
Computer Architecture 1

Computer Arithmetic

Wei Wang

Computer Architecture 2

Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter
3 “Arithmetic for Computers.”

● “Computer Architecture: A Quantitative
Approach,” Appendix A “Instruction Set
Principles.”

Computer Architecture 3

Road Map

● Binary and hexadecimal representations
● Binary Math
● Two’s Complement Encoding
● Floating-point Numbers
● Basic ALU Design

Computer Architecture 4

Binary and hexadecimal representations

Computer Architecture 5

Numbering Systems

● We use a decimal numbering system
● Base is 10
● There are ten different digits, starting with zero (0 – 9).
● Expressing a decimal number, we write it with n digits

as i
n
i
n-1
i
n-2
...i

1
i
0
. The actual value of this number is

i
n
*10n + i

n-1
*10n-1 + i

n-2
*10n-2 + … + i

1
*101 +

i
1
 * 100

– E.g. 256 express the value of 2*102 + 5*101 + 6*100 =
256

base=10
.

Computer Architecture 6

Binary Numbers

● Similar to decimals, we can express any number in
binary with 2 as the base.

● In binary numbers, there are only two different digits,
which are 0 and 1.

● For a binary number i
n
i
n-1
i
n-2
...i

1
i
0
,

– it’s value is i
n
*2n + i

n-1
*2n-1 + i

n-2
*2n-2 + … + i

1
*21 +

i
1
 * 20

● Notice that 10s are replaced with 2s.

– For example, binary number 1011 has a value of
1*23 + 0*22 + 1*21 + 1*20 = 11

base=10

Computer Architecture 7

Hexadecimal Numbers

● We can also express any number in hexadecimal (hex) with 16 as the
base.

● In hex numbers, there are 16 different digits,
– 0-9 as in decimal
– The letters A-F for numbers 10 to 16

● A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

● For a hex number i
n
i
n-1
i
n-2
...i

1
i
0
,

– it’s value is i
n
*16n + i

n-1
*16n-1 + i

n-2
*16n-2 + … + i

1
*161 + i

1
 * 160

● Notice that 10s are replaced with 16s.

– For example, binary number A1B7 has a value of
A*163 + 1*162 + B*161 + 7*160 = (10*163 + 1*162 + 11*161 +
7*160)

base=10
 = 41399

base=10

Computer Architecture 8

Some Conventions

● We can write a number with its base in
subscript
– E.g., 1001

10
 is a decimal number, 1001

2
 is a binary

number and 1001
16

 is a hexadecimal number.

● In most programming languages, you can write
– 0bDDDD, as binary numbers. E.g., 0b0001010
– 0xDDDD, as hex numbers, E.g., 0x10AB

● I may use any of these formats in the slides.

Computer Architecture 9

Binary Math

Computer Architecture 10

Single Digit Sums

● 0
2
 + 1

2
 = 1

2

● 1
2
 + 0

2
 = 1

2

● 0
2
 + 0

2
 = 0

2

● 1
2
 + 1

2
 = 10

2

Computer Architecture 11

Multiple Digits Sums

● Adding two binary numbers is the same as
adding two decimal numbers
– Add from the right-most digit
– Keep track of carryovers

1 1 0 1

0 1 0 1+

0 0 1 0

1 1 0 1

1

Adding 1101
2
 (13

10
)

and 0101
2
 (5

10
).

Carryover:

Computer Architecture 12

Other Math Operations

● Subtractions, multiplications and divisions are
carried out similarly to decimal numbers as well.

● Bit-wise logical operations are straightforward.

1 1 0 1

0 1 0 1&

0 1 0 1

Bit-wise and
1101

2
 (13

10
) and

0101
2
 (5

10
).

Computer Architecture 13

Two’s Complement Encoding

Computer Architecture 14

Numbers inside Computers

● Since we only have 0s and 1s (charged/uncharged
transistors) in our computers, all numbers are
represented in binary.
– A charged bit represents 1, and an uncharged bit represents 0.

● For unsigned and positive integers, they are represented
with bits corresponding to their binary representations.

● For negative integers, they are represented using a
format slightly different from their absolute values, as
there are no negative signs in transistors
– This format is called Two’s complement encoding.

Computer Architecture 15

Two’s Complement

● Let’s consider a simple case:
– We want to express -2

10
 or -10

2
, with 3 binary bits.

– With 3 bits, they can represent 23=8
10
=1000

2
numbers.

– We then define the representation of -2
10

 or -10
2
 as: 1000

2
-

10
2
 = 110

2

● In general, computers express a negative number -x with
N bits using the binary representation of its complement,
2N-x.
– Note that 2N must be larger than |-x|, otherwise you need

more bits.

Computer Architecture 16

Generalizing Two’s Complement
Encoding

● In two’s complement encoding with N bits,
– For a positive number x, it is encoded with its

binary representation.
– For a negative number -x, it is encoded with the

binary representation of its complement, 2N-x.

● Note that, for two’s complement encoding, the
highest bit for a negative number is always 1.

Computer Architecture 17

Example: 3-bit Two’s Complement
Encoding

Decimal Value Two’s Complement Binary Encoding

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Computer Architecture 18

A Faster Algorithm of Two’s
Complement

● A faster algorithm to find the two’s complement encoding
for -x is,
– Get the encoding for x. For example, for -1, we starts with the

3-bit encoding of 1, which is 001
– Invert the digits of x’s encoding, i.e., 0 becomes 1, 1 becomes
0. E.g., for 001, inverting the digits gives 110.

– Add 1 to the inverted encoding gives the encoding of -x. E.g.,
add 1 to 110 gives 111, which is the two’s complement
encoding for -1.

● I am not going to discuss why this algorithm works, but
you are welcome to formally prove its correctness.

Computer Architecture 19

Why Two’s Complement?

● Two’s complement encoding makes addition very easy.
– No need to convert adding a negative number into subtracting.
– For example, adding -1 with 3. With two’s complement, we are adding
111 with 011.

● Simply adding them as two positive binary integers, we have 111 + 011 =
1010.

● Removing the left-most bit, we have 010, with is 2, the correct result.

– There are still corner cases to handle, but much easier in general.

● Subtraction is also fairly easy with two’s complement.
● Multiplication and division are slight more difficult than adds and

subtractions, but no more difficult than multiplying and dividing in
other encodings.

Computer Architecture 20

Floating-Point Numbers

Computer Architecture 21

Scientific Notation for Real Numbers

● Computers are also used to do computations on real
numbers.

● Real numbers are written in the following form in
scientific notation

m * 10n

● For example, Decimal Notation Scientific
Notation

2 2.0 * 100

300 3.0 * 102

42421.3232 4.24213232 * 104

-0.2 -2.0 * 10-1

Computer Architecture 22

Reals in Binary Format with
Scientific Notation

● Similarly, we can express reals in binary format with scientific notation:
 1.xxxxxxx * 2eeee

● For example:
– 1.001010 * 210010

● The xxxxx is the fraction of the real number, while eeee is the
exponent in base 2.

● The dot before the fraction part is called binary point (analogous to
decimal point).

● Note that there is only one digit before the binary point, and that digit is
always 1.
– Since the digits can only be 1 or 0, we can always remove leading 0s,

leaving a 1 before the decimal point.

Computer Architecture 23

Floating Point Numbers

● Computer arithmetic that supports binary real
numbers in their scientific format is called
floating point, as the position of the binary point
is moving depending on the value of the
exponent.
– An integer is fixed point, as the binary point is

always at the end of the integer.

● In C language, real numbers are simply called
floats.

Computer Architecture 24

Encoding Floats with Bits

● Derived from the scientific notation, a binary
floating point number is uniquely identified by its
sign (s), fraction (F) and exponent (E).
 (-1)s * 1.F * 2E

● Therefore, computers encode floats with only
sign, fraction and exponent.
– The fraction part is also called “mantissa.”

Computer Architecture 25

Encoding Floats with Bits cont’d

● For 32-bit floats

– 1 bit for the sign, 8 bits for exponent and 23 bits for fractions
– The maximum positive float with 32-bit encoding is
(1+2-23)*2127, roughly 1038

– The minimum positive float with 32-bit encoding is
(2-2-32) * 2-126, roughly 10−38

– Any number larger than the maximum causes an overflow, while
any number smaller than the minimum causes an underflow.

Exponent FractionS
023 2231 30

23 bits8 bits1 bit

Computer Architecture 26

Encoding Floats with Bits cont’d

● For 64-bit doubles

– 1 bit for the sign, 11 bits for exponent and 32 bits for
fractions

Exponent FractionS
052 5163 62

52 bits11 bits1 bit

Computer Architecture 27

IEEE 754 Encoding

● IEEE 754 is a standard encoding for floating point numbers.
● The encoding is roughly the same as the 32-bit and 64-bit

encoding we have seen.
● Exponent part is encoded with a bias, instead of two’s

complement
– If the exponent is E (positive or negative), it is encoded as the

binary number of (E + Bias).
– For 32-bit single-precision floats, the bias is 127.

● E.g., if the exponent is -5, it is encoded as (-5+127=122) or 0b01111010.

– For 64-bit double-precision floats, the bias is 1023.

Computer Architecture 28

IEEE 754 Encoding cont’d

● Specially values of the exponent and fraction
are reserved to represent special cases

Exponent Fraction Value

0 0 0

0b11111111 0 Infinity

0 Not 0 Denormalized (no
leading 1 before binary
point)

0b11111111 Not 0 Not a number (NAN)

Computer Architecture 29

Floating Point Computation

● There are standard algorithms for
– Converting between binary floats and decimal floats
– Doing sum, subtraction, multiplication and division.

● I will not cover these algorithms, but you can
easily find these algorithms online and in the
text book.

Computer Architecture 30

Basic ALU Design

Computer Architecture 31

Logical Gates

● Processors are built from transistors.
● More accurately, transistors constitute logical

gates, logical gates constitute functions units,
and functional units constitute processors.

Transistors

Logical Gates

Functional Units

Processors

Computer Architecture 32

Basic Logic Gates: AND Gate

a

b
out

a b out

0 0 0

0 1 0

1 0 0

1 1 1

Computer Architecture 33

Basic Logic Gates: OR Gate

a

b
out

a b out

0 0 0

0 1 1

1 0 1

1 1 1

Computer Architecture 34

Basic Logic Gates: XOR Gate

a

b
out

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Computer Architecture 35

Basic Logic Gates: Not Gate

in out

in out

0 1

1 0

Computer Architecture 36

ALU: 32-Bit Bitwise OR

● Connect 32 OR gates in parallel.
A
0

B
0

Result
0

A
1

B
1

Result
1

A
31

B
31

Result
31

A
30

B
30

Result
30

.

.

.

32-bit
OR

A

B

32

32

32
Result

Computer Architecture 37

ALU Unit: 1-Bit Adder

● 1-bit add has two 1-bit inputs and one carry-in.
● It returns one 1-bit results with a carry-out

1-bit
Add

a

b

Result

Carry-in

Carry-out

C
in

a b Res. C
out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Computer Architecture 38

ALU Unit: 1-Bit Adder cont’d

● Internal of 1-Bit add with 5 logic gates

a

b

Carry-in

Carry-out

Result

Computer Architecture 39

ALU Unit: 1-Bit Adder cont’d

● A simple example of adding 1 and 0, with 1 as
carry-in.

1

0

1

1

0
1

0 1

Computer Architecture 40

ALU Unit: 32-Bit Adder

● Serially connecting 32 1-bit adder gives a 32-bit
adder.

1-bit
Adder

A
0

B
0

Result
0

Carry-in

1-bit
Adder

A
1

B
1

Result
1

.

.

.

1-bit
Adder

A
31

B
31

Result
31

Carry-out

32-bit
Adder

A

B

32

32

32
Result

Carry-in

Carry-out

Computer Architecture 41

Other Function Units

● Most functional units can be built from logical
gates.
– E.g., subtracter, multiplier and multiplexer

● Some functional units can be very complex,
such as branch predictors.

Computer Architecture 42

Transistor Basics

● Transistors used in processors are mostly Field-Effect
Transistors (FETs).
– Most common FET is MOSFET (metal-oxide-semiconductor FET).

– For a MOSFET transistor, when it is given a gate voltage (V
GS

) that is
high enough, the transistor will be turned on and allows current to flow.

A N-Type MOSFET as an ON/OFF Switch
* figure from https://www.renesas.com/us/en/support/technical-resources/engineer-school/electronic-circuits-02-diodes-transistors-fets.html

Computer Architecture 43

Transistor Basics cont’d

● A NOT-gate (aka. CMOS inverter) can be built from
P-type and N-Type MOSFETs:

● Similarly, all other gates can be built from transistors

MOSFETs

Computer Architecture 44

Transistor Basics cont’d

● Computer architects generally ignore MOSFET and the
internal design of logic gates. They focus more on the
management of functional units.

● But the decline of Dennard Scaling drew computer
architects’ attention back to MOSFET.
– For a MOSFET transistor, there is a minimum voltage that is

required to turn on the transistor, which is call threshold voltage,
V
th

.

– As the gate voltage (V
GS

) keeps reducing, it finally approaches
V
th

. Once V
GS

 is the same as V
th

, we cannot reduce it anymore,
and hence the failure of Dennard Scaling.

Computer Architecture 45

Another Illustration of Threshold
Voltage

By Brews ohare - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=3155225

Note the blue materials
are connected

Computer Architecture 46

Acknowledgment

● These slides are partially based on the lecture
notes from Dr. Mirela Damian.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

