
Speculative Execution
Wei Wang

1

Computer Architecture

Optional Text Book Chapters

● “Computer Architecture: A Quantitative Approach,”
Appendix C.2 and C.3

2

Computer Architecture

Road Map

● Overview of Branch Prediction
● Branch Prediction Algorithms
● Advanced Branch Prediction
● Memory Disambiguation
● Security Implications of Speculative Execution

3

Overview of Branch Prediction

4

Computer Architecture

Control Hazards

● Mostly caused by branches
● Key to performance in modern microprocessors.
● Solutions:

○ Stalling the pipeline
○ Assume not taken
○ Branch delay slot
○ None of these solutions really address the problem

5

Computer Architecture

Branch Prediction

● The best solution to branch-induced control hazards is
Branch Prediction.

● For a branch instruction, Branch prediction predicts
○ Whether the branch is taken or not
○ The address of the branch target if the branch is taken

● The prediction is then used to fetch next instruction.
○ If prediction is correct, we can completely avoid stalls. Hence improving

performance.

6

Computer Architecture

Branch Prediction cont’d

● Branch prediction is not perfect
○ If the prediction result is wrong, pipeline has to be flushed.

● Almost every design decision changes if we have “perfect”
rather than realistic branch prediction.

7

Computer Architecture

An Example of Branch Prediction

● Consider the following the C code and its corresponding
assembly codes
If (R1 == 2)

R1 = 0;
else

R1 = 2;

R2 = 3;

cmp R1, 2
jne L1
mov R1, 0
jmp L2

L1:
mov R1, 2

L2:
mov R2, 3Branch predictor predicts if

the jne L1 instruction will
be taken or not. It also
predicts the actual memory
address of label L1, as it
can be encoded as PC-
relative address. 8

Prediction for this
branch is
essentially a
guess, as there is
very limited
information to aid us
in this prediction.

Computer Architecture

Another Example of Branch Prediction

● Consider the following the loop and its corresponding
assembly codes
for(R1=0;R1<10;R1++){
 *(R2+R1*4) = 0;

}
R3 = 3;

 mov R1, 0
L0:
 mov [R2+R1*4], 0
 add R1, R1, 1
 cmp R1, 10
 jl L0
L1:
 mov R3, 3

Branch predictor predicts if
the jl L0 instruction will
be taken or not. It also
predicts the actual memory
address of label L0, as it
can be encoded as PC-
relative address. 9

Prediction for the
first execution of
this branch is
basically guessing.
But for the future
executions of this
branch, we can use
past taken or non-
taken history and
past branch target.

Branch Prediction Algorithms

10

Computer Architecture

Dynamic Hardware Branch Prediction

● Branch behavior is monitored during program execution
○ History data can influence prediction of future executions of the branch

instruction

● Branches instruction execution has two tasks/predictions
○ Condition evaluation (taken or not-taken)
○ Target address calculation (where to go when taken)

● Target prediction also applies to unconditional branches
● Branch Direction Prediction: 3 levels of complexity

○ Branch history tables, Two-level tables, hybrid predictors

11

Computer Architecture

Branch Direction Prediction

● Basic idea: Hope that future behavior of the branch is
correlated to past behavior. This idea works well for,
○ Loops
○ Error-checking conditionals

● For a single branch PC
○ Simplest possible idea: Keep 1 bit around to indicate taken or not-taken
○ 2nd simplest idea: Keep 2 bits around, have a bit more history

12

Computer Architecture

Two-bit Saturating Counters

● 2-bit history means prediction mut miss twice before change.
● N-bit predictors are possible, but after 2-bits not much benefit.

11:
Predict Taken

10:
Predict Taken

00:
Predict Not

Taken

01:
Predict Not

Taken

Not Taken

Taken

Not Taken

Not Taken

Taken

Taken

“Strongly
taken”

“Strongly
Not taken”

Taken

Not Taken

13

Computer Architecture

An Example of Two-bit Saturating Counter

State Prediction Actual Branch Outcome

00 Not Taken Taken

01 Not Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Taken

11 Taken Not Taken

14

3
mispredictions,
4 correct
predictions,
accuracy is 4/7.

Computer Architecture

Branch Prediction Buffer (branch history table, BHT)

● Small memory indexed with lower bits
of the branch instruction’s address

○ Why the low bits?
○ Branches sharing the same lower bits

share the BHT entry, thus interference.
● Implementation of BHT

○ 2-bits attached to each block in the
Instruction Cache

■ requires separate memory accessed
during IF phase

○ Caveats: Cannot separately size I-Cache
and BHT

15

:
:
:

212=4K entries

12 bits

PC

Taken or
not-
taken

Two bits

Computer Architecture

Branch Target Prediction

● Besides predicting branch taken or not, branch targets
also needs to be predicted.

● Branch Target Buffer (BTB) is the storage used to store
the branch target address from previous execution of the
branch.
○ This is essentially a cached design.
○ If predicted taken, the cached target address is extracted as predicted

branch target.

16

Computer Architecture

A Example of Branch Target Buffer

17

:
:
:

212=4K entries

12 bits

PC

Predicted branch
target address

Prev Target

Advanced Branch Predictions

18

Computer Architecture

Correlated Branches

● Consider the following code:

● The if-statements in the above code are correlated.
○ If the first two branches are taken then the third branch will definitely be

taken.

19

if (a == 1)
c = 2;

if (b == 1);
d = 2;

if (c == d)
e = 2;

Computer Architecture

Correlating Branch Prediction

● Correlating branch prediction is based on the observation
that the outcomes of some branches are related to other
branches.
○ Correlating branch predictor predicts if a branch instruction is taken or not

based on the outcomes of m branch instructions before it.
○ For example, in the previous code, the third branch should be predicted

taken if the previous two branches are taken.

20

Computer Architecture

m-bit Global Branch History Register

● A typical m-bit correlating Global Branch History register
(GBHR) stores the outcomes of m branches right before
the branch-to-be-predicted.

● A m-bit shift register is used to record the outcomes of m
previous branches.
○ For example, the follow two-bit register is used to record the outcomes of

two branches preceding the branch-to-be predicted. 1 for taken, and 0 for
not taken. So the following register records a non taken and a taken
registers.

21

0 1

Computer Architecture

m-bit Global Branch History Register cont’d

● A m-bit shift register is used to record the outcomes of
previous branches.
○ When a new branch outcome is acquire, the shift register shifts the

highest bit out and store the new outcome in its lowest bit
○ For example, if a new branch outcome is taken, the previous two-bit

register is changed to:

22

100 1 1 1 New outcome: 1 (taken)

Computer Architecture

(m,n)-Correlating Branch Predictor

● A (m,n)-Correlating Branch Predictor combines the m-bit
GBH register with several n-bit saturated-counter-based
branch history table (BHT).
○ With m-bit history, there are 2m BHTs.

23

Computer Architecture

(m,n)-Correlating Branch Predictor cont’d

● A example of (2,2)-correlating branch predictor

24

:
:
:

12 bits
PC

Taken or
not-
taken

Two bits

:
:
:

:
:
:

:
:
:

1 0

2-bit GBHR
Used to find
The BHT for
predictions.

Third BHT is used
for prediction here.
BHT is indexed with
PC as before.

For a 2-bit
GBHR, there
need four BHTs

Computer Architecture

Tournament Predictor

● In real programs, some branches are related to other
branches, while other branches are completed
independent.
○ Therefore, sometimes correlating predictor is better, sometimes simple

predictor is better.

● Tournament branch predictor combines both predictors
and dynamically choose the best one

25

Computer Architecture

Tournament Predictor cont’d

● Local, per-branch prediction, accessed by the PC
● Correlating prediction based on the last m branches,

assessed by the global history
● Indicator of which had been the best predictor for this

branch
● 2-bit counter: increase for one, decrease for the other

26

Computer Architecture

Memory Disambiguation

Computer Architecture

An Example of Memory Disambiguation

● Consider the following the loop and its corresponding
assembly codes
for(R1=0;R1<10;R1++){
 *(R2+R1*4) = 0;

}
R3 = 3;

 mov R1, 0
L0:
 mov [R2+R1*4], 0
 add R1, R1, 1
 cmp R1, 10
 jl L0
L1:
 mov R3, 3

28

This memory access
needs R2+R1*4’s
value, but do we need
to always wait for
R2+R1*4 to be
computed to do
memory fetch?
Can we predict
future memory
address?

Computer Architecture

An Example of Memory Disambiguation cont’d

● Consider the following the loop and its corresponding
assembly codes
for(R1=0;R1<10;R1++){
 *(R2+R1*4) = 0;

}
R3 = 3;

 mov R1, 0
L0:
 mov [R2+R1*4], 0
 add R1, R1, 1
 cmp R1, 10
 jl L0
L1:
 mov R3, 3

29

Clearly, this mem
read instruction
access the memory
with a stride of
4 bytes. The CPU
can easily observed
the stride and
predicts it.

Computer Architecture

Memory Disambiguation

● Memory Disambiguation is a technique to execute memory access
instructions speculatively by predicting the memory address of that access.

● The benefit of memory disambiguation

– Issue memory accesses as early as possible, allowing more overlapping
of memory accesses and computation

– Allow more out-of-order instruction execution by speculatively assuming
no data dependencies.

● Usually, memory disambiguation is only in OoO processors.

30

Computer Architecture

Memory Disambiguation: Incorrect Speculation

● For read memory accesses

– Never really load the data to real register.

– Loads are always buffered in temporary registers until the memory loads
are known to be safe.

● For write memory accesses

– Never really write the results to memory speculatively.

– Writes are always buffered in temporary (but close-to-memory) registers
(e.g., write buffers) until the memory writes are known to be safe.

31

Computer Architecture

Memory Disambiguation: Incorrect Speculation
cont’d
● Wrong data dependencies

– Pipeline have to be flushed and wrong results have to be discarded

32

Security Implications

33

Computer Architecture

Speculative Execution and Security

34

● “Speculative execution is an optimization technique where a
computer system performs some task that may not be
needed or should not be executed.”
○ Branch prediction is a type of speculative execution.

● Speculative execution is extensive in modern processors
since they are crucial for performance.

● It was until the second half of 2017 that we learned the
security impact from speculative execution, by Spectre and
Meltdown vulnerabilities.

Computer Architecture

The Spectre Vulnerability

● Consider the following pseudocode:

● Normally, the sensitive data can only be accessed if the
security check is successful. However, with speculative
execution, sensitive data may be accessed before the we
know if the security check is passed or not.
○ When the sensitive data is read into cache, a separate side-channel

attack is used to access this data in the cache.

35

if (do security check and pass){
Access_sensitive_data()

}

Computer Architecture

The Spectre Vulnerability cont’d

● Consider the following pseudocode:

● The attacker can train the branch predictor to always
predicted true for this if-branch.

○ Recall the branch predictor only uses the low bits of the PC.
○ The attacker can find another branch instruction who’s PC has the same lower bits as this if-

branch. The attacker can then train the branch predictor to predict “taken” by letting this 2nd
branch instruction be taken for several times.

36

if (do security check and pass){
Access_sensitive_data()

}

Computer Architecture

The Meltdown Vulnerability

● Similarly to Spectre, except the security check is
performed by the hardware.
○ When accessing OS kernel’s data, CPU will check if current user has

access to kernel’s data.

● However, the data access is speculatively executed as the
same time as the hardware security check. Hence, the
data may be leaked in the cache.

37

Computer Architecture

Solutions to Meltdown and Spectre

● Software solutions usually have a high performance cost.
○ Afterall, the whole reason to do speculative execution is for better

performance.

● Hardware solutions are elusive.
○ Chip manufacturers have proposed/released some solutions for certain

variants of Meltdown and Spectre. However, there is no general solution.
○ Hardware solutions are mostly likely come with a performance penalty.

■ If Dennard scaling is still alive, we may be in a much better situation.

38

Computer Architecture

Acknowledgement

● This lecture is partially based on the slides from Dr. David
Brooks and Dr. Susan Eggers.

39

	Slide 1
	Optional Text Book Chapters
	Road Map
	Overview of Branch Prediction
	Control Hazards
	Branch Prediction
	Branch Prediction cont’d
	An Example of Branch Prediction
	Another Example of Branch Prediction
	Branch Prediction Algorithms
	Dynamic Hardware Branch Prediction
	Branch Direction Prediction
	Two-bit Saturating Counters
	An Example of Two-bit Saturating Counter
	Branch Prediction Buffer (branch history table, BHT)
	Branch Target Prediction
	A Example of Branch Target Buffer
	Advanced Branch Predictions*
	Correlated Branches
	Correlating Branch Prediction
	m-bit Global Branch History Register
	m-bit Global Branch History Register cont’d
	(m,n)-Correlating Branch Predictor
	(m,n)-Correlating Branch Predictor cont’d
	Tournament Predictor
	Tournament Predictor cont’d
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Security Implications
	Speculative Execution and Security
	The Spectre Vulnerability
	The Spectre Vulnerability cont’d
	The Meltdown Vulnerability
	Solutions to Meltdown and Spectre
	Acknowledgement

