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Optional Text Book Chapters

● “Computer Architecture: A Quantitative Approach,” 
Appendix C.2 and C.3
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Road Map

● Overview of Branch Prediction
● Branch Prediction Algorithms
● Advanced Branch Prediction
● Memory Disambiguation
● Security Implications of Speculative Execution
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Overview of Branch Prediction
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Control Hazards

● Mostly caused by branches
● Key to performance in modern microprocessors.
● Solutions:

○ Stalling the pipeline
○ Assume not taken
○ Branch delay slot
○ None of these solutions really address the problem

5



Computer Architecture

Branch Prediction

● The best solution to branch-induced control hazards is 
Branch Prediction.

● For a branch instruction, Branch prediction predicts
○ Whether the branch is taken or not
○ The address of the branch target if the branch is taken

● The prediction is then used to fetch next instruction.
○ If prediction is correct, we can completely avoid stalls. Hence improving 

performance.
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Branch Prediction cont’d

● Branch prediction is not perfect
○ If the prediction result is wrong, pipeline has to be flushed.

● Almost every design decision changes if we have “perfect” 
rather  than realistic branch prediction.
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An Example of Branch Prediction

● Consider the following the C code and its corresponding 
assembly codes
If (R1 == 2)

R1 = 0;
else

R1 = 2;

R2 = 3;

cmp R1, 2
jne L1
mov R1, 0
jmp L2

L1:
mov R1, 2

L2:
mov R2, 3Branch predictor predicts if 

the jne L1 instruction will 
be taken or not. It also 
predicts the actual memory 
address of label L1, as it 
can be encoded as PC-
relative address. 8

Prediction for this 
branch  is 
essentially  a 
guess, as there is 
very limited 
information to aid us 
in this prediction.
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Another Example of Branch Prediction

● Consider the following the loop and its corresponding 
assembly codes
for(R1=0;R1<10;R1++){
    *(R2+R1*4) = 0;

}
R3 = 3;

   mov R1, 0
L0:
   mov [R2+R1*4], 0
   add R1, R1, 1
   cmp R1, 10
   jl  L0
L1: 
   mov R3, 3
    

Branch predictor predicts if 
the jl L0 instruction will 
be taken or not. It also 
predicts the actual memory 
address of label L0, as it 
can be encoded as PC-
relative address. 9

Prediction for the 
first execution of 
this branch is 
basically guessing. 
But for the future 
executions  of this 
branch, we can use 
past taken or non-
taken  history and 
past branch target.



Branch Prediction Algorithms
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Dynamic Hardware Branch Prediction

● Branch behavior is monitored during program execution
○ History data can influence prediction of future executions of the branch 

instruction

● Branches instruction execution has two tasks/predictions
○ Condition evaluation (taken or not-taken)
○ Target address calculation (where to go when taken)

● Target prediction also applies to unconditional branches
● Branch Direction Prediction: 3 levels of complexity

○ Branch history tables, Two-level tables, hybrid predictors
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Branch Direction Prediction

● Basic idea: Hope that future behavior of the branch is 
correlated to past behavior. This idea works well for,
○ Loops
○ Error-checking conditionals

● For a single branch PC
○ Simplest possible idea: Keep 1 bit around to indicate taken or not-taken
○ 2nd simplest idea: Keep 2 bits around, have a bit more history
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Two-bit Saturating Counters

● 2-bit history means prediction mut miss twice before change.
● N-bit predictors are possible, but after 2-bits not much benefit.

11: 
Predict Taken

10: 
Predict Taken

00: 
Predict Not 

Taken

01: 
Predict Not 

Taken

Not Taken

Taken

Not Taken

Not Taken

Taken

Taken

“Strongly
taken”

“Strongly
Not taken”

Taken

Not Taken
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An Example of Two-bit Saturating Counter

State Prediction Actual Branch Outcome

00 Not Taken Taken

01 Not Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Not Taken
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3 
mispredictions,
4 correct 
predictions, 
accuracy is 4/7.
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Branch Prediction Buffer (branch history table, BHT)

● Small memory indexed with lower bits 
of the branch instruction’s address

○ Why the low bits?
○ Branches  sharing  the same lower bits 

share the BHT entry, thus interference.
● Implementation of BHT

○ 2-bits attached to each block in the 
Instruction Cache

■ requires separate memory accessed 
during IF phase

○ Caveats: Cannot separately size I-Cache 
and BHT

15

:
:
:

212=4K entries

12 bits

PC

Taken or
not-
taken

Two bits
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Branch Target Prediction

● Besides predicting branch taken or not, branch targets 
also needs to be predicted. 

● Branch Target Buffer (BTB) is the storage used to store 
the branch target address from previous execution of the 
branch.
○ This is essentially a cached design.
○ If predicted taken, the cached target address is extracted as predicted 

branch target.
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A Example of Branch Target Buffer
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:
:
:

212=4K entries

12 bits

PC

Predicted branch 
target address

Prev Target



Advanced Branch Predictions
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Correlated Branches

● Consider the following code:

● The if-statements in the above code are correlated.
○ If the first two branches are taken then the third branch will definitely be 

taken.
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if (a == 1)
c = 2;

if (b == 1);
d = 2;

if (c == d)
e = 2;
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Correlating Branch Prediction

● Correlating branch prediction is based on the observation 
that the outcomes of some branches are related to other 
branches.
○ Correlating branch predictor predicts if a branch instruction is taken or not 

based on the outcomes of m branch instructions before it.
○ For example, in the previous code, the third branch should be predicted 

taken if the previous two branches are taken. 

20



Computer Architecture

m-bit Global Branch History Register

● A typical m-bit correlating Global Branch History register 
(GBHR) stores the outcomes of m branches right before 
the branch-to-be-predicted.

● A m-bit shift register is used to record the outcomes of m 
previous branches.
○ For example, the follow two-bit register is used to record the outcomes of 

two branches preceding the branch-to-be predicted. 1 for taken, and 0 for 
not taken. So the following register records a non taken and a taken 
registers.

21
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m-bit Global Branch History Register cont’d

● A m-bit shift register is used to record the outcomes of 
previous branches.
○ When a new branch outcome is acquire, the shift register shifts the 

highest bit out and store the new outcome in its lowest bit
○ For example, if a new branch outcome is taken, the previous two-bit 

register is changed to:

22

100 1 1 1 New outcome: 1 (taken)
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(m,n)-Correlating Branch Predictor

● A (m,n)-Correlating Branch Predictor combines the m-bit 
GBH register with several n-bit saturated-counter-based 
branch history table (BHT).
○ With m-bit history, there are 2m BHTs.
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(m,n)-Correlating Branch Predictor cont’d

● A example of (2,2)-correlating branch predictor
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:
:
:

12 bits
PC

Taken or
not-
taken

Two bits

:
:
:

:
:
:

:
:
:

1 0

2-bit GBHR
Used to find
The BHT for
predictions.

Third BHT is used 
for prediction here.
BHT is indexed with
PC as before.

For a 2-bit 
GBHR, there 
need four BHTs



Computer Architecture

Tournament Predictor

● In real programs, some branches are related to other 
branches, while other branches are completed 
independent.
○ Therefore, sometimes correlating predictor is better, sometimes simple 

predictor is better.

● Tournament branch predictor combines both predictors 
and dynamically choose the best one
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Tournament Predictor cont’d

● Local, per-branch prediction, accessed by the PC
● Correlating prediction based on the last m branches, 

assessed by the global history
● Indicator of which had been the best predictor for this 

branch
● 2-bit counter: increase for one, decrease for the other
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Memory Disambiguation
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An Example of Memory Disambiguation

● Consider the following the loop and its corresponding 
assembly codes
for(R1=0;R1<10;R1++){
    *(R2+R1*4) = 0;

}
R3 = 3;

   mov R1, 0
L0:
   mov [R2+R1*4], 0
   add R1, R1, 1
   cmp R1, 10
   jl  L0
L1: 
   mov R3, 3
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This memory access 
needs R2+R1*4’s
value, but do we need 
to always wait for 
R2+R1*4 to be
computed to do
memory fetch?
Can we predict
future memory 
address?
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An Example of Memory Disambiguation cont’d

● Consider the following the loop and its corresponding 
assembly codes
for(R1=0;R1<10;R1++){
    *(R2+R1*4) = 0;

}
R3 = 3;

   mov R1, 0
L0:
   mov [R2+R1*4], 0
   add R1, R1, 1
   cmp R1, 10
   jl  L0
L1: 
   mov R3, 3
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Clearly, this mem
read instruction
access the memory
with a stride of 
4 bytes. The CPU
can easily observed
the stride and
predicts it.
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Memory Disambiguation

● Memory Disambiguation is a technique to execute memory access 
instructions speculatively by predicting the memory address of that access.

● The benefit of memory disambiguation

– Issue memory accesses as early as possible, allowing more overlapping 
of memory accesses and computation

– Allow more out-of-order instruction execution by speculatively assuming 
no data dependencies.

● Usually, memory disambiguation is only in OoO processors.
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Memory Disambiguation: Incorrect Speculation

● For read memory accesses

– Never really load the data to real register.

– Loads are always buffered in temporary registers until the memory loads 
are known to be safe.

● For write memory accesses

– Never really write the results to memory speculatively.

– Writes are always buffered in temporary (but close-to-memory) registers 
(e.g., write buffers) until the memory writes are known to be safe.
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Memory Disambiguation: Incorrect Speculation 
cont’d
● Wrong data dependencies

– Pipeline have to be flushed and wrong results have to be discarded
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Security Implications
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Speculative Execution and Security

34

● “Speculative execution is an optimization technique where a 
computer system performs some task that may not be 
needed or should not be executed.”
○ Branch prediction is a type of speculative execution.

● Speculative execution is extensive in modern processors 
since they are crucial for performance.

● It was until the second half of 2017 that we learned the 
security impact from speculative execution, by Spectre and 
Meltdown vulnerabilities.
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The Spectre Vulnerability

● Consider the following pseudocode:

● Normally, the sensitive data can only be accessed if the 
security check is successful. However, with speculative 
execution, sensitive data may be accessed before the we 
know if the security check is passed or not.
○ When the sensitive data is read into cache, a separate side-channel 

attack is used to access this data in the cache.

35

if (do security check and pass){
Access_sensitive_data()

}
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The Spectre Vulnerability cont’d

● Consider the following pseudocode:

● The attacker can train the branch predictor to always 
predicted true for this if-branch.

○ Recall the branch predictor only uses the low bits of the PC.
○ The attacker can find another branch instruction who’s PC has the same lower bits as this if-

branch. The attacker can then train the branch predictor to predict “taken” by letting this 2nd 
branch instruction be taken for several times.

36

if (do security check and pass){
Access_sensitive_data()

}
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The Meltdown Vulnerability

● Similarly to Spectre, except the security check is 
performed by the hardware.
○ When accessing OS kernel’s data, CPU will check if current user has 

access to kernel’s data.

● However, the data access is speculatively executed as the 
same time as the hardware security check. Hence, the 
data may be leaked in the cache.
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Solutions to Meltdown and Spectre

● Software solutions usually have a high performance cost.
○ Afterall, the whole reason to do speculative execution is for better 

performance.

● Hardware solutions are elusive.
○ Chip manufacturers have proposed/released some solutions for certain 

variants of Meltdown and Spectre. However, there is no general solution.
○ Hardware solutions are mostly likely come with a performance penalty.

■ If Dennard scaling is still alive, we may be in a much better situation. 
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