Midterm 2 Preparation CS 5513 Computer Architecture, Fall 2024

Wei Wang

Computer Science University of Texas at San Antonio

Goals and Topics

- The goal is to help you systematically review the basic knowledge in Computer Architecture.
 - Only basic knowledge is tested.
 - No trick questions.

► Topics for this exam:

- Pipelining
- Speculative Execution (branch prediction)
- Scoreboarding
- Tomasulo's Algorithm
- Reorder Buffer
- ILP Limitation and Multithreading

Location, Time and Logistics

- ► Nov 9th 2024, Saturday, in-class
 - Exam starts from 2nd session at 2:30pm
- Close-book, close-notes, close everything
- ► The exam have Conceptual questions and Problems.
 - The problems will be similar as those in assignments 3 and 4.

Materials to Review

- ► Slides, all questions are from slides
- ► Assignments 3 and 4.
- You can check out the textbooks, but it is not required.
 - There are some differences in the details between my slides and the textbooks. Please follow my slides in those cases.

Pipelining

Know the solutions to all types of hazards

- Slide 37 has a summary of these solutions.
- You also need to know whether a solution can properly solve the hazards or not. In particular,
 - Why only branch prediction is the only practical solution to control hazard? Why other solutions do not work well?
 - Does data bypassing/forwarding eliminate stalls? And why?
- ► The definition superscalar CPUs.
- At least one problem about pipelining. The problem is similar to those in assignment 3.
 - In particular, you need to know how the pipeline works when stalling is the only solution to the hazards.

Branch Prediction

- The basic two-bit saturate counter for branch prediction.
 - You need to memorize the state machine.
- Know the implementation of Branch Prediction Buffer and Branch Target Buffer.
 - What components do these two buffers have?
 - How does a branch locates its entries in these two buffers?
- Correlating branch prediction
 - Why does correcting branch prediction work for some branches?
 - Why does correlating branch prediction not work form some branches?
 - The implementation of correlating branch prediction with Global Branch History Register (GBHR) and two-bit saturate counters.

There will be one problem about branch prediction, similar to the last question of Assignment 3.

OoO: Scoreboarding, Tomasulo's Algorithm and Reorder Buffer

- ► Be able to carry out the algrithms for OoO scheduling
- Why can OoO improve performance?
- What are the differences of scoreboards (SB), reservation station (RS) and reorder buffer (ROB)?
 - Scoreboard is a buffer for storing the status of the instructions
 - Reservation station is a buffer for holding the status and the source operands of the instructions.
 - Reorder buffer is a buffer for holding the status and the results of the instructions.
 - RS replaces SB, but ROB cannot replace RS.
- Common Data Bus (CDB)
 - What is the use of CDB? (sending results and source FU)
 - What is difference between CDB and the buses in pipelining? (CDB is a broadcasting bus)

ILP Limitation and Multithreading

If we have unlimited resources in the CPU, what limits ILP?

RAW hazards

What are the practical limitation on ILP?

 Renaming register count, ROB size (insn window size), Branch prediction accuracy, memory aliasing accuracy, memory latency, FU count and latency

► Why Multithreading (MT) is adopted?

- Most techniques to increase ILP failed
- Many application naturally has TLP in them.
- TLP is cheaper to exploit than ILP at the moment.
- Know the characteristics of the three types of MT: fine-grained, coarse-grained and SMT.