
The Limitations of Instruction-Level
Parallelism and

Thread-Level Parallelism
Computer Architecture

Wei Wang

http://www.cs.utsa.edu/~wwang/


Text Book Chapters
I “Computer Architecture” Hennessy and Patterson,

Chapter 3.10 “Studies of the Limitations of ILP”.

Computer Architecture 2



Road Map

The Limitations of ILP

Thread-level Parallelism

Acknowledgment

Computer Architecture 3



Instruction-Level Parallelism
I We have learned many CPU design techniques to

optimize performance
– Pipelining, superscalar, speculative execution, out-of-order

execution
I The common goal is to execution instructions in

parallel (pipelining), as many instructions as possible
(superscalar, speculation and OoO).

I Instruction-level parallelism (ILP) is a measurement
of how many of the instructions in a computer
program can be executed in parallel.

Computer Architecture 4



The Limitations of ILP
I Applications (algorithms)

– Different applications (algorithms) have different numbers
of instructions that can run simultaneously.

I Compiler sophistication
– Good compilers can generate and/or schedule instructions

that run in parallel
– E.g., VLIW compilers (in some degree)

I Hardware sophistication
– Complex hardware usually can find more instructions to

run
I E.g., superscalar, speculation and OoO
I E.g., SIMD instructions

I In this lecture, we focus on the hardware limitations
and the application limitations.

Computer Architecture 5



Hardware Limitations of ILP
I The number of registers for renaming

– Essentially the size of the ROB
– The more ROB entries the more instructions can be

examined for parallel execution
I Branch (outcome and branch target) prediction

accuracy
– Better branch prediction => fewer stalls and pipeline

flushes
I Memory address alias analysis (disambiguation)

– Better memory aliasing analysis => more accurate
dependencies detection => fewer pipeline flushes from
incorrect speculation, fewer instructions stalled due to
falsely/conservatively assumed dependencies

I Memory/cache latency
– Faster memory/cache => fewer stalls due to slow memory

accesses

Computer Architecture 6



The Perfect Hardware Model
I How much ILP can a perfect CPU find?

– Infinite register rename (infinite ROB/RS) – all WAW/WAR
hazards avoided, no structural hazards from ROB/RS,
infinite number of instructions can be issued in parallel

– Infinite functional units – infinite number of instructions can
execute in parallel

– Fast functional units – one cycle execution latency, no
stalls due to RAW on slow computations

– Perfect branch prediction – branch outcomes and targets
are 100% accurately predicted

– Perfect memory address alias analysis – all memory
addresses are known

– Perfect memory/cache – all memory accesses take one
cycle.

– Only true (RAW) dependencies are left (that limits ILP).
I Impossible in practice

– But can be simulated using past execution traces.

Computer Architecture 7



Upper Limit of ILP with the Perfect CPU

gcc espresso li fppp doduc tomcatv
0

50

100

150

200

54.5
62.6

17.9

75.2

118.7

150.1

SPEC benchmarks

Av
er

ag
e

in
st

r.
is

su
es

pe
rc

yc
le

Integer Benchs Floating Point Benchs

Computer Architecture 8



Upper Limit of ILP with the Perfect CPU
cont’d

I The maximum ILP is fundamentally limited by the
RAW dependencies

– Cannot issue more instructions if previous computations
are not finished

– RAW dependencies reflect the ILP limitations imposed by
the problems, the algorithms, the programs and/or the
compiler code generation.

I Floating point benchmarks have higher max ILP
– Would also benefit from SIMD
– Highest (so far observed) is 500 from swm256 (Wall. 1993)

I Integer benchmarks have lower max ILP mostly due
to their step-by-step behaviors.

Computer Architecture 9



Realistic Instruction Windows
I Realistic CPUs do not have unlimited ROB, so their

instruction window is typically less than 500.
I What is the max ILP if we reduce the instruction

windows?
Perfect Model Current Model

Max Issues
per Cycle Infinite Infinite
Instruction
Window Size Infinite 2K, 512,

128, 32
Renaming
Regisers Infinite Infinite
Branch
Prediction Perfect Perfect
Memory
Alias Perfect Perfect
Memory/
Cache Perfect Perfect

Computer Architecture 10



Realistic Instruction Windows cont’d

gcc espresso li fppp doduc tomcatv
0

50

100

150

200

55
63

18

75

119

150

36 41

15

61 59 60

10 15 12

49

16

45

10 13 11

35

15

34

8 8 9 14 9 14

SPEC benchmarks

Av
er

ag
e

in
st

r.
is

su
es

pe
rc

yc
le

Infinite 2048 512 128 32

Integer Benchs Floating Point Benchs

Computer Architecture 11



Realistic Branch Predictors
I Realistic CPUs do not have perfect branch predictors.
I What is the max ILP if we use Tournament, 2-bit

saturate counters and no predictions?
Perfect Model Current Model

Max Issues
per Cycle Infinite 64
Instruction
Window Size Infinite 2048
Renaming
Regisers Infinite Infinite
Branch
Prediction Perfect 8K Tournament, 512 2-bit,

Compiler Static, none
Memory
Alias Perfect Perfect
Memory/
Cache Perfect Perfect

Computer Architecture 12



Realistic Branch Predictors cont’d

gcc espresso li fppp doduc tomcatv
0

20

40

60

80

35

41

16

61 59 60

9
12 10

48

15

46

6 7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

SPEC benchmarks

Av
er

ag
e

in
st

r.
is

su
es

pe
rc

yc
le

Perfect Tournament BHT (512) Static No Prediction

Integer Benchs Floating Point Benchs

Computer Architecture 13



Realistic Renaming Registers
I Realistic CPUs do not have infinite registers (i.e, no

infinite reservation stations).
I What is the max ILP if we have fewer registers?

Perfect Model Current Model
Max Issues
per Cycle Infinite 64
Instruction
Window Size Infinite 2048
Renaming
Regisers Infinite 256, 128, 64, 32, None
Branch
Prediction Perfect 8K 2-Bit counter
Memory
Alias Perfect Perfect
Memory/
Cache Perfect Perfect

Computer Architecture 14



Realistic Renaming Registers cont’d

gcc espresso li fppp doduc tomcatv
0

20

40

60

80

11
15

12

59

29

54

10
15

12

49

16

45

10
13 12

35

15

44

9 10 11

20

11

28

5 5 6 5 5 7
4 4 5 4 5 5

SPEC benchmarks

Av
er

ag
e

in
st

r.
is

su
es

pe
rc

yc
le

Infinite 256 128 64 32 None

Integer Benchs Floating Point Benchs

Computer Architecture 15



Realistic Memory Alias Analysis
I Realistic CPUs do not have perfect memory aliasing.
I What is the max ILP if we have fewer registers?

Perfect Model Current Model
Max Issues
per Cycle Infinite 64
Instruction
Window Size Infinite 2048
Renaming
Regisers Infinite 256 Int + 256 FP
Branch
Prediction Perfect 8K 2-Bit Counter
Memory
Alias Perfect Perfect only for Global/Stack,

Inspect, None
Memory/
Cache Perfect Perfect

Computer Architecture 16



Realistic Memory Alias Analysis cont’d

gcc espresso li fppp doduc tomcatv
0

20

40

60

80

10
15

12

49

16

45

7 7 9

49

16

45

4 5 4 4 6 53 5 3 3 4 4

SPEC benchmarks

Av
er

ag
e

in
st

r.
is

su
es

pe
rc

yc
le

Perfect Global/Stack Perfect Inspec Assem None

Integer Benchs Floating Point Benchs

Computer Architecture 17



CPU Parameters for Current Intel CPUs

Nehalem SandyBridge Haswell Skylake
x86 Decoders 4 insn 4 insn 4 insn 5 insn
Max Insn/Cycle 4 ops 6 ops 8 ops 8 ops
Reorder Buffer 128 ops 168 ops 192 ops 224 ops
Load Buffer 48 loads 64 loads 72 loads 72 loads
Store Buffer 32 stores 36 stores 42 stores 56 stores
Scheduler 36 entries 54 entries 60 entries 97 entries
Integer Rename Regs In ROB 160 regs 168 regs 180 regs
FP Rename Regs In ROB 144 regs 168 regs 168 regs
Allocation Queue 28/thread 28/thread 56 total 64/thread

I “Store Buffer” is the number of entries in the finished store buffer (FSB)
I “Scheduler” is the number of entires in the centralized issue queue

(IQ). RS sends insns to IQ, which sends insns to FUs.
I “Integer/FP Rename” is the number of physical integer and floating

point registers
I “Allocation Queue” is a decoupling queue between front-end and

back-end
I Nehalem to Sandy Bridge transitioned from value- to pointer-based

register renaming
Computer Architecture 18



Improving ILP in Realistic CPU
I There is a huge gap between the ILPs of the perfect

CPU and realistic CPUs.
I Theoretically, realistic CPU’s ILP can be improved

with better compiler and hardware designs.
– For example,

I Execute both speculated paths.
I Value predictions to overcome data dependencies.
I VLIW compilers.

– There has been significant research effort on improving
ILPs, some were not successful, but most of them require
complex changes to the CPU.

– “Designer discovered that trying to extract more ILP was
simply too inefficient” – H&P

Computer Architecture 19



Road Map

The Limitations of ILP

Thread-level Parallelism

Acknowledgment

Computer Architecture 20



Performance Beyond Simple Thread ILP
I There can be much higher natural parallelism in some

applications (e.g., Database or Scientific codes)
I Explicit Thread Level Parallelism or Data Level

Parallelism
I Thread Level Parallelism (TLP): Execute the

instructions from multiple threads at the same time.
– Threads may be from one process, or they may be from

independent processes.
– Each thread has all the state (instructions, data, PC,

register state, and so on) necessary to allow it to execute
I Data Level Parallelism (DLP): Perform identical

operations on data, and lots of data
– i.e., SIMD.

Computer Architecture 21



Thread Level Parallelism (TLP)
I ILP exploits implicit parallel operations within a loop

or straight-line code segment (a thread)
I TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel
I Goal: Use multiple instruction streams to improve

– Throughput of computers that run many programs
– Execution time of multi-threaded programs

I TLP could be more cost-effective to exploit than ILP

Computer Architecture 22



Multi-Threaded Execution in One CPU
I Multithreading (MT): multiple threads to share the

functional units of one processor via overlapping
– Processor must duplicate resources to track the states of

each thread, e.g., separate copies of register file, separate
PCs, and for running independent programs, separate
page tables

– Memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch ≈100s to 1000s of cycles.

I When to switch threads?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss,

another thread can be executed (coarse grain)

Computer Architecture 23



Fine-Grained Multi-threading
I Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

I Usually done in a round-robin fashion, skipping any
stalled threads

I CPU must be able to switch threads every clock
I Advantage is it can hide both short and long stalls,

since instructions from other threads executed when
one thread stalls

I Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls
will be delayed by instructions from other threads

I Used on Sun’s Niagara.

Computer Architecture 24



Coarse-Grained Multi-threading
I Switches threads only on costly stalls, such as L2

cache misses
I Used in IBM AS/400
I Advantages

– Relieves the need to have very fast thread-switching
– Does not slow down one thread, since instructions from

other threads issued only when the thread encounters a
costly stall

I Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

Computer Architecture 25



Integrate ILP and TLP
I TLP and ILP exploit two different kinds of parallel

structure in a program.
I Could a processor oriented at ILP exploit TLP?

– functional units are often idle in data path designed for ILP
because of either stalls or dependences in the code

I Could the TLP be used as a source of independent
instructions that might keep the processor busy
during stalls?

I Could TLP be used to employ the functional units that
would otherwise lie idle when insufficient ILPexists?

Computer Architecture 26



Simultaneous Multi-Threading
I Simultaneous Multi-Threading (SMT) is a variant of

fine-grained MT.
I SMT is based on the observation that dynamic

scheduling already has the HW mechanisms to
support

– Large set of ROB/RS registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out
of order, and get better utilization ofthe HW

I Just add a per thread renaming table and keep
separate PCs

– Independent commits can be supported by logically
keeping a separate reorder buffer for each thread

Computer Architecture 27



Quantitative Motivation for SMT
Most applications experi-
ence considerable stalls
during execution. And for
different applications, they
stall at different functional
units. Therefore, it is ben-
eficial to interleaving the
execution. Figure from
Tullsen et al. 1995 ISCA.

Computer Architecture 28



Multi-threading Categories

In current SMT implementations, in one cycle, instructions are only issued from one thread. How-
ever, in the subsequent cycle, the instructions could be issued from any thread (instructions are
issued once they are ready). Therefore, at any time, there could be instructions from different
threads executing. Figure by Dr. Weidong Shi, UH.

Computer Architecture 29



Design Challenges in SMT
I Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling on
single thread performance?

– Will a preferred thread approach sacrifice neither
throughput nor single-thread performance?

– Unfortunately, with a preferred thread, the processor is
likely to sacrifice some throughput, when preferred thread
stalls

– More issues on single thread performance on next slide.
I Larger register file needed to hold multiple contexts

Computer Architecture 30



Design Challenges in SMT cont’d
I Should not affect clock cycle time, especially when

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to
commit may be challenging

I Ensuring that cache and TLB conflicts generated by
SMT do not degrade performance

– Modern SMT implementation typically has performance
penalty for each individual threads due to cache, TLB and
FU contention.

I i.e., a thread could be slower when running under
SMT than no SMT.

– Single-thread performance can be unstable on SMT due to
the contention.

– There has been quite some research on finding the
optimal group of threads to shared one SMT CPU.

Computer Architecture 31



Examples of SMT and MT
I Sun’s Niagara employs fine-grained MT.
I Examples of SMT include Intel’s HyperThreading

CPUs and IBM’s Power CPUs.
I There is also a design that duplicates popular or

frequently-contended FUs in SMT. This design is
called conjoint-core. AMD’s Bullzoer is such an
architecture, with threads have their own integer FUs
but share FPUs.

Computer Architecture 32



Real SMT Performance

Figure 3.35 from H&P. Average SPEC Java programs speedup: 1.28, PARSEC speedup: 1.31.
If the energy-efficiency is larger than 1, then the speedup is achieved with relatively less power
consumption.

Computer Architecture 33



Summary on SMT
I The main performance benefit of SMT is not single

thread performance, but overall throughput of
multiple threads.

– Modern SMT implementation typically has performance
penalty for each individual threads due to cache and TLB
contention.

I SMT has a major benefit in terms of
energy-efficiency.

– Stalled cycles are consuming as much power as a runing
CPUs.

– Therefore, reusing stalled cycles for other threads can
improve energy-efficiency.

Computer Architecture 34



SMT and Security Concerns
I SMT can be a security vulnerability.

– Simulatenously executing threads can inspect each other’s
execution status and cache status.

I Allowing side-channel attacks
I CVE-2005-0109, TLBleed (maybe...)

– Disable SMT if concerned.

Computer Architecture 35



Road Map

The Limitations of ILP

Thread-level Parallelism

Acknowledgment

Computer Architecture 36



Acknowledgment
This lecture is partially based on the slides from Dr.
Chau-Wen Tseng. Originally, the study on ILP limitation
was done by David Wall in 1993 (“Limitations of
Instruction-Level Parallelism”).

Computer Architecture 37


	The Limitations of ILP
	Thread-level Parallelism
	Acknowledgment

