
Computer Architecture 1

GPGPU Computing and SIMD

Wei Wang

Computer Architecture 2

From Single-processing to Multi-
processing

● Due to the failure of Dennard Scaling, today’s
CPUs are all multi-core processors.

● However, even before multi-core processors, a
set of programs also called for multi-processing
processors
– These programs are graphics programs.

● Multi-processing processors usually have
complete different architectural characteristics
than single-processing processors.

Computer Architecture 3

Control Structure of Parallel
Platforms

● Processor control structure alternatives
– work independently
– operate under the centralized control of a single control unit

● MIMD
– Multiple Instruction streams

● each processor has its own control unit
● each processor can execute different instructions

– Multiple Data streams
● processors work on their own data

● SIMD
– Single Instruction stream

● single control unit dispatches the same instruction to processors

– Multiple Data streams
● processors work on their own data

● SIMT
– Similar to SIMD, single instruction stream and multiple data streams
– SIMT is an extension of SIMD that allows programming SIMD with threads

Computer Architecture 4

SIMD and MIMD Processors

● SIMD ● MIMD
MEM

Processor

Processor

Processor

Processor

Processor

Global
Control

Unit/
Scheduler/

Instr
Fetcher

Pro-
gram

Data

Data

Data

Data

Data

MEM
Processor

+
Ctrl Unit

Data

Data

Data

Data

Data

Processor
+

Ctrl Unit

Processor
+

Ctrl Unit

Processor
+

Ctrl Unit

Processor
+

Ctrl Unit

 Program1

 Program2

 Program3

 Program4

 Program5

Computer Architecture 5

SIMD Control

● SIMD excels for computations with regular structures
– media processing, scientific kernels (e.g., linear algebra,

FFT)
– Image processing
– Machine learning algorithms
– These workloads are also parallel-friendly

● Most SIMD architectures forgo complex branch/control
logics and cache/memory management, and dedicate
all transistors to processing units
– Allowing a large number of processing units on a single chip

Computer Architecture 6

SIMD/SIMT Example: Nvidia Pascal
Ampere P102 (2020)

● Each Streaming Multiprocessors
(SM):
– 64 FP32/INT32 Cores

● INT32 cores support INT4, INT8 and
INT32 operations

● FP32 cores support FP32 and FP16
operations

– 64 FP32 Cores
– 2 FP64 cores (not in the figure)
– 4 Tensor Cores
– 1 RT (Ray Tracing) Core
– 256KB Register File
– 128KB L1 cache/Shared memory

Computer Architecture 7

SIMD/SIMT Example: Nvidia Pascal
Ampere P102 (2020)

Computer Architecture 8

SIMD/SIMT Example: Nvidia Pascal
Ampere P102 (2020)

● Whole Chips
– 7 GPCs (Graphics Processing Clusters)
– 42 TPCs (texture Processing Clusters), 84 SMs (two per TPC)
– Peak FP32/16 TFLOPS (non tensor): 29.8
– Peak FP16 TFLOPS (w. tensor): 119
– Peak INT32 TFLOPS (non tensor): 14.9
– Peak INT8 TFLOPS (w. tensor): 238
– Memory bandwidth: 760GB/sec
– size: 28.3 Billion transistors, 628.4 mm2, 8nm process

Computer Architecture 9

RT Core

● RT Core
– ASIC for Ray Tracing
– Quote from Nvidia:

” RT Core in GA10x includes
dedicated hardware units for BVH
traversal and ray-triangle
intersection testing. Once the SM
has cast the ray, the RT Core will
perform all of the calculations
needed for BVH traversal and
triangle intersection tests, and will
return a hit or no hit to the SM. ”

Computer Architecture 10

RT Core

● Results for GTX 2080

Computer Architecture 11

RT Core

● Results for GTX 3080

Computer Architecture 12

Tensor Cores

● A function unit for 8x4 to 4x4 matrix multiplication
– Implements simplified GEMM: D= A*B+C

● Where A, B, C and D are 4x4 matrices
● A and B have to be FP16, C and D may be FP16 or FP32.
● Perform FMA (fused mul-add) Operations

– Gen 1 (2080) does 4x4 matrix multiplication

● Per core: 128 FMA Ops for Dense matrix and 256 Ops for sparse
matrix

● Matrix multiplication is one of the most basic operation for machine-
learning. Tensor cores were added to speedup deep learning.

● To use Tensor Cores, directly call CUDA SDK’s GEMM kernels.

Computer Architecture 13

Tensor Cores

Computer Architecture 14

TensorRT

● Seems to be a compiler-assisted auto-tuning
optimization
– DNN models are trimmed and transformed to use

pre-optimized CUDA machine-learning kernels
● With dropouts (?), lower precision and fused layers
● Only for inference (work on trained models)

– Compiler auto-tuning techniques are used to find
the best transformation

● Integrated into TensorFlow and MXNet

Computer Architecture 15

TensorRT Example

● WaveNet before TRT ● WaveNet after TRT
input

output input⇨

output input⇨

output input⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output input⇨

output input⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (1)⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (2)⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (3)⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (4)⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (5)⇨

output (1)⇨

output input⇨

output input⇨

(1) input⇨

output (6)⇨

output (1)⇨

output input⇨(1) input⇨

output (7)⇨ output (8)⇨

output input⇨

output input⇨

output (1)⇨

output input⇨

output input⇨

output input⇨

output (2)⇨

output input⇨

output input⇨

output input⇨

output (1)⇨

output input⇨

output input⇨

output input⇨

output (2)⇨

output input⇨

output input⇨

output

Embedding input weight

dty pe = float32
input _dim = 512
output_dim = 24
sparse_grad = False

SwapAxis input

dim1 = 1
dim2 = 2

slice_axis input

axis = -1
begin = 1
end = None

_trt_op input (1)

slice_axis input

axis = -1
begin = 510
end = None

_plus_scalar input

scalar = 0

slice_axis input

ax is = -1
beg in = 2
end = None

_trt_op input (1)

slice_axis input

axis = -1
begin = 5 08
end = None

slice_axis input

axis = -1
begin = 4
end = None

_trt_op input (1)

slice_axis input

axis = -1
beg in = 50 4
end = None

slice_axis input

axis = -1
begin = 8
end = None

_trt_op input (1)

slice_axis input

ax is = -1
begin = 496
end = None

slice_axis input

ax is = -1
begin = 16
end = None

_trt_op input (1)

slice_axis input

axis = -1
begin = 480
end = None

slice_axis input

axis = -1
begin = 32
end = None

_trt_op input (1)

slice_axis input

axis = -1
begin = 448
end = None

slice_axis input

axis = -1
begin = 6 4
end = None

_trt_op input (1)

slice_axis input

ax is = -1
begin = 3 84
end = None

slice_axis input

axis = -1
beg in = 128
end = None

_trt_op input (1)

slice_axis input

axis = -1
begin = 25 6
end = None

slice_axis input

axis = -1
begin = 0
end = None

_trt_op input (1) (2) (3) (4) (5) (6) (7) (8)

_greater_scalar input

scalar = 0

exp input

_minus_scalar input

scalar = 1 .0

_mul_scalar input

scalar = 1 .0

where input (1) (2)

_trt_op input

_greater_scalar input

scalar = 0

exp input

_minus_scalar input

scalar = 1.0

_mul_scalar input

scalar = 1.0

where input (1) (2)

_trt_op input

SwapAxis input

dim1 = 1
dim2 = 2

data

wavenet1_swapaxes1

Image from
MXNet
Example,
https://mxnet
.incubator.ap
ache.org/ver
sions/master
/tutorials/
tensorrt/
inference_wi
th_trt.html

Computer Architecture 16

SIMD Example: Intel Xeon Phi 7290
Knights Landing

● 72 cores
● Each core

– Four SMT threads
– 512-bit vector units
– 32KB L1 cache
– 1MB L2 cache

● Max GFLOPS: 3000

Computer Architecture 17

Why SIMD?

● SIMD offers much higher theoretical peak
performance over MIMD (CPU) per watt

Computer Architecture 18

The Actual Difference Between CPU
and GPU

● A 2010 Intel study suggests that GPU is only
2.5x faster than CPU on average

● A 2015 study shows that GPU is about 0 to 60x
faster than CPU for several machine learning
workloads
– Note that the implementation is probably not

optimized
– These are the results of one GPU vs one CPU.

Computer Architecture 19

CPU Core V.S. GPU Core

● For an Nvidia GPU, a SM core has
– 64 32-bit floating point units (FPU)
– 64 32-bit floating point / Integer units
– Additionally, a few special functional units are located outside GPU cores
– Newer versions of GPUs also add caches (but caches are small)

● 16~128KB L1 cache per SM, 256KB~4MB L2 cache per chip.

● For an Intel Processor, a core typically has
– 4 ALUs
– 2 256-bit FPU
– 4 256-bit Vector ALU
– 2-4 LD/ST units, LEA units
– Complex out-of-order execution management, branch prediction and memory disambiguation
– Large and complex caches:

● 64KB L1 cache per core; 256KB L2 cache per core; 1.5~2MB L3 cache per core

Computer Architecture 20

CPU Core V.S. GPU Core cont’d

● For an Nvidia GPU, a core has
– Designed and optimized for graphic processing;
– most transistors are devoted to floating-point functional units.
– Relatively higher Power consumption

● For an Intel Processor, a core typically has
– Designed and optimized for general computing;
– most of the transistors are devoted:

● to find out-of-order execution opportunities
● to dynamically schedule instructions.
● and to caches

– Relatively lower power-consumption

Computer Architecture 21

CPU vs GPU Design Philosophy

● CPUs are designed for
general purpose
applications. These
applications have
– Low instruction-level

parallelism (ILP)
● So CPU has fewer ALUs/FPUs
● CPU has complex control logic

to extract all potential ILP

– High data locality
● So CPU has larger caches to

exploit data locality

● GPUs are designed for
graphics applications and
applications with many SIMD
operations. These applications
have
– High DLP

● So GPU has simple control logic,
but many ALUs/FPUs to exploit
high DLP

– Low data locality.
● So GPU have smaller caches.
● GPU also has many memory

controllers/channels to improve
DRAM performance.

Computer Architecture 22

GPGPU Programming

● GPGPU Programming: General-purpose computing on graphics
processing units

● Motivation
– Certain problems are similar to graphic applications in that they involve

significant number of linear algebra operations and stream data
processing

– These problems also have limited data reuse and branches, similar to
graphic applications

– GPUs are faster than CPUs with these problems because the large
number of processing units

● Therefore, It is both viable and beneficial to solve these
problems on GPU

Computer Architecture 23

Caching on GPU

● Traditionally, GPU does not have hardware managed caches
– Graphic applications do not need hardware managed caches
– Saved transistors are devoted to CUDA cores
– There are software managed caches: shared memory, texture

cache and constant cache

● New generations of GPU provides L1 and L2 caches
– Motivated by GPGPU workloads
– One L1 cache per SM, shared with shared memory or texture

cache
– One global L2 cache shared by all SMs

Computer Architecture 24

A Historical View of Memory
Structure of GPU

● Shared memory:
– Practically a software managed L1 cache

● Local memory:
– a storage for local variables that cannot be put in registers
– Originally not cached, now cached through new L1 and L2

cache
– Today local memory is mostly a concept than a real storage

● Global memory:
– Main memory of a GPU
– Originally not cached, now cached through new L1 and L2

cache

● Constant memory:
– Used to stored constant data, read-only
– Can be cached in constant cache
– Incorporated into main memory and L1/L2 cache in newer GPUs

● Texture memory:
– Used to store read-only data
– Can be cached in texture cache
– Incorporated into main memory and L1/L2 cache in newer GPUs

Computer Architecture 25

Memory Structure of Current GPU
(Nvidia Pascal)

Computer Architecture 26

Shared Memory

● Used to store data that are shared by the cores
within a SM processor

● Shared memory is the fundamental hardware for
the communication among GPU cores

● Shared memory has limited size
– For some GPUs, shared memory shares hardware with

L1 cache.

● Shared memory data are declared with key word
__shared__

Computer Architecture 27

Constant Memory

● Used to store read-only data
● Constant memory has limited size
● Constant memory data are cached in constant cache (now

incorporated into L1/L2 caches)
– Traditionally, most data are not cached, i.e., data are discarded after use
– Reused data are declared as constant memory for fast reuse

● Constant memory data are declared with key word __constant__
● Although all data are cached now, GPU may still optimized read-

only operations.
– Therefore, it may still be beneficial to use constant memory

Computer Architecture 28

Texture Memory

● Used to store texture data for graphic applications
– Read-only data

● Texture memory data are cached in texture cache (now incorporated into
L1/L2 caches) for fast access
– Unlike constant memory, texture memory data are expressed in 1D, 2D or 3D

arrays to represent 2D/3D data locality
– 1D/2D/3D Data are preloaded to texture cache to improve performance

● Texture memory data are declared with texture keyword, and need to be
explicitly bound with data in main memory using function cudaBindTexture

● Although all data are cached now, GPU may still optimized texture-like
memory reads (e.g., with prefetches)
– Therefore, it may still be beneficial to use texture memory

Computer Architecture 29

NVidia Volta GV100

Computer Architecture 30

NVidia Volta GV100

Computer Architecture 31

NVidia Volta GV100 cont’d

● 84 SMs in 42 TPCs in 6 GPCs
– TPC: Texture Processing Clusters
– GPC: GPU Processing Clusters

● Each SM has
– 64 FP32 cores
– 64 INT32 cores (FP32 and INT32 can operate at the same time)
– 32 FP64 cores
– 8 Tensor cores
– 4 Texture units
– 256KB registers
– 128KB L1 cache/shared memory
– 4 execution blocks with 32-threads (a warp) issues each

Computer Architecture 32

NVidia Volta GV100 cont’d

● A GPU has
– 5376 FP32 cores,
– 5376 INT32 cores,
– 2688 FP64 cores,
– 672 Tensor Cores,
– and 336 texture units
– 8 memory controllers with HBM2 (3D-stacked) memory

and 4096 bits bus width
– 6144KB L2 cache

Computer Architecture 33

NVidia Volta V100

● Note that, first Volta chip V100 has only 80 SMs
– FP16: 30 TFLOPS
– FP32: 15 TFLOPS
– FT64: 7.5 TFLOPS
– Tensor: 125 TFLOPS
– Memory bandwidth: 900GB/sec
– 300 watt TDP, 815mm2 chip size and 21.2 bn

transistors (TSMC 12nm)
– 16GB memory

Computer Architecture 34

AMD Vega 10

● Switched from VLIW to general SIMD design
● FP32 13.7 TFLOPS
● FP16/INT16 27.5 TFLOPS
● HBM2 memory up to 16GB, with 484GB/s
● 4MB L2 cache
● Four ACE (Accelerated Compute Engine) cores, each

supports 8 Threads
– All connected to a NCU (Next-Generation Compute Unit) array,

which has a cluster of vector ALUs, Pixel units, Texture units and a
L1 cache

Computer Architecture 35

AMD Vega10 ACE

Computer Architecture 36

Multi-GPU Support

● One main limitation for GPU in machine-
learning is memory size
– Current GPUs have 16GB at maximum

● Multiple GPUs are required if the data set or
model is large

● Either through
– Parallelization framework on clusters
– Directly connected GPUs

Computer Architecture 37

Nvidia Multi-GPU Support

● GPUs are connected using NVLink connection,
forming a network similar to NUMA systems.

Computer Architecture 38

Nvidia Multi-GPU Support

● Another view

Computer Architecture 39

GPU Virtualization

● GPUs for deep learning are too expensive for ordinary
users

● Cloud-based GPU solutions are inevitable
– Either through containers or full VMs.

● Both NVidia and AMD start to support GPU virtualization
– For Nvidia, most Tesla and some Quadro cards support VGPU

● NVidia also has a GRID product line that is discontinued

– For AMD, VEGA is supposed to support VGPU with SR-IOV.
Some Fire Pro and Radeon Pro cards also supports VGPU.

● Extra logics are required to support context switches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

