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From Single-processing to Multi-
processing

● Due to the failure of Dennard Scaling, today’s 
CPUs are all multi-core processors.

● However, even before multi-core processors, a 
set of programs also called for multi-processing 
processors
– These programs are graphics programs.

● Multi-processing processors usually have 
complete different architectural characteristics 
than single-processing processors. 
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Control Structure of Parallel 
Platforms

● Processor control structure alternatives
– work independently
– operate under the centralized control of a single control unit

● MIMD
– Multiple Instruction streams

● each processor has its own control unit
● each processor can execute different instructions

– Multiple Data streams
● processors work on their own data

● SIMD
– Single Instruction stream

● single control unit dispatches the same instruction to processors

– Multiple Data streams
● processors work on their own data

● SIMT
– Similar to SIMD, single instruction stream and multiple data streams
– SIMT is an extension of SIMD that allows programming SIMD with threads
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SIMD and MIMD Processors

● SIMD ● MIMD
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SIMD Control

● SIMD excels for computations with regular structures
– media processing, scientific kernels (e.g., linear algebra, 

FFT)
– Image processing
– Machine learning algorithms
– These workloads are also parallel-friendly

● Most SIMD architectures forgo complex branch/control 
logics and cache/memory management, and dedicate 
all transistors to processing units
– Allowing a large number of processing units on a single chip
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SIMD/SIMT Example: Nvidia Pascal 
Ampere  P102 (2020) 

● Each Streaming Multiprocessors 
(SM):
– 64 FP32/INT32 Cores

● INT32 cores support INT4, INT8 and 
INT32 operations

● FP32 cores support FP32 and FP16 
operations

– 64 FP32 Cores
– 2 FP64 cores (not in the figure)
– 4 Tensor Cores
– 1 RT (Ray Tracing) Core
– 256KB Register File
– 128KB L1 cache/Shared memory
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SIMD/SIMT Example: Nvidia Pascal 
Ampere  P102 (2020) 
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SIMD/SIMT Example: Nvidia Pascal 
Ampere  P102 (2020)

● Whole Chips
– 7 GPCs (Graphics Processing Clusters)
– 42 TPCs (texture Processing Clusters ), 84 SMs (two per TPC)
– Peak FP32/16 TFLOPS (non tensor): 29.8
– Peak FP16 TFLOPS (w. tensor): 119
– Peak INT32 TFLOPS (non tensor): 14.9
– Peak INT8 TFLOPS (w. tensor): 238
– Memory bandwidth: 760GB/sec
– size: 28.3 Billion transistors, 628.4 mm2, 8nm process
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RT Core

● RT Core
– ASIC for Ray Tracing
– Quote from Nvidia:

” RT Core in GA10x includes 
dedicated hardware units for BVH 
traversal and ray-triangle 
intersection testing. Once the SM 
has cast the ray, the RT Core will 
perform all of the calculations 
needed for BVH traversal and 
triangle intersection tests, and will 
return a hit or no hit to the SM. ”
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RT Core

● Results for GTX 2080
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RT Core

● Results for GTX 3080
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Tensor Cores

● A function unit for 8x4 to 4x4 matrix multiplication
– Implements simplified GEMM: D= A*B+C

● Where A, B, C and D are 4x4 matrices
● A and B have to be FP16, C and D may be FP16 or FP32.
● Perform FMA (fused mul-add) Operations

– Gen 1 (2080) does 4x4 matrix multiplication

● Per core: 128 FMA Ops for Dense matrix and 256 Ops for sparse 
matrix

● Matrix multiplication is one of the most basic operation for machine-
learning. Tensor cores were added to speedup deep learning.

● To use Tensor Cores, directly call CUDA SDK’s GEMM kernels. 
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Tensor Cores
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TensorRT

● Seems to be a compiler-assisted auto-tuning 
optimization
– DNN models are trimmed and transformed to use 

pre-optimized CUDA machine-learning kernels
● With dropouts (?), lower precision and fused layers
● Only for inference (work on trained models)

– Compiler auto-tuning techniques are used to find 
the best transformation

● Integrated into TensorFlow and MXNet
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TensorRT Example

● WaveNet before TRT ● WaveNet after TRT
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SIMD Example: Intel Xeon Phi 7290 
Knights Landing

● 72 cores
● Each core

– Four SMT threads
– 512-bit vector units
– 32KB L1 cache
– 1MB L2 cache

● Max GFLOPS: 3000
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Why SIMD?

● SIMD offers much higher theoretical peak 
performance over MIMD (CPU) per watt
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The Actual Difference Between CPU 
and GPU

● A 2010 Intel study suggests that GPU is only 
2.5x faster than CPU on average

● A 2015 study shows that GPU is about 0 to 60x 
faster than CPU for several machine learning 
workloads
– Note that the implementation is probably not 

optimized
– These are the results of one GPU vs one CPU.
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CPU Core V.S. GPU Core

● For an Nvidia GPU, a SM core has
– 64 32-bit floating point units (FPU)
– 64 32-bit floating point / Integer units
– Additionally, a few special functional units are located outside GPU cores
– Newer versions of GPUs also add caches (but caches are small)

● 16~128KB L1 cache per SM, 256KB~4MB L2 cache per chip.

● For an Intel Processor, a core typically has
– 4 ALUs
– 2 256-bit FPU
– 4 256-bit Vector ALU
– 2-4 LD/ST units, LEA units
– Complex out-of-order execution management, branch prediction and memory disambiguation
– Large and complex caches:

● 64KB L1 cache per core; 256KB L2 cache per core; 1.5~2MB L3 cache per core
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CPU Core V.S. GPU Core cont’d

● For an Nvidia GPU, a core has
– Designed and optimized for graphic processing; 
– most transistors are devoted to floating-point functional units.
– Relatively higher Power consumption

● For an Intel Processor, a core typically has
– Designed and optimized for general computing; 
– most of the transistors are devoted: 

● to find out-of-order execution opportunities
● to dynamically schedule instructions.
● and to caches

– Relatively lower power-consumption
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CPU vs GPU Design Philosophy

● CPUs are designed for 
general purpose 
applications. These 
applications have 
– Low instruction-level 

parallelism (ILP)
● So CPU has fewer ALUs/FPUs
● CPU has complex control logic 

to extract all potential ILP

– High data locality
● So CPU has larger caches to  

exploit data locality

● GPUs are designed for 
graphics applications and 
applications with many SIMD 
operations. These applications 
have
– High DLP

● So GPU has simple control logic, 
but many ALUs/FPUs to exploit 
high DLP

– Low data locality.
● So GPU have smaller caches.
● GPU also has many memory 

controllers/channels to improve 
DRAM performance.



Computer Architecture 22

GPGPU Programming

● GPGPU Programming: General-purpose computing on graphics 
processing units 

● Motivation 
– Certain problems are similar to graphic applications in that they involve 

significant number of linear algebra operations and stream data 
processing

– These problems also have limited data reuse and branches, similar to 
graphic applications

– GPUs are faster than CPUs with these problems because the large 
number of processing units

● Therefore, It is both viable and beneficial to solve these 
problems on GPU
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Caching on GPU

● Traditionally, GPU does not have hardware managed caches
– Graphic applications do not need hardware managed caches
– Saved transistors are devoted to CUDA cores
– There are software managed caches: shared memory, texture 

cache and constant cache

● New generations of GPU provides L1 and L2 caches
– Motivated by GPGPU workloads
– One L1 cache per SM, shared with shared memory or texture 

cache
– One global L2 cache shared by all SMs
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A Historical View of Memory 
Structure of GPU 

● Shared memory:
– Practically a software managed L1 cache

● Local memory: 
– a storage for local variables that cannot be put in registers
– Originally not cached, now cached  through new L1 and L2 

cache
– Today local memory is mostly a concept than a real storage

● Global memory:
– Main memory of a GPU
– Originally not cached, now cached  through new L1 and L2 

cache

● Constant memory:
– Used to stored constant data, read-only
– Can be cached in constant cache
– Incorporated into main memory and L1/L2 cache in newer GPUs

● Texture memory:
– Used to store read-only data
– Can be cached in texture cache
– Incorporated into main memory and L1/L2 cache in newer GPUs
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Memory Structure of Current GPU 
(Nvidia Pascal)



Computer Architecture 26

Shared Memory

● Used to store data that are shared by the cores 
within a SM processor

● Shared memory is the fundamental hardware for 
the communication among GPU cores

● Shared memory has limited size
– For some GPUs, shared memory shares hardware with 

L1 cache.

● Shared memory data are declared with key word 
__shared__
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Constant Memory

● Used to store read-only data
● Constant memory has limited size
● Constant memory data are cached in constant cache (now 

incorporated into L1/L2 caches)
– Traditionally, most data are not cached, i.e., data are discarded after use
– Reused data are declared as constant memory for fast reuse

● Constant memory data are declared with key word __constant__
● Although all data are cached now, GPU may still optimized read-

only operations.
– Therefore, it may still be beneficial  to use constant memory
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Texture Memory

● Used to store texture data for graphic applications
– Read-only data

● Texture memory data are cached in texture cache (now incorporated into 
L1/L2 caches) for fast access
– Unlike constant memory, texture memory data are expressed in 1D, 2D or 3D 

arrays to represent 2D/3D data locality
– 1D/2D/3D Data are preloaded to texture cache to improve performance

● Texture memory data are declared with texture keyword, and need to be 
explicitly bound with data in main memory using function cudaBindTexture

● Although all data are cached now, GPU may still optimized texture-like 
memory reads (e.g., with prefetches)
– Therefore, it may still be beneficial  to use texture memory
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NVidia Volta GV100
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NVidia Volta GV100
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NVidia Volta GV100 cont’d

● 84 SMs in 42 TPCs in 6 GPCs
– TPC: Texture Processing Clusters
– GPC: GPU Processing Clusters 

● Each SM has
– 64 FP32 cores
– 64 INT32 cores (FP32 and INT32 can operate at the same time)
– 32 FP64 cores
– 8 Tensor cores
– 4 Texture units
– 256KB registers
– 128KB L1 cache/shared memory
– 4 execution blocks with 32-threads (a warp) issues each
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NVidia Volta GV100 cont’d

● A GPU has
– 5376 FP32 cores, 
– 5376 INT32 cores, 
– 2688 FP64 cores, 
– 672 Tensor Cores, 
– and 336 texture units
– 8 memory controllers with HBM2 (3D-stacked) memory 

and 4096 bits bus width
– 6144KB L2 cache
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NVidia Volta V100

● Note that, first Volta chip V100 has only 80 SMs
– FP16: 30 TFLOPS
– FP32: 15 TFLOPS
– FT64: 7.5 TFLOPS
– Tensor: 125 TFLOPS
– Memory bandwidth: 900GB/sec
– 300 watt TDP, 815mm2 chip size and 21.2 bn 

transistors (TSMC 12nm)
– 16GB memory
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AMD Vega 10

● Switched from VLIW to general SIMD design
● FP32 13.7 TFLOPS
● FP16/INT16 27.5 TFLOPS
● HBM2 memory up to 16GB, with 484GB/s
● 4MB L2 cache
● Four ACE (Accelerated Compute Engine) cores, each 

supports 8 Threads
– All connected to a NCU (Next-Generation Compute Unit) array, 

which has a cluster of vector ALUs, Pixel units, Texture units and a 
L1 cache
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AMD Vega10 ACE



Computer Architecture 36

Multi-GPU Support

● One main limitation for GPU in machine-
learning is memory size
– Current GPUs have 16GB at maximum

● Multiple GPUs are required if the data set or 
model is large 

● Either through
– Parallelization framework on clusters
– Directly connected GPUs
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Nvidia Multi-GPU Support

● GPUs are connected using NVLink connection, 
forming a network similar to NUMA systems.
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Nvidia Multi-GPU Support

● Another view
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GPU Virtualization

● GPUs for deep learning are too expensive for ordinary 
users

● Cloud-based GPU solutions are inevitable
– Either through containers or full VMs.

● Both NVidia and AMD start to support GPU virtualization
– For Nvidia, most Tesla and some Quadro cards support VGPU

● NVidia also has a GRID product line that is discontinued

– For AMD, VEGA is supposed to support VGPU with SR-IOV. 
Some Fire Pro and Radeon Pro cards also supports VGPU.

● Extra logics are required to support context switches 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

