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Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter 
3  “Arithmetic for Computers.”

● “Computer Architecture: A Quantitative 
Approach,” Appendix A “Instruction Set 
Principles.”
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Road Map

● Binary and hexadecimal representations
● Binary Math
● Two’s Complement Encoding
● Floating-point Numbers
● Basic ALU Design
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Binary and hexadecimal representations
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Numbering Systems

● We use a decimal numbering system
● Base is 10
● There are ten different digits, starting with zero (0 – 9).
● Expressing a decimal number, we write it with n digits 

as i
n
i
n-1
i
n-2
...i

1
i
0
. The actual value of this number is 

i
n
*10n + i

n-1
*10n-1 + i

n-2
*10n-2 + … + i

1
*101 + 

i
1
 * 100

– E.g. 256 express the value of 2*102 + 5*101 + 6*100 = 
256

base=10
.
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Binary Numbers

● Similar to decimals, we can express any number in 
binary with 2 as the base.

● In binary numbers, there are only two different digits, 
which are 0 and 1.

● For a binary number i
n
i
n-1
i
n-2
...i

1
i
0
, 

– it’s value is i
n
*2n + i

n-1
*2n-1 + i

n-2
*2n-2 + … + i

1
*21 + 

i
1
 * 20

● Notice that 10s are replaced with 2s.

– For example, binary number 1011 has a value of 
1*23 + 0*22 + 1*21 + 1*20 = 11

base=10
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Hexadecimal Numbers

● We can also express any number in hexadecimal (hex) with 16 as the 
base.

● In hex numbers, there are 16 different digits, 
– 0-9 as in decimal
– The letters A-F for numbers 10 to 16

● A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

● For a hex number i
n
i
n-1
i
n-2
...i

1
i
0
, 

– it’s value is i
n
*16n + i

n-1
*16n-1 + i

n-2
*16n-2 + … + i

1
*161 + i

1
 * 160

● Notice that 10s are replaced with 16s.

– For example, binary number A1B7 has a value of 
A*163 + 1*162 + B*161 + 7*160 = (10*163 + 1*162 + 11*161 + 
7*160)

base=10
 = 41399

base=10
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Some Conventions

● We can write a number with its base in 
subscript
– E.g., 1001

10
 is a decimal number, 1001

2
 is a binary 

number and 1001
16

 is a hexadecimal number. 

● In most programming languages, you can write
– 0bDDDD, as binary numbers. E.g., 0b0001010
– 0xDDDD, as hex numbers, E.g., 0x10AB

● I may use any of these formats in the slides.
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Binary Math
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Single Digit Sums

● 0
2
 + 1

2
 = 1

2

● 1
2
 + 0

2
 = 1

2

● 0
2
 + 0

2
 = 0

2

● 1
2
 + 1

2
 = 10

2
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Multiple Digits Sums

● Adding two binary numbers is the same as 
adding two decimal numbers
– Add from the right-most digit
– Keep track of carryovers

1 1 0 1

0 1 0 1+

0 0 1 0

1 1 0 1

1

Adding 1101
2
 (13

10
)

and 0101
2
 (5

10
).

Carryover:
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Other Math Operations

● Subtractions, multiplications and divisions are 
carried out similarly to decimal numbers as well.

● Bit-wise logical operations are straightforward.

1 1 0 1

0 1 0 1&

0 1 0 1

Bit-wise and 
1101

2
 (13

10
) and 

0101
2
 (5

10
).
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Two’s Complement Encoding
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Numbers inside Computers

● Since we only have 0s and 1s (charged/uncharged 
transistors) in our computers, all numbers are 
represented in binary.
– A charged bit represents 1, and an uncharged bit represents 0.

● For unsigned and positive integers, they are represented 
with bits corresponding to their binary representations.

● For negative integers, they are represented using a 
format slightly different from their absolute values, as 
there are no negative signs in transistors
– This format is called Two’s complement encoding.
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Two’s Complement

● Let’s consider a simple case:
– We want to express -2

10
 or -10

2
, with 3 binary bits.

– With 3 bits, they can represent 23=8
10
=1000

2 
numbers.

– We then define the representation of -2
10

 or -10
2
 as: 1000

2
-

10
2
 = 110

2

● In general, computers express a negative number -x with 
N bits using the binary representation of its complement, 
2N-x.
– Note that 2N must be larger than |-x|, otherwise you need 

more bits.
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Generalizing Two’s Complement 
Encoding

● In two’s complement encoding with N bits,
– For a positive number x, it is encoded with its 

binary representation.
– For a negative number -x, it is encoded with the 

binary representation of its complement, 2N-x.

● Note that, for two’s complement encoding, the 
highest bit for a negative number is always 1.
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Example: 3-bit Two’s Complement 
Encoding

Decimal Value Two’s Complement Binary Encoding 

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111
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A Faster Algorithm of Two’s 
Complement

● A faster algorithm to find the two’s complement encoding 
for -x is,
– Get the encoding for x. For example, for -1, we starts with the 

3-bit encoding of 1, which is 001
– Invert the digits of x’s encoding, i.e., 0 becomes 1, 1 becomes 
0. E.g., for 001, inverting the digits gives 110.

– Add 1 to the inverted encoding gives the encoding of -x. E.g., 
add 1 to 110 gives 111, which is the two’s complement 
encoding for -1. 

● I am not going to discuss why this algorithm works, but 
you are welcome to formally prove its correctness.
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Why Two’s Complement?

● Two’s complement encoding makes addition very easy.
– No need to convert adding a negative number into subtracting.
– For example, adding -1 with 3. With two’s complement, we are adding 
111 with 011. 

● Simply adding them as two positive binary integers, we have 111 + 011 = 
1010. 

● Removing the left-most bit, we have 010, with is 2, the correct result.

– There are still corner cases to handle, but much easier in general.

● Subtraction is also fairly easy with two’s complement. 
● Multiplication and division are slight more difficult than adds and 

subtractions, but no more difficult than multiplying and dividing in  
other encodings.
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Floating-Point Numbers
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Scientific Notation for Real Numbers

● Computers are also used to do computations on real 
numbers.

● Real numbers are written in the following form in 
scientific notation

m * 10n

● For example, Decimal Notation Scientific 
Notation

2 2.0 * 100

300 3.0 * 102

42421.3232 4.24213232 * 104

-0.2 -2.0 * 10-1
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Reals in Binary Format with 
Scientific Notation

● Similarly, we can express reals in binary format with scientific notation:
        1.xxxxxxx * 2eeee

● For example:
– 1.001010 * 210010

● The xxxxx is the fraction of the real number, while eeee is the 
exponent in base 2. 

● The dot before the fraction part is called binary point (analogous to 
decimal point).

● Note that there is only one digit before the binary point, and that digit is 
always 1.
– Since the digits can only be 1 or 0, we can always remove leading 0s, 

leaving a 1 before the decimal point.
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Floating Point Numbers

● Computer arithmetic that supports binary real 
numbers in their scientific format is called 
floating point, as the position of the binary point 
is moving depending on the value of the 
exponent.
– An integer is fixed point, as the binary point is 

always at the end of the integer.

● In C language, real numbers are simply called 
floats.
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Encoding Floats with Bits

● Derived from the scientific notation, a binary 
floating point number is uniquely identified by its 
sign (s), fraction (F) and exponent (E).
             (-1)s * 1.F * 2E

● Therefore, computers encode floats with only 
sign, fraction and exponent.
– The fraction part is also called “mantissa.”
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Encoding Floats with Bits cont’d

● For 32-bit floats

– 1 bit for the sign, 8 bits for exponent and 23 bits for fractions
– The maximum positive float with 32-bit encoding is 
(1+2-23)*2127, roughly 1038

– The minimum positive float with 32-bit encoding is 
(2-2-32) * 2-126, roughly 10−38

– Any number larger than the maximum causes an overflow, while 
any number smaller than the minimum causes an underflow.

Exponent FractionS
023 2231 30

23 bits8 bits1 bit
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Encoding Floats with Bits cont’d

● For 64-bit doubles

– 1 bit for the sign, 11 bits for exponent and 32 bits for 
fractions

Exponent FractionS
052 5163 62

52 bits11 bits1 bit
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IEEE 754 Encoding

● IEEE 754 is a standard encoding for floating point numbers.
● The encoding is roughly the same as the 32-bit and 64-bit 

encoding we have seen.
● Exponent part is encoded with a bias, instead of two’s 

complement
– If the exponent is E (positive or negative), it is encoded as the 

binary number of (E + Bias).
– For 32-bit single-precision floats, the bias is 127.

● E.g., if the exponent is -5, it is encoded as (-5+127=122) or 0b01111010.

– For 64-bit double-precision floats, the bias is 1023.
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IEEE 754 Encoding cont’d

● Specially values of the exponent and fraction 
are reserved to represent special cases

Exponent Fraction Value

0 0 0

0b11111111 0 Infinity

0 Not 0 Denormalized (no 
leading 1 before binary 
point)

0b11111111 Not 0 Not a number (NAN)
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Floating Point Computation

● There are standard algorithms for
– Converting between binary floats and decimal floats
– Doing sum, subtraction, multiplication and division.

● I will not cover these algorithms, but you can 
easily find these algorithms online and in the 
text book.
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Basic ALU Design
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Logical Gates

● Processors are built from transistors.
● More accurately, transistors constitute logical 

gates, logical gates constitute functions units, 
and functional units constitute processors. 

Transistors

Logical Gates

Functional Units

Processors
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Basic Logic Gates: AND Gate

a

b
out

a b out

0 0 0

0 1 0

1 0 0

1 1 1
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Basic Logic Gates: OR Gate

a

b
out

a b out

0 0 0

0 1 1

1 0 1

1 1 1
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Basic Logic Gates: XOR Gate

a

b
out

a b out

0 0 0

0 1 1

1 0 1

1 1 0
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Basic Logic Gates: Not Gate

in out

in out

0 1

1 0
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ALU: 32-Bit Bitwise OR

● Connect 32 OR gates in parallel.
A
0

B
0

Result
0

A
1

B
1

Result
1

A
31

B
31

Result
31

A
30

B
30

Result
30

.

.

.

32-bit
OR

A

B

32

32

32
Result
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ALU Unit: 1-Bit Adder

● 1-bit add has two 1-bit inputs and one carry-in. 
● It returns one 1-bit results with a carry-out

1-bit
Add

a

b

Result

Carry-in

Carry-out

C
in

a b Res. C
out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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ALU Unit: 1-Bit Adder cont’d

● Internal of 1-Bit add with 5 logic gates

a

b

Carry-in

Carry-out

Result
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ALU Unit: 1-Bit Adder cont’d

● A simple example of adding 1 and 0, with 1 as 
carry-in.

1

0

1

1

0
1

0 1
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ALU Unit: 32-Bit Adder

● Serially connecting 32 1-bit adder gives a 32-bit 
adder.

1-bit
Adder

A
0

B
0

Result
0

Carry-in

1-bit
Adder

A
1

B
1

Result
1

.

.

.

1-bit
Adder

A
31

B
31

Result
31

Carry-out

32-bit
Adder

A

B

32

32

32
Result

Carry-in

Carry-out
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Other Function Units

● Most functional units can be built from logical 
gates.
– E.g., subtracter, multiplier and multiplexer

● Some functional units can be very complex, 
such as branch predictors.
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Transistor Basics

● Transistors used in processors are mostly Field-Effect 
Transistors (FETs). 
– Most common FET is MOSFET (metal-oxide-semiconductor FET).

– For a MOSFET transistor, when it is given a gate voltage (V
GS

) that is 
high enough, the transistor will be turned on and allows current to flow.

A N-Type MOSFET as an ON/OFF Switch
* figure from https://www.renesas.com/us/en/support/technical-resources/engineer-school/electronic-circuits-02-diodes-transistors-fets.html
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Transistor Basics cont’d

● A NOT-gate (aka. CMOS inverter) can be built from 
P-type and N-Type MOSFETs:

● Similarly, all other gates can be built from transistors

MOSFETs
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Transistor Basics cont’d

● Computer architects generally ignore MOSFET and the 
internal design of logic gates. They focus more on the 
management of functional units.

● But the decline of Dennard Scaling drew computer 
architects’ attention back to MOSFET.
– For a MOSFET transistor, there is a minimum voltage that is 

required to turn on the transistor, which is call threshold voltage, 
V
th

.

– As the gate voltage (V
GS

) keeps reducing, it finally approaches 
V
th

. Once V
GS

 is the same as V
th

, we cannot reduce it anymore, 
and hence the failure of Dennard Scaling.
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Another Illustration of Threshold 
Voltage

By Brews ohare - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=3155225

Note the blue materials 
are connected
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