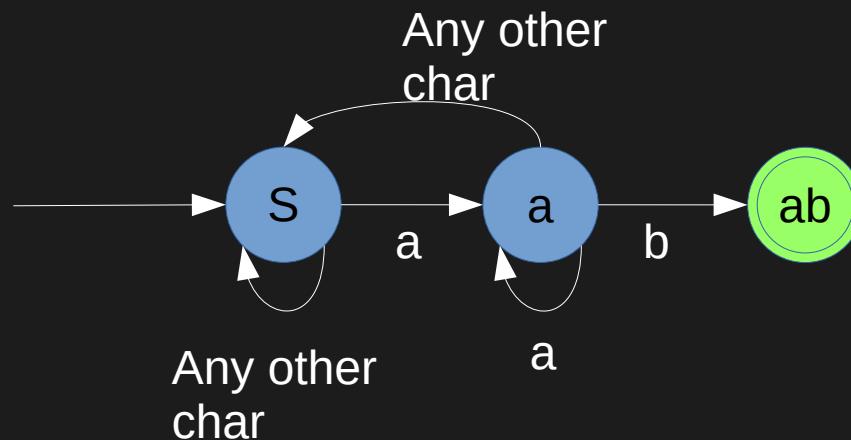
Regular Expression: Special Characters cont'd

- [^ and] : matches any character that is not contained within the brackets
 - e.g., xyz [^abc], matches any 4-character string starts with “xyz” and does not end with an a, b or c.
- { and } : specifies the number of occurrence of subexpression
 - e.g., a{3,5}, matches any string with 3 to 5 a's
 - e.g., [0-9]{2,9}, matches any string with 2 to 9 digits

Regular Expression: Special Characters cont'd

- There are more special characters, defined by various standards. You can find them online.
- Sometimes, you need to put “\” before a special character for it to be recognized a special character
 - e.g., basic regular syntax of POSIX
- Sometimes, you need to put “\” before a special character for it to be recognized a regular character
 - e.g., extended regular syntax of POSIX

Some Regular Expression Examples


- A phone number;
 - $[0-9]\{3,3\}\text{-}[0-9]\{3,3\}\text{-}[0-9]\{4,4\}$
- An email address with only lower case characters, numbers, dot and @
 - $[a-z][a-z0-9]^*@[a-z0-9\.]^*[a-z]$

Finite-state Automata

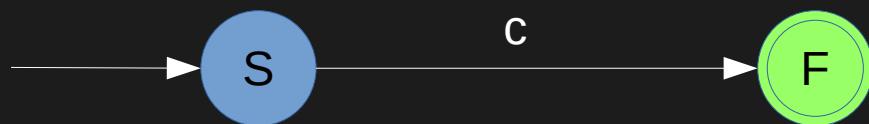
- Finite-state Automata is a simple idealized machine used to recognize patterns within input strings
- Non-deterministic Finite Automata (NFA):
 - Used to convert regular expressions into finite-state automata
- Deterministic Finite Automata (DFA):
 - Converted from NFA for better implementation of pattern matching
 - NFA and DFA are equivalent in pattern matching
- Constructing DFA is the standard approach for arbitrary pattern matching or substring matching

A Finite Automaton Example

- This automaton matches any string with a substring “ab”
 - “S” is the start state
 - “ab” is the acceptance state (a match found)
 - “rej” is the rejection state (no match found)
 - An arrow represents a state change based on input character

Non-deterministic Finite Automata

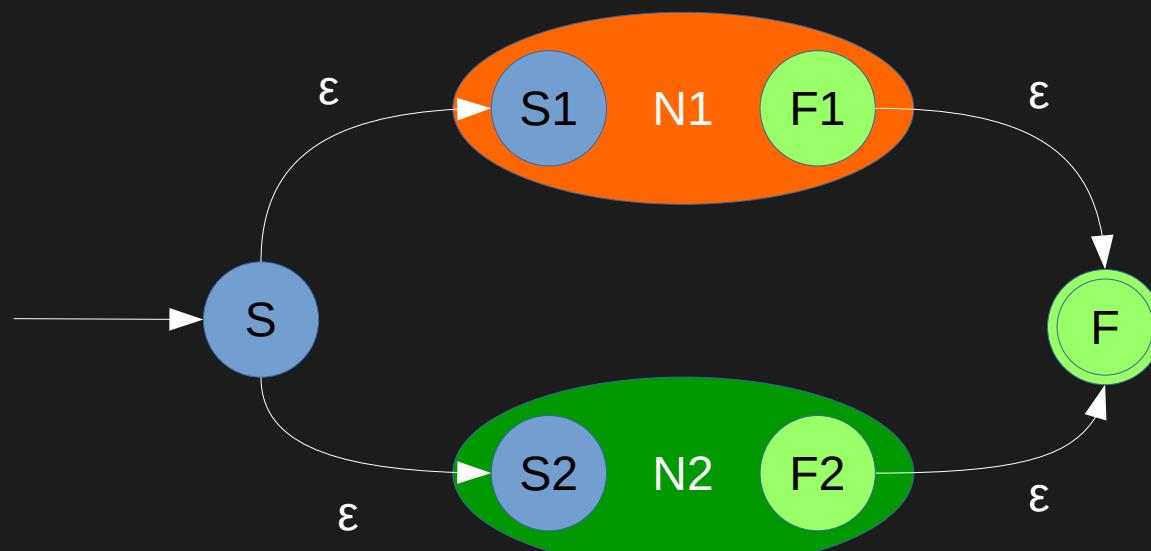
- A non-deterministic finite automaton is 5-tuple:
 $M = \{Q, \Sigma, \delta, q_0, F\}$
- Q is a finite set of states
- Σ is a finite set of permissible input characters
- δ is a mapping from $Q \times \Sigma$ to Q
- $q_0 \in Q$, the start state
- $F \subseteq Q$ is the set of final states


Converting RE to NFA

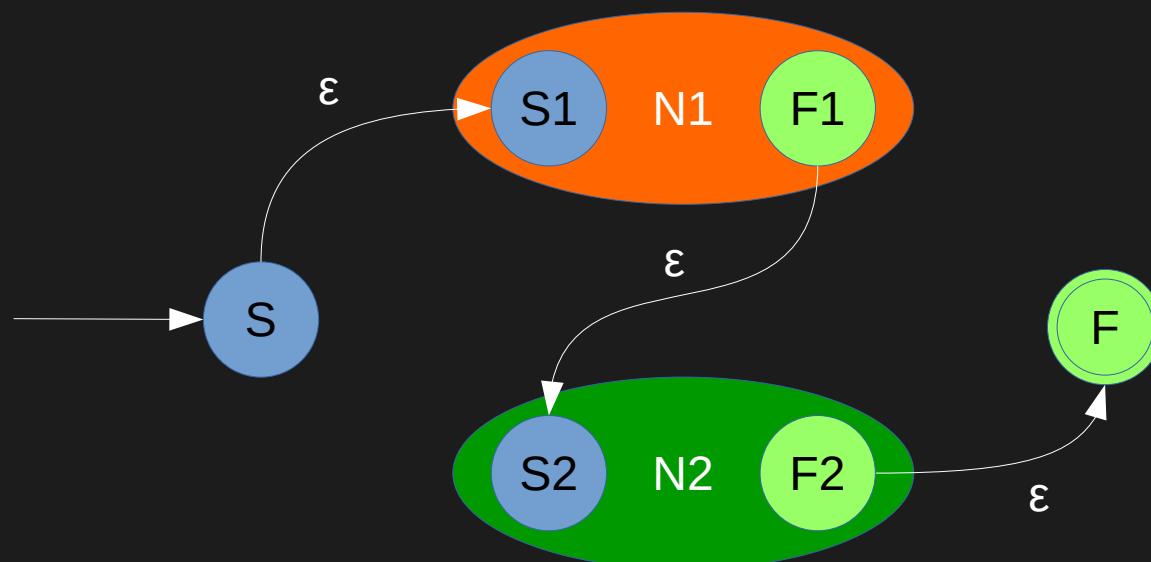
- Thompson's constructions
- Only one start state, one one final state

Converting RE to NFA cont'd

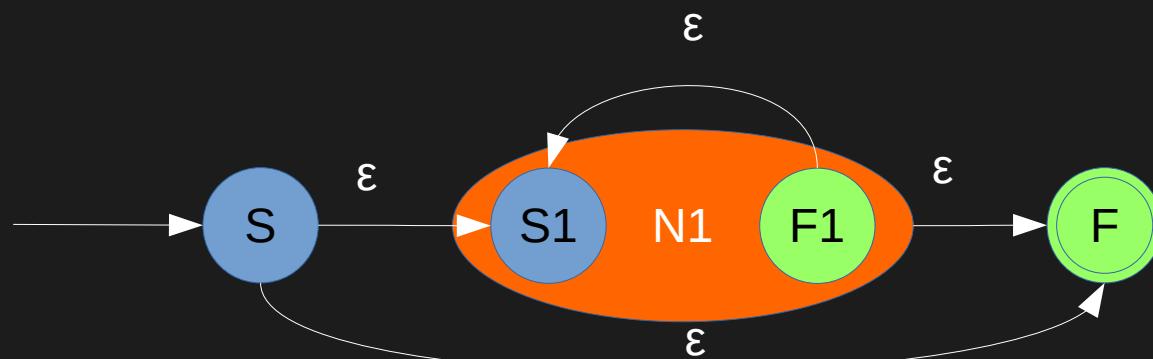
- A NFA matches one character input c



- A NFA matches an empty string: this is why NFA is non-deterministic. Because of the empty input, a NFA can be in either “S” or “F” state


Converting RE to NFA cont'd

- Union of two NFAs (for [] and '|')
 - i.e., $RE1 \mid RE2$. Let $N1$ be $RE1$'s NFA, $N2$ be $RE2$'s NFA


Converting RE to NFA cont'd

- Concatenation of two NFAs
 - i.e., RE_1RE_2 . Let N_1 be RE_1 's NFA, N_2 be RE_2 's NFA

Converting RE to NFA cont'd

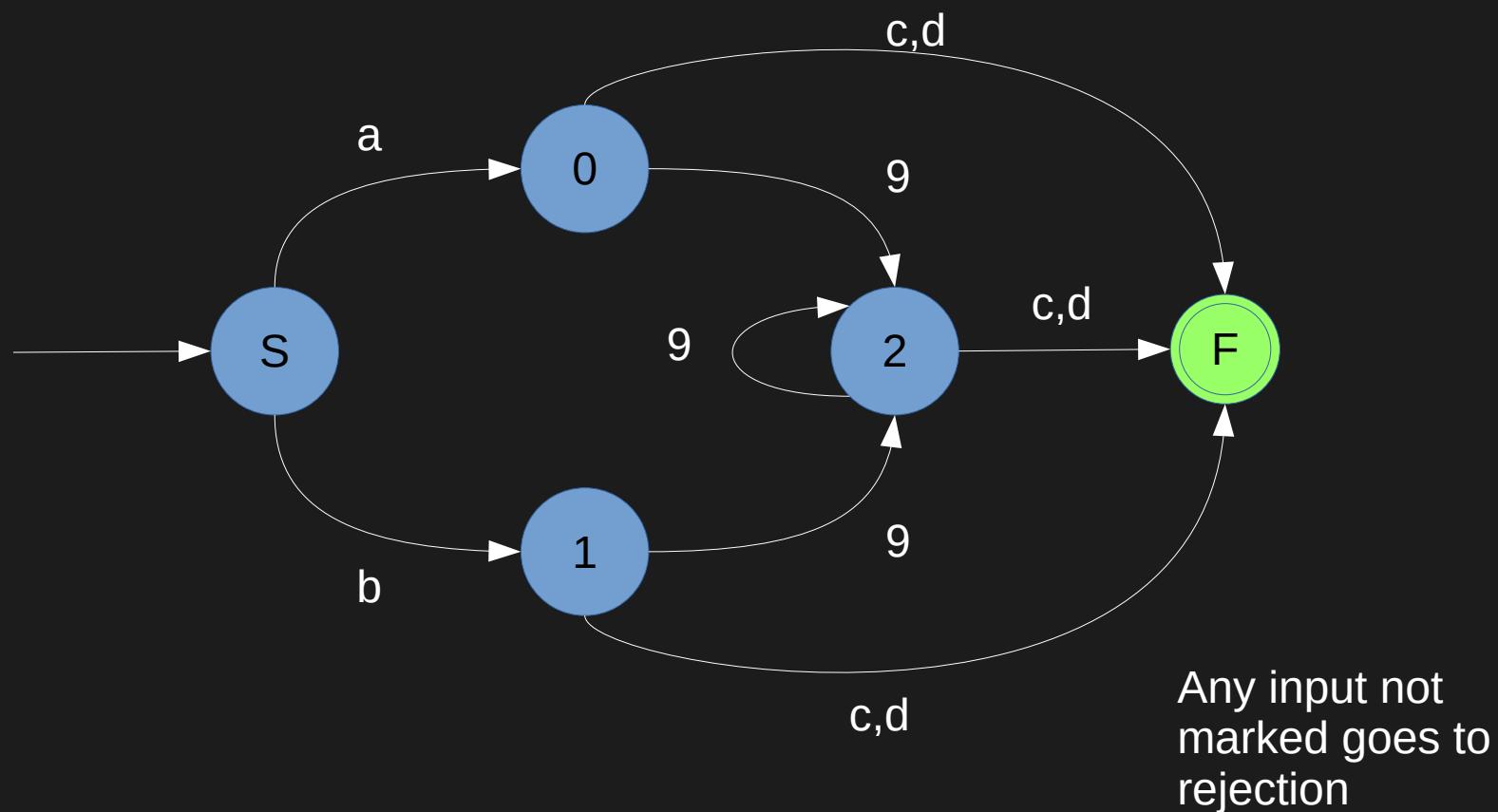
- A NFA matches $RE1^*$ (zero or more occurrence of pattern $RE1$)

- How about $RE1^+$?

A NFA Example

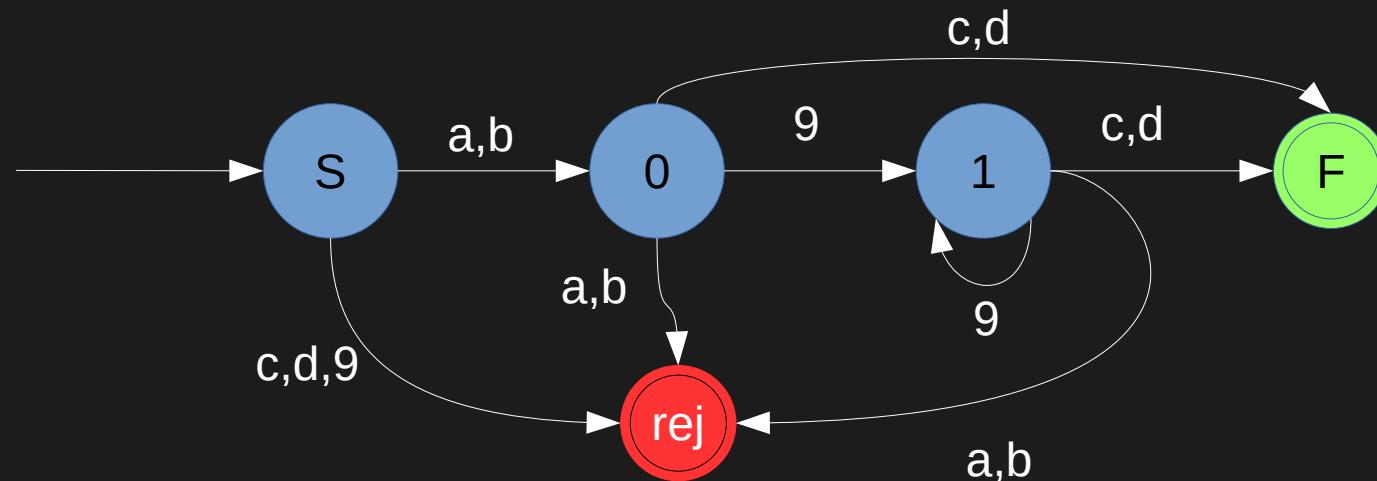
- Regular expression: $[ab]9^*[cd]$

Deterministic Finite Automata

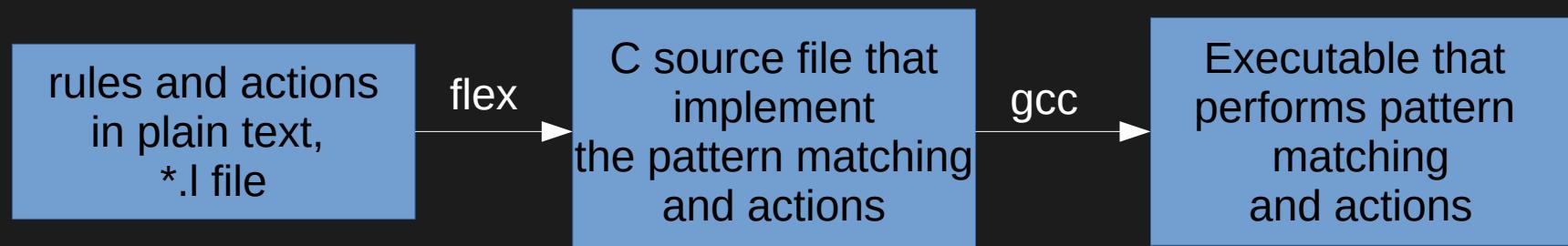

- NFA is every hard to implement, because,
 - The ϵ transition
 - For certain state and input there is no move
- Deterministic Finite Automata (DFA)
 - Removes the ϵ transition,
 - For each state and an input character, there is one and only one transition to a next state
- Every NFA can be converted into a DFA

Deterministic Finite Automata cont'd

- A deterministic finite automaton is 5-tuple:
 $M = \{Q, \Sigma, \delta, q_0, F\}$
- The elements have similar meanings as those in NFA


A DFA Example

- Regular expression: $[ab]9^*[cd]$


Minimizing DFA

- There is a DFA with minimal states for any pattern
- Minimal DFA can be found by reducing a non-minimal DFA with DFA minimization algorithms
- Minimal DFA requires fewer memory to implement
- Example: $[ab]9^*[cd]$

Flex – A Lexical Analyzer Generator

- Given a pattern, flex automatically generate a C-program that can scan over an input string, and find the substrings that match the pattern
- Flex specification is composed of rules (patterns) and actions
 - Rules define what patterns to match
 - Actions define what to do with matched substrings

Flex File Syntax

- **Flex syntax:**

```
%{  
    /* Extra includes and variable declarations  
       in C syntax */  
}  
  
/* definitions for short cuts*/  
  
%%  
  
/* rules and actions*/  
Patterns/rules      { /*actions in C */ }  
  
%%  
/* user code in C */
```

Flex File Syntax

- Flex syntax with examples:

```
%{  
    /* Extra includes and variable declarations  
       in C syntax */  
    #include <stdio.h>  
    int global_counter = 0;  
}%  
  
/* name definitions */  
DIGIT [0-9] /* declaration DIGIT to be a single number */  
%%  
/* rules and actions */  
/* in Flex, declared names are put in {} to use */  
/* yytext is a predefined flex variable with the value of  
matched substring */  
{DIGIT}+      { printf("found %s\n", yytext); }  
  
%%  
/* user code in C */  
int main() { yylex(); return 0; } /* yylex() starts scanning*/
```

Flex Compilation

- Compile a flex with the following command
 - `flex flex_source.l`
 - A C file named `lex.yy.c` will be generated
- Then compile the `lex.yy.c` with `gcc`
- Example demonstration: phone number matching