
Computer Architecture 1

Instruction Set Architecture

Wei Wang

Computer Architecture 2

Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter
2 “Instructions: Language of the Computer.”

● “Computer Architecture: A Quantitative
Approach,” Appendix A “Instruction Set
Principles.”

Computer Architecture 3

Road Map

● Basics of Instruction Set Architecture
● ISA Design Choices and Classification
● CISC vs RISC
● ISA Implementation Overview
● SIMD Instructions
● Compiler Interactions

Computer Architecture 4

Basics of Instruction Set Architecture

Computer Architecture 5

Instruction Set Architecture

● “Instruction Set Architecture is the structure of a
computer that a machine language programmer (or a
compiler) must understand to write a correct (timing
independent) program for that machine.” – IBM,
Introducing the IBM 360 (1964)

● The ISA defines:
– Operations that the processor can execute
– Data Transfer mechanisms + how to access data
– Control Mechanisms (branch, jump, etc)
– “Contract” between programmer/compiler + HW

Computer Architecture 6

The Fundamental Requirement of
ISA

● ISA must be Turing complete.
– So that it can run any computer programs.

● An architecture is Turing complete means:
– The architecture can simulate any Turing machine
– Intuitively, a Turing complete architecture can run

any computer programs.

Computer Architecture 7

The Standard Structure of An
Instruction

● An instruction typically has an operator (op or
opcode), one or two source operands (src), and
one destination operand (dest).

Destination
operand

R1 = R2 + R3

Source
operands

operator
Instruction:
 add R1, R2, R3

Computer Architecture 8

More Examples with Memory
Instructions

Destination
operand

R1 = *addr

Source
operands

Operator
(a load)

Instruction:
 mov R1, [addr]

A C code for loading
the value at address
addr into register R1.

Destination
operand

*addr = R1

Source
operands

Operator
(a load)

Instruction:
 mov [addr], R1

A C code for saving
the value of R1 into
memory at address
addr.

Computer Architecture 9

More Examples with Logic
Instruction

(R1 > *addr)

Source
operands

Operator

if

Dest is implicit, usually
a flag register. E.g.,
the Zero Flag (ZF) register
in x86. If comparison
result is false, set ZF
register to be 1.

A C code for comparing
the value at address
addr with the value in
register R1.

Instruction:
 cmp R1, [addr]

Computer Architecture 10

More Examples with Jump
Instructions

goto target

Source
operands

Operator

Instruction:
 jmp target

No dest operand involved;
Or you can view dest
as the program counter.

A C code for uncondi-
tionally jump to the
code at target.

{goto target}

Source
operands

Operator
Instruction:
 jnz target

A C code for condi-
tionally jump to the
code at target if
ZF register is not set.

If (ZF is zero)

Can be combined with the cmp
instruction to realize if-then
statements

ZF

Computer Architecture 11

Confusing Instruction Syntaxes

● Intel syntax for x86 instructions:
op dest, src1, src2

● ATT syntax for x86 instructions:
op src1, src2, dest

● MIPS syntax for MIPS instructions:
– mostly op dest, src1, src2
– But for store, it is “sw src, dest”

● ARM syntax for ARM instructions:
op register, src or dest
– Whether the second operand is src or dest depends on op.

● I will use a syntax similar to the Intel syntax for x86 instructions; for
MIPS and ARM, I will use their standard format.

Computer Architecture 12

Key ISA Decisions

● Operations:
– How many?
– Which ones?

● Operands:
– How many?
– Location?
– Types?
– How to specify?

● Instruction format
– How many bytes per instruction?
– How many formats?

Computer Architecture 13

ISA Design Choices and Classification

Computer Architecture 14

Arithmetic Logic Unit

● An arithmetic logic unit (ALU) is a digital
electronic circuit that performs arithmetic
operations on source operands and produces
result.
– An ALU can be any arithmetic or bitwise logic

operations
– The operands must have integer values.

ALU

src1 src2

dest

Standard
illustration of
ALU

Computer Architecture 15

ISA Classification based on
Operands

● Operands may be from
– Stack
– Accumulator
– Register
– Register and Memory

Computer Architecture 16

Classifying ISA: Stack ISA

● The operands are read from a stack (inside CPU,
not memory)..

A
B
C

ALU

Stack

Top of Stack

Computer Architecture 17

Stack

● Architectures with implicit “stack”
– Acts as source(s) and/or destination, Top of Stack (TOS) is implicit
– Push and Pop operations have 1 explicit operand

● Example: C = A + B
– Push A // S[++TOS] = Mem[A]
– Push B // S[++TOS] = Mem[B]
– Add // Tem1 = S[TOS--], Tem2 = S[TOS--] ,

 S[++TOS] = Tem1 + Tem2 (this is C)
– Pop C // Mem[C] = S[TOS--]

● x86 FP uses stack (complicates pipelining)

Computer Architecture 18

Classifying ISA: Accumulator

● The operands are read from memory and an accumulator

A then C

ALU

Accumulator
Register

B
Memory

Computer Architecture 19

Accumulator

● Architectures with one implicit register
– Acts as source and/or destination
– One other source explicit

● Example: C = A + B
– Load A // (Acc)umulator <= A
– Add [B] // Acc <= Acc + B
– Store C // C <= Acc

● Accumulator is implicitly used, and can become a performance
bottleneck
– Although in real CPUs, accumulator instructions are just conceptual. The

actually implementation is register-register.

● x86 uses accumulator conceptually for most integer operations.

Computer Architecture 20

Classifying ISA: Register-Memory

● The operands are read from random-accessible
memory and register file.

ALU

B
Memory

A

C

Registers (register file)

Computer Architecture 21

Classifying ISA:
Register-Register/Load-Store

● The operands are fed into the ALU from registers. But the
values of the operands are explicitly read from memory.

ALU

Memory

A
B
C

Registers (register file)

Computer Architecture 22

Register-Memory and
Register-Register with Load/Store

● Most common approach
– Fast, temporary storage (small)
– Explicit operands (register IDs)

● Example: C = A + B
Register-memory Instructions Reg-reg with load/store
instructions
Load R1, [A] Load R1, [A]
Add R3, R1, [B] Load R2, [B]
 Add R3, R1, R2
Store [C], R3 Store [C], R3

● x86 ISA is mostly register-memory.
● All RISC ISAs are register-register with load/store.

– E.g., ARM ISA is RISC and register-register.

Computer Architecture 23

Clarification on x86 ISA Operands

● x86 uses a stack for floating point (FP) operations
● x86 integer instructions operates in an accumulator

fashion
– Most instructions have a syntax of “op dest, src”, where
dest used as both source and destination, much like an
accumulator

– But dest is still a register in the register file, not a real
accumulator

● x86 integer instructions are really just register-memory.
There is no real accumulator in x86 processors.

Computer Architecture 24

ISA Classification based on
Operand Addressing Mode

● Addressing mode specifies how operands are located from memory
and/or registers.

● Common addressing modes
– Register
– Immediate
– Register indirect
– Displacement
– Indexed
– Direct
– Memory indirect
– Auto-increment and auto-decrement
– Scaled

Computer Architecture 25

Common Addressing Modes

● Register:
– When an operand is in a register
– Example,

● For operation: R1 = R2 + R3
● The instruction: add R1, R2, R3

● Immediate:
– When an operand is a constant value
– Example

● For operation: R1 = R3 + 3
● The instruction: add R1, R3, 3

Computer Architecture 26

Common Addressing Modes cont.

● Register Indirect (aka register deferred)
– Accessing an operand whose memory address

stored in register
– Often used for C pointers
– Example

● Assuming the address of 2nd operand is in R3.
● For operations:
R1 = R2 + *R3;

● The instruction: add R1, R2, [R3]

Computer Architecture 27

Common Addressing Modes cont.

● Displacement
– Accessing an operand whose address is computed based

on a base address and an offset (displacement)
– Often used for local variables on the memory stack, where

the base address is the stack frame pointer
– Example

● Assuming base address is in R3, and offset is 100
● For operations:
addr = R3 + 100;
R1 = R2 + *addr;

● The instruction: add R1, R2, [R3+100]

Computer Architecture 28

Common Addressing Modes cont.

● Indexed:
– Very useful for accessing an element of an array in memory.
– The beginning address and the offset of the element are stored in

registers.
– Example:

● Consider a summation with x[5] as an operand:
R1 = R2 + x[5]

● Assuming R3 has the base address of x, and R4 has the offset:
int x[10];
R3 = x; // set the beginning address of x to R3
R4 = 5 * 4; // the offset of x[5], which is 5 * 4 bytes = 20
 bytes

● For operation:
R1 = R2 + *(R3+R4)

● The instruction: add R1, R2, [R3+R4]

Computer Architecture 29

Common Addressing Modes cont.

● Direct:
– When the memory address of operand is known at

compile time. That is, the value of the address is known at
compile time.

– Typically used for loading static and global variables.
– Example:

● Assuming one operand is at memory address 1000
● The operation:
addr = 1000
R1 = R2 + *addr

● The instruction: add R1, R2, [1000]

Computer Architecture 30

Common Addressing Modes cont.

● Memory indirect (aka, memory deferred):
– When accessing nested pointers.
– Example:

● Assuming the first address is in R3
● The operation:
// basically, R1 = R2 + mem[mem[R3]]
addr = *R3
R1 = R2 + *addr;

● The instruction: add R1, R2, @(R3)

Computer Architecture 31

Common Addressing Modes cont.

● Auto-increment:
– Useful when stepping through an array.
– The address of current element is stored in an register. And this register is automatically

incremented as the code proceeding to iterate over every element in the array.
– Example:

● Assume the beginning address of array x is in R2. That is,
int x[…];
R2 = x;

● The operation:
while(true){
 R1 += *R2;
 R2 += 4; // advance 4 bytes to next element
}

● The instructions:
Loop: add R1, R1, (R2)+
 goto loop

● Auto-decrement is similar, expect the the address is automatically decremented.

Computer Architecture 32

Common Addressing Modes cont.

● Scaled:
– Used to access an array element with the array’s based address, the

element index and the size of an element (scale)
– Can handle arrays with any type of elements, such as chars, integers,

floats and doubles
– Example:

● Assuming the beginning address of array x is in R3:
double x[..];
R3 = x;

● The operation:
// basically R1 = R2 + x[10]
R4 = 10;
R1 = R2 + R3[R4];

● The instruction: add R1, R2, [R3 + R4 * 8] //a double takes 8 bytes

Computer Architecture 33

A More Complex Addressing
Example

● Consider a case where an element of a two dimensional array is used as operand:
double x[10][10]
R1 = R2 + x[3][5]

● The location of x[3][5] is x + 240 + 5 * 8
– x[3][5] starts from the 4th row, the first 3 rows occupies 3 rows * 10 elements/row * 8
bytes/element = 240 bytes

– x[3][5] is the 6th element on the 4th row. Therefore, it is starts after the first 5 elements, i.e., 5
elements * 8 bytes.

– In other words, the offset/displacement for the 4th row is 240 bytes, the index is 5 within the 4th row,
and the element size/scale is 8

● Again, assuming the beginning address of x is in R3. And the index 5 is in R4.
● The instruction for R1 = R2 + x[3][5] is then:
add R1, R2, [R3 + R4 * 8 + 240]

● This addressing mode, [base + index * scale + disp], is the memory
addressing mode used by x86. This addressing mode can replace or include most of the
addressing modes we have discussed so far.

Computer Architecture 34

ISA Classification by
Instruction Length

● Instructions are eventually encoded with 0s and 1s.
– Each instruction is encoded into several bytes of binary

numbers.

● There are two types of ISA in terms of instruction length:
– Variable-length ISA
– Fixed-length ISA

● The choice in encoding affects,
– How hard it is to decode an streams of bytes back into an

instruction.
– How much memory space a program can take.

Computer Architecture 35

Variable-length instructions

● Variable-length instructions (x86, VAX) require multi-step fetch
and decode, but allow for a much more flexible and compact
instruction set.
– Low on memory usage, since many simple instructions only use one

or two bytes.
– Hard to decode. The decoder needs to first determine the length of

next instruction in the memory before decoding it.

● For example, in x86-64:
– The encoding for “add r12, r11” is “0xdc014d”, which has three

bytes
– The encoding for “mov r14, [r13]” is “0x00758b4d”, which has

four bytes

Computer Architecture 36

Fixed-length instructions

● Fixed-length instructions allow easy fetch and decode, and
simplify pipelining and parallelism
– Easy to decode. There is no need to determine instruction length

as each instruction always has the same length.
– Take more memory space. As the length of the instructions is

determined by the most complex instruction.

● For example
– MIPS instructions are always 32 bits, with 6 bits for opcode and

the rest for operands
– Standard ARM instructions are also 32 bits, with variable length

for opcodes.

Computer Architecture 37

How Many Operands?

● Most instructions have three operands (e.g., z =
x + y).

● Most ISAs specify 0-3 (explicit) operands per
Instruction.

● Operands can be specified implicitly or explicitly.
– An accumulator-styled instruction (e.g., multiplication

in x86) uses dest implicitly as a src operand.

● Generally, only one operand can be from memory.

Computer Architecture 38

The Ultimate Classification

● As we have seen, there are many ways to
classify ISAs.

● There is one classification that considers most
of the features we have discussed so far, which
includes two classes of ISAs: CISC and RISC
– CISC: Complex Instruction Set Computers
– RISC: Reduced Instruction Set Computers

Computer Architecture 39

CISC and RISC

Computer Architecture 40

What leads to a good/bad ISA?

● Ease of Implementation (in processors)
– Does the ISA lead itself to efficient implementations?

● Ease of Programming (for programmers)
– Can the compiler use the ISA effectively?

● Future Compatibility
– ISAs may last 30+yrs
– Special Features, Address range, etc. need to be

thought out

Computer Architecture 41

Implementation Concerns

● Simple Decoding (fixed length)
– Instructions are encoded with 0/1 bits
– Every instruction has the same length

● E.g., the first 8 bits always represents the opcode; the next 8 bits for dest, then 8 bits for src1 and 8
bits for src2.

– Most RISC ISAs, such as MIPS and ARM, have fixed length instruction
– Simple decoding means simpler processor implementation

● Compactness (variable length)
– Instructions have variable length

● E.g, some instructions have 1 bit as opcode, some have 4 bits as opcode, some have 8 bits.

– x86 ISA have variable length instructions.
– Saves memory, but huge headache to implement
– Most processors today internally used fixed-length micro-coded instructions (including

x86) for simplicity.

Computer Architecture 42

Implementation Concerns cont.

● Simple instruction management (no register-memory instructions)
– Things that get microcoded these days
– Deterministic Latencies are key reason. That is, every instruction finished within

the same time, making instruction scheduling much easier.
– Instructions with multiple exceptions are difficult.

● For register-memory instructions, an instruction may trigger both arithmetic exceptions
and memory exceptions.

● More or less registers?
– More registers are not always good. Once register file is too large, accessing it

will be slow.

● Condition codes/Flags
– Many instructions have side-effects. E.g., add has carry-over bits.
– The selection of condition/flags registers affects instruction scheduling.

Computer Architecture 43

Programmability
● Well, at this moment you may think x86 is horrible as it has variable lengths and have complex

register-memory instructions.
– But programmability is also very important.

● Before mid 80s, programmability is nearly the most important design issue
– 1960s, early 70s

● Code was mostly hand-coded

– Late 70s, Early 80s
● Most code was compiled, but hand-coded was better

– CISC ISAs provides register-memory styled instructions and many special instructions for special use cases.
Therefore, CISC ISAs were early winners.

● After mid-80s, programmability becomes less important for ISA, due to better compilers
– Mid-80s to Present

● Most code is compiled and almost as good as assembly

– Why?
● Optimizing large amount of code is too difficult for human.

● RISC ISAs made a successful come-back in 21st century partially as programmability becomes less
important.

● Note that programmability is less important today only for ISAs. Programmability is still very important
in the fight among CPUs/GPUs/FPGA/ASICs, and is still very important for high-level languages.

Computer Architecture 44

ISA Compatibility

● Backward-compatibility
– Never abandon existing code base
– Extremely difficult to introduce a new ISA

● Alpha failed, IA-64 is done, best solutions may not win (Alpha and
IA-64 are not the best BTW).

– x86 most popular, is the least liked!

● Extensible for the future
– Hard to think ahead, but...

● ISA tweak may buy 5-10% today
● 10 years later it may buy nothing, but must be implemented

Computer Architecture 45

CISC and RISC

● Debate raged from early 80s through 90s
– Now it is fairly irrelevant

● Despite this debate, Intel (x86 => Itanium) and
DEC/Compaq (VAX => Alpha) have tried to switch

● Research in the late 70s/early 80s led to RISC
– IBM 801 -- John Cocke – mid 70s
– Berkeley RISC-1 (Patterson)
– Stanford MIPS (Hennessy)
– Acron ARM2 (1985)

Computer Architecture 46

VAX ISA (CISC)

● 32-bit ISA, instructions could be huge (up to 321 bytes), 16
GPRs

● Operated on data types from 8 to 128-bits, decimals, strings
● Orthogonal, memory-to-memory, all addressing modes

supported
– Orthogonal ISAs supports all addressing modes, i.e, the instruction

types and addressing modes are orthogonal (independent).

● Hundreds of special instructions
● Simple compiler, hand-coding was common
● An instruction takes more than 10 cycles to execute!

Computer Architecture 47

X86 (CISC)

● Variable length ISA (1-16 bytes)
● Floating point operations uses stack instead of registers
● 2 operand instructions (somehow similar to accumulator)

– Register-register and register-memory support

● Has multiple instructions for one task
– E.g., inc r11 and add r11, 1 do almost same thing.
– Usually one generic instruction that can do the task with slower speed (e.g., add r11, 1),

and one specialized instruction for this particular task with faster speed (e.g., inc r11).

● Has special instructions optimized for special tasks.
– E.g., leave for function epilogue.

● Scaled addressing modes besides common ones.
● Has been extended many times (e.g., MMX, AMD64, SSE, AVX…)

– Intel, instead went to IA64, which was not very successful.

Computer Architecture 48

MIPS ISA (RISC)

● Microprocessor without Interlocked Pipeline Stages
– Although interlocking is back around 2002

● 32-bits long instructions
● Register-register operands

– Must explicitly load operands from memory into registers before using them

● Use register-indirect, direct, immediate, displacement and indexed
addressing mode
– Addresses are stored in registers as instructions are not long enough to hold 32-

bits or 64-bits addresses.

● Also revised many times to evolve to 64-bits architectures and include
modern features (e.g., SIMD)

● A very popular academia teaching ISA.

Computer Architecture 49

ARM (RISC)

● Advanced RISC Machine, originally Acorn RISC Machine
– Co-invested by Acorn and Apple

● Standard ARM instructions are 32-bits long. ARM-Thumb
instructions are 16-bits or 32-bits.
– Thumb ISA is a subset of standard ARM for memory compactness.

● Register-register operands
– Must explicitly load operands from memory into registers before using them

● Use register-indirect, immediate, direct, auto-increment/decrement,
displacement and indexed addressing mode.

● Almost every cellphone uses an ARM processor.

Computer Architecture 50

RISC-V

● Started in UCB in 2010
– Open standard instruction set

● Register-Register
– Only memory access instructions use memory addresses

● Supports only PC-relative, Register-offset (displacement), absolute
addressing modes.
– Immediate is also supported, but not in the official document

● 32-bit, 64-bit or 128-bit fixed-length
● 32 INT registers and 32 FL registers
● RISC-V has a modular design to allow for extensions

– Base RISC-V have mostly integer instructions
– Extensions supports FP, atomic, SIMD, Vector etc. instructions

Computer Architecture 51

CISC vs RISC

● CISC
1)Supports register-register, register-

memory, accumulator and stack
operands

2)Complex addressing modes

3)Variable instruction length

4)May have an instruction for any
operation. Sometime even duplicated
instructions.

5)Instructions require variable numbers of
cycles to execute

6)Must spend a lot transistors on control
logics

7)Leaves the complexity of the programs
to hardware

● RISC
1)Usually Register-Register

operands

2)Mostly simple addressing modes

3)Fixed instruction length

4)Limited number of instructions.

5)Instructions mostly takes
uniformed cycles to execute

6)Can spend a lot of transistors on
registers

7)Leaves the complexity of the
programs to software

Computer Architecture 52

CISC vs RISC

● Programmability, CISC is clearly a winner.
– Recall this example: C = A + B

CISC (3 insns) RISC (4 insns)
Load R1, [A] Load R1, [A]
Add R3, R1, [B] Load R2, [B]
 Add R3, R1, R2
Store [C], R3 Store [C], R3

– CISC requires fewer instructions and thus is easier to write by hand. Fewer codes also mean
fewer bugs.

– Nowadays, compilers do the heavy-lifting, nearly no need to write assembly by hand, except for
some cases of manual optimizations.

● Code sizes, CISC is clearly a winner, at least in the old days.
– In nowadays, code sizes mostly depend on compilers.
– Code size was important in 80s and 90s as memory was small.

● Because of these two advantages, CISC was a winner back in the 80s and 90s.
– Although programmability and code sizes are less important today for ISAs.

Computer Architecture 53

CISC vs RISC cont’d

● For extensibility and backward-compatibility,
CISC ISAs and RISC ISAs are both flexible
enough.

● CISC ISAs appear to be more extensible.
However, so far, RISC ISAs are also keeping up
with technology changes.

Computer Architecture 54

CISC vs RISC cont’d

● Implementation complexity, RISC is clearly a
winner
– CISC requires too many control units to properly

fetch and decode instruction, and to schedule
instructions with variable execution times

– CISC CPUs are usually much fatter

ARM
Cortex A9

Intel Atom
N270

Intel i7
960

Intel Pen4

of transistors 2600k 47000k 731000k 55000k

Computer Architecture 55

CISC vs RISC cont’d

● Implementation complexity
– Due to the complexity, there are always more RISC

implementations/processors than CISC
● AMD has been simulating x86 with RISC from the

beginning
● Even Intel switched to a RISC implementation by

translating x86 instructions into their uOPs
– However this extra translation step has some negative impacts

on power consumption
– Pentium 4 is the last hard-wired Intel CPU. Some Atom

processors reused Pen4’s design to reduce power consumption

Computer Architecture 56

CISC vs RISC cont’d

● Other implications due to implementation
complexity
– More transistors mean high power consumption. That’s

why we don’t see any CISC processors in embedded
applications.

– More control units mean less usable registers
● x86 has 8 general purpose (GP) registers, MIPS has 32 GP

registers, and ARM has 37 registers
● x86 has more internal registers, but they are used to handle

register-memory instructions and are not directly available to
programmers.

Computer Architecture 57

CISC vs RISC cont’d

● I’d say RISC is the winner now, as there are
barely true CISC implementations any more.
We are mostly keeping CISC for the sake of
backward compatibility.

● But note that RISC wins with the help of
compilers, it doesn’t win by itself.

Computer Architecture 58

ISA Implementations Overview

Computer Architecture 59

Instruction Execution Stages

● When implementing ISA, we typically partition the
execution of an instruction into stages and implement
each stage with transistors separately.

● Why
– Many instructions share common steps in executions.

Therefore, they can shared the common functional units.
– Break down into stages with well-defined execution times (in

CPU cycles) makes instruction scheduling and management
easier.

– Another divide-and-conquer or abstraction, simplifies the
designing process.

Computer Architecture 60

Stages of Instruction Execution

● Common stages for all instructions:

● Unique stages for different
types of instructions:
– ALU Ops:

– Memory Ops:

– Control Ops:

Instruction
Decode

Instruction
Fetch

Register
Fetch

Write
Back

Execution

Calculate
Eff. Addr

Calculate
Eff. Addr

Branch
Complete

Memory
Access

Write
Back

Computer Architecture 61

Execution Stages with RISC

● For the following slides, we will see
implementation examples for a RISC ISA.
– That is, the ISA is register-register and has fixed

instruction lengths.

● We will discuss the implementation of CISC
after these examples.

Computer Architecture 62

Instruction Fetch

● Send the Program Counter (PC) to memory
● Fetch the current instruction from memory into the instruction

register (IR)
– IR <= Mem[PC]

● Update the Next PC (NPC) to be the next sequential instruction
– NPC <= PC + 4 (for simplicity, assuming 4-bytes per instruction)

● Optimizations
– Instruction Caches, Instruction Prefetch

● Performance Affected by
– Code density, Instruction size variability (CISC/RISC)

Computer Architecture 63

Instruction Decode/Reg Fetch

● Decide what type of instruction we have
– ALU, Branch, Memory
– Decode Opcode

● Get operand(s) from register file
– Part of the instruction determines where the operands are from. E.g.,

● A <= Regs[IR
RegSrc1

]; B <= Regs[IR
RegSrc2

];

● Imm <= SignExtend(IR
immd

)

● RegSrc1, RegSrc2, RegDest, and immd represents certain bits of the
instruction. For example, RegSrc1 may be bits 20 to 15.

● Performance Affected by
– Regularity in instruction format, instruction length

Computer Architecture 64

Calculate Effective Address:
Memory Ops

● Calculate memory address for the data using ALU
● Addressing modes here direct how to compute

the effective memory address
– E.g., in the following instruction, the effective address

is computed by summing the value in R2 and 100.

mov R1, [R2+100]

opcode RegSrc RegDest Immdiate

Computer Architecture 65

Calculate Effective Address:
Branch/Jump Ops

● Calculate target for branch/jump operation
using ALU
– That is, the effective memory address for the jump

target in memory

● The actual address depends on the addressing
modes.
– The actual address calculation is similar to memory

access instructions.

Computer Architecture 66

Execution: ALU Ops

● Perform the computation
● Register-Register

– ALU
output

 <= A op B

● Register-Immediate
– ALU

output
 <= A op Imm

Computer Architecture 67

Memory Access

● Take effective address, perform Load or Store
● Load

– Load_Buffer <= Mem[ALU
output

]

● Store
– Mem[ALU

output
] <= Register

● Note that ALU
output

 is the calculated effective
address.

Computer Architecture 68

Branch Completion

● If unconditional jump, set the PC to the
calculated effective address

● If conditional jump, set the PC to calculated
effective address if the condition is met
– If (cond)
 PC <= ALU

output

else
 PC <= next instruction’s address

Computer Architecture 69

Write-Back

● Send results back to register file
● Normal ALU instruction

– Regs[IR
RegDest

] <= ALU
output

● Load Instruction
– Regs[IR

RegDest
] <= Load_Buffer

● This is a stage for register writing, not memory
writing.

Computer Architecture 70

Putting All Stages Together

● In a typical yet simple RISC CPU
implementation, the processor is partitioned into
5 connected stages.

● Every instruction goes through all stages,
although this instruction does not necessarily
trigger the functional units of every stage.

 ID:
Instruction
Decode &
Register

Fetch

IF: Instruction
Fetch

Exec:
Execution &
Calc Effc.

Addr

Mem:
Memory

Access &
Branch

Complete

WB:
Write
Back

Computer Architecture 71

A Simple Implementation of the
5-stage RISC CPU

+4

* figure by Hellisp from Wikibooks.org

Computer Architecture 72

Instruction Fetch in Implementation

PC used to
fetch an instr
from mem.

Instr. register

These green
bars are buffers
and inter-stage
storage registers.

+4

Add 4 bytes to current
PC to compute the
address of next
sequential instr.

Computer Architecture 73

Instruction Decode & Register Fetch
in Implementation

Pass on the
dest register’s
id

Extend 16-bits
immd to 32-bits
with sign.

Source registers
are read out.

+4

Get the id of the source
operand registers from
IR.

Computer Architecture 74

Exec Stage for ALU Instructions in
Implementation

MUX is a func.unit
for selecting inputs

Source registers
are read out.

+4

A src operand from
register.

Src operands are
fed into ALU for
calculation.

A src operand from
immd.

Results are pushed
to next stage

Computer Architecture 75

Exec Stage for Mem Instructions in
Implementation

Source registers
are read out.

+4

A src operand from
register.

Src operands are
fed into ALU for
calculation of
effective address.

A src operand from
immd.

Results are pushed
to next stage

For store instr, the
value in src reg is
passed on.

Computer Architecture 76

Exec Stage for Branch Instructions
in Implementation

For cond. Jump,
contrl flags is
also read.

+4 For PC-relative
jump, NPC is
used as input
to ALU.

A src operand from
immd.

Results are pushed
to next stage

Computer Architecture 77

Memory Access Stage in
Implementation

Effective mem
addr from ALU

+4

For ALU instr., no
memory access,
result is directly
passed on.

For store instr, the
value in src reg is
set to memory.

Load result set
to load buffer

Computer Architecture 78

Branch Complete Stage in
Implementation

Effective mem
addr from ALU

+4

New PC for next
instr. to execute.

Zero flag controls
the selection

Addr of next
sequence instr.

Computer Architecture 79

Write-back Stage in Implementation

+4

For ALU instr., ALU
result is sent to
register.

Send load result
to register if
memory load instr.

dest register’s
id passed over
stages.

Result is write
into the dest
register.

Result is write
into the dest
register.

Computer Architecture 80

SIMD and Parallel Instructions

Computer Architecture 81

The Requirement for Multi-media
Processing

● Around 1997, desktop computers were becoming devices for
entertainment.

● A key task for entertainment is to decode video and audio streams.
– The decode process is essentially one linear algebra transformation on a

stream of data.

● This requirement leaded to the invention of various multi-media
instructions, such as Intel MMX and AMD 3DNow!.

● Luckily, with Moore’s law, there were spare transistors that
manufactures could spend on functional units for multi-media
instructions.
– These functional units typically extends the exec stage.

Computer Architecture 82

From Multi-media To Science

● Later, these multi-media instructions proven to
be very helpful for scientific applications as well.
– The same thing happened to GPU as well. Graphic

workloads naturally resembles scientific (and
machine learning) workloads, as they all rely
heavily on linear algebra.

● These multi-media instructions evolved into
more complex instructions such as SSE and
AVX.

Computer Architecture 83

SIMD Instruction

● The common feature of MMX, 3DNow!, SSE
and AVX instructions is that they can all perform
the same math operation on multiple inputs
using just one instruction.

● The common name for these instructions are
SIMD – Single Instruction Multiple Data.
– A GPU does exactly the same. GPUs are practically

SIMD processors.

Computer Architecture 84

A Simple Example of A SIMD Instr.

● A simple packed (parallel or vectorized) SSE
add instruction addps xmm, ymm for x

i
 = x

i

+ y
i
 , can be implemented as,

x1 x2 x3 x4
One SSE Register that
holds four 32-bit floats

y1 y2 y3 y4

+ + + +
One func unit that
performs four adds at
the same time

Reg xmm:

Reg ymm:

Reg xmm
with new
content: x1 x2 x3 x4

Computer Architecture 85

SIMD Instructions In General

● Similarly, other SSE instructions can perform
four subtractions, multiplications and divisions
on eight floats/integers simultaneously.

● There are also scalar (non-parallel) instructions
in SSE for better programmability.

● SSE have been extended several times. We
also have AVX instructions now that can handle
four double operations at a time.

Computer Architecture 86

VLIW Instructions

● Except for multi-media, scientific and machine-learning
applications, very few applications have the need to do multiple
math operations at the same time.

● To improve the performance for these applications, system
researchers tried to explore other parallel execution opportunities.
– In general, this is called Instruction Level Parallelism (ILP).

● Note that, with Moore’s Law, we are guaranteed to have more
functional units. So the goal in CPU optimization has long been
finding ways to use all these functional units in parallel to improve
CPU utilization and efficiency.
– Another extreme example is on-chip graphic processors.

Computer Architecture 87

VLIW Instructions cont’d

● For example, the following program can be re-arranged
to execute simultaneously,

● Modern processors can actually identify this parallel
opportunity.
– The methodology to identify this parallel opportunity is called

Out-of-Order (OoO) execution, which was invented in 1960s.

a[i] += a[i-1];
c[i] *= a[i] + c[i-1];

b[i] += b[i-1];
d[i] *= b[i] + d[i-1];

a[i] += a[i-1];
b[i] += b[i-1];

c[i] *= a[i] + c[i-1];
d[i] *= b[i] + d[i-1];

Run in
parallel

Run in
parallel

Computer Architecture 88

VLIW Instructions cont’d

● The problem with OoO execution is that it is very
complex to design and consumes a lot of transistors
that can be use as registers and normal
computational units.

● A possible alternative to OoO is to shift the burden of
identifying parallel opportunities to software.
– Let compiler to find the operations that can be executed in

parallel.
– The compiler then generates ONE very-long instruction for

several operations that can run in parallel.

Computer Architecture 89

VLIW Instructions cont’d

● A possible alternative to OoO is to shift the burden of
identifying parallel opportunities to software.
– Let compiler to find the operations that can be executed in parallel.
– The compiler then generates ONE very-long instruction for several

operations that can run in parallel.

– The CPU needs to provide such instructions in its ISA.
– Essentially, the compiler tells the CPU the parallel parts of a program

using these very-long instructions.
– These very-long instructions are called Very Long Instruction Word

(VLIW).

a[i] += a[i-1];
b[i] += b[i-1];

Just one Instr.:
 some_special_op a, b, i

Computer Architecture 90

The Difficulty of VLIW

● However, it turns out VLIW CPUs/compilers are very hard to design.
– It is hard (basically impossible) for compilers to find enough parallelism with

an integer sequential program.
● There are too many unknown memory addresses and data dependencies at the

compilation time.

– It is hard to provide a finite set of instructions to cover the infinite
combinations of instructions.

● Intel went for VLIW for their 64-bit CPU design, and it was not
successful.
– The architecture is call IA-64, and the processors are called Itanium. The last

Itanium processor shipped in 2017.
– AMD went for extending 32-bit x86 ISA to 64 bits. Intel followed suit later.

And that’s why 64-bit x86 are called AMD64 today.

Computer Architecture 91

Compiler Interactions

Computer Architecture 92

Compilers and ISAs

● Nowadays, the main users of instructions are compilers.
● Therefore, ISA design has a huge impact on compiler

designs.
– Complex ISA actually leads to complex compilers.

● When there are many choices for addressing modes, an when there
are many instructions that can do the same task, compiler designers
will get confused.

– Chip manufactures usually provides limited supports to open-
source compiler writers. We rely on third-party experiments to
deduce the internal operations of CPUs.

● Check out Agner Fog.

Computer Architecture 93

Compilers and ISAs

● Ideally, architects can help compiler writers
– Providing regularity (already discussed)
– Primitives, not solutions (direct HLL-support has not

succeeded)
– Simplify trade-offs among alternatives
– Provide instructions that bind compile-time

constants

Computer Architecture 94

Compilers Support for SIMD
Instructions

● Compilers have limited capacity when generating
SIMD instructions.

● GCC generally do not generate SIMD instructions.
– GCC provide intrinsic functions, but no automatic code

generation.

● Compilers from manufactures can generate SIMD
in some cases.

● Generally, manual implementation is required for
code snippets that use SIMDs.

Computer Architecture 95

Acknowledgment

● These slides are partially based on the lecture
notes from Dr. David Brooks and Dr. Gurpur
Prabhu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

