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Textbook Chapters

* This lecture corresponds to the chapters of 3.3
(regular expression), 3.6/3.7 (finite automata)
and 3.5 (flex) of the Dragon book.
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Lexical Analysis

* Lexical analysis Is the first step taken by a
compiler

* Lexical analysis recognizes the tokens, such as
identifiers, constants and keywords

* Lexical analysis Is essentially pattern matching,
which is achieved with regular expression and
finite automata (state machines).
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Pattern Matching Basics

Pattern matching is a well studied area
~Inite Automata constructed and used for all
pattern matching tasks, e.qg.,

— String matching / processing

~ Lexical analysis

Regular expressions (RE) are used to simplify
pattern expression

_ex or Flex are used to automatically convert
patterns (RE) to finite automata to executable
programs
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What We WiIll Learn

* Regular expression

* Finite Automata
— Deterministic/Non-deterministic finite automata
— Conversion from Non-deterministic to deterministic
— Minimizing deterministic finite automata

e Flex

- Write flex grammar to convert regular expression to
a program that performs pattern matching
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Regular Expression

* Regular expression is an algebraic way to describe
patterns/strings, more formally, languages.
* Regular expression contains:

— Regular characters: means the character itself; most
letters are regular characters

— Special characters: special operations on regular
characters

* £l1s a special character represents empty string —
a string without any character
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Regular Expression: Regular
Characters

* Most letters, numbers and some punctuations
are normal characters

* E.g., regular expression abc matches string
“abc”, and only that string

* E.g., regular expression x87z matches string
“x872”, and only that string
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Regular Expression: Sub-
expression and Concatenation

 Parentheses '( and ')’ mark an subexpression

- e.g., regular expression (abc) matches string
*abc”, and only that string

- e.g., regular expression (x87z) matches string
“x872”, and only that string

* Subexpressions and regular characters can be
concatenated into one regular expression

- e.d., regular expression (x87z)mu (abc) matches
string “x87zmuabc”, and only that string
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Regular Expression: Special
Characters

e *> matches zero or more of a sub-expression

- e.g., ab* matching any string starts with an a,
following by zero or more b's, such as “a”, “ab”,
“abb”, “abbb”, “abbbb” ...

- e.g., (ab) * matching any string that repeats “ab”,
Including the empty string, such as g, “ab”, “abab”,
“ababab”, “abababab” ...
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Regular Expression: Special
Characters cont'd

* +. matches one or more of a sub-expression

- e.g., ab+ matching any string starts with an a,
following by one or more b's, such as “ab”, “abb”,
“abbb”, “abbbb” ...

- e.g., (ab) + matching any string that repeats “ab”,
excluding the empty string, such as “ab”, “abab”,
“ababab”, “abababab” ...

CS5363
PL and Compilers

10



Regular Expression: Special
Characters cont'd

matches one or another
e.g., ab | bc matches “ab” or “bc”
e.g., x(10]01) x matches “x10x” or “x01x”

: matches one character

e.g., a.b matches any 3-character tring starts with
a and ends with b, such as “acb”, “axb”, “alb” ...

e.g. a. *b matches any strings starts with a and
ends with b, such as “axxxb”, “ab”, “a098xb” ...
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Regular Expression: Special
Characters cont'd

* [ and ]. matches a single character that Is
contained within the brackets.

- e.g., a[bc]d, matches “abd” or “acd”

- e.g., x[0-9]y, matches any string starts with x,
ends with y, and has one digit in middle, I.e., “x0y”,
“le", “X2y”, . “X9y”

- e.g., 0 [a-zA-7]1, matches any string starts with O,
ends with 1, and has letter in middle, suc as, “0Ox1”,
Hoqlﬂ, “OL]_”’ .
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Regular Expression: Special
Characters cont'd

* [*and | : matches any character that is not
contained within the brackets

- e.g., xyz[~abc], matches any 4-character string
starts with “xvyz” and does not end with an a, b or c.

* { and }. specifies the number of occurrence of
subexpression

- e.g., a{3, 5}, matches any string with 3to 5 a's

- e.g., [0-91{2, 9}, matches any string with 2 to 9
digits
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Regular Expression: Special
Characters cont'd

* There are more special characters, defined by
various standards. You can find them online.

* Sometimes, you need to put “\” before a special
character for it to be recognized a special
character

— e.d., basic regular syntax of POSIX

* Sometimes, you need to put “\” before a special
character for it to recognized a regular character

— e.g., extended reqgular syntax of POSIX
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Some Regqular Expression
Examples
* A phone number;
- [0-91{3,3}\-[0-9]{3,3}\-[0-9]{4,4}

* An email address with only lower case
characters, numbers, dot and @

- [a-z][a-z0-9]*@[a-z0-9\.]*[a-Z]
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Finite-state Automata

Finite-state Automata is a simple idealized machine used
to recognize patterns within input strings

Non-deterministic Finite Automata (NFA):

~— Used to convert regular expressions into finite-state
automata

Deterministic Finite Automata (DFA):

~— Converted from NFA for better implementation of pattern
matching

~— NFA and DFA are equivalent in pattern matching

Constructing DFA is the standard aﬁproach for arbitrary
pattern matching or substring matching
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A Finite Automaton Example

* This automaton matches any string with a substring “ab”
— “S”Is the start state
— “ab” Is the acceptance state (a match found)
~ “reJ” Is the rejection state (no match found)

~— An arrow represents a state change based on input
character

Any other
char

Any other a
char
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Non-deterministic Finite Automata

* A non-deterministic finite automaton is 5-tuple:
M=1{Q, 2,9, q, F}

* Q Is a finite set of states

* 5 Is a finite set of permissible input characters
* 0 IS a mapping from Q x > to Q

e g, € Q, the start state

 F < Q Is the set of final states
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Converting RE to NFA

 Thompson's constructions
* Only one start state, one one final state

No arcs from outside except
those from “S”,

no arcs leaving except
those to “F”
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Converting RE to NFA cont'd

* A NFA matches one character input c

* A NFA matches an empty string: this is why
NFA is non-deterministic. Because of the
empty input, a NFA can in either “S” or “F”
state

€
—0 -@
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Converting RE to NFA cont'd

e Union of two NFAs (for[] and '|")

- l.e., RE1|RE2. Let N1 be rRE1's NFA, N2 be RE2'S
NFA

CS5363
PL and Compilers

21



Converting RE to NFA cont'd

e Concatenation of two NFAs

— i1.e.,REI1IRE2. Let N1 be RE1'S NFA, N2 be RE2's
NFA
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Converting RE to NFA cont'd

* ANFA matches RE1* (zero or more
occurrence of pattern RE1)

e How about RE1+7?
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A NFA Example

* Regular expressmn [ab]9*[cd]

HG:

o 0 .
C@H@Jﬁe
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Deterministic Finite Automata

* NFA Is every hard to implement, because,
- The € transition
- For certain state and input there is no move

* Deterministic Finite Automata (DFA)
- Removes the € transition,

- For each state and an input character, there is one
and only one transition to a next state

 Every NFA can be converted into a DFA
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Deterministic Finite Automata cont'd

* A deterministic finite automaton is 5-tuple:
M=1{Q, 2,9, q, F}

* The elements have similar meanings as those
in NFA
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A DFA Example

* Regular expression: [ab]9*[cd]
c,d

Any input not
marked goes to
rejection

c,d
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Minimizing DFA

There is a DFA with minimal states for any pattern

Minimal DFA can be found by reducing a non-minimal
DFA with DFA minimization algorithms

Minimal DFA requires fewer memory to implement
Example: [ab]9*[cd]

CS5363
PL and Compilers

28



Flex — A Lexical Analyzer Generator

* Glven a pattern, flex automatically generate a
C-program that can scan over an input string,
and find the substrings that match the pattern

* Flex specification is composed of rules
(patterns) and actions
- Rules define what patterns to match
- Actions define what to do with matched substrings

C source file that Executable that
implement performs pattern
the pattern matching matching
and actions and actions

rules and actions

in plain text,
* | file
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Flex File Syntax

Flex syntax:

o\°

{
/* Extra includes and variable declarations
in C syntax */

o\°
—

/* definitions for short cuts*/

/* rules and actions*/

Patterns/rules { /*actions in C */ }
/* user code in C */
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Flex File Syntax

* Flex syntax with examples:

% {
/* Extra includes and variable declarations
in C syntax */
#include <stdio.h>
int global_counter = 0;

(e]
5}

/* name definitions */
DIGIT [0-9] /* declaration DIGIT to be a single number */

S o

/* rules and actions*/

/* in Flex, declared names are put in {} to use */

/* yytext is a predefined flex variable with the wvalue of
matched substring */

{DIGIT}+ { printf (“found %s\n”, yytext);}

[oe)
5%

/* user code in C */

int main() { yylex(); return 0;} /* yylex() starts scanning*/
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Flex Compilation

* Compile a flex with the following command
- flex flex_source.l
- A C file named lex.yy.c will be generated

 Then compile the lex.yy.c with gcc

* Example demonstration: phone number
matching
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