
Introduction to Caches
Computer Architecture

Wei Wang

http://www.cs.utsa.edu/~wwang/


Text Book Chapters
I “Computer Organization and Design,” Chapter 5.3

and 5.4.
I “Computer Architecture: A Quantative Approach,”

Appendix B.

Computer Architecture 2



Road Map
I Overview of Caches
I Caching Basics
I Cache Performance Equations

Computer Architecture 3



Overview of Caches

Computer Architecture 4



CPU vs Memory Performance

Figure: CPU vs memory performance growth

Computer Architecture 5



Memory Hierarchy Design
I Until now we have assumed a very ideal memory

– All memory accesses take 1 cycle
I Assumes an unlimited size, very fast memory

– Fast memory is very expensive
– Large amounts of fast memory would be slow!

I Tradeoffs
– Cost-speed and size-speed

I Solution:
– Smaller, faster expensive memory close to core “cache”
– Larger, slower, cheaper memory farther away

Computer Architecture 6



Caches
I Cache is a type of small, fast storage used to improve

average access time to slow memory
I Hold a copy of the subset of the instructions and data

used by program
I Exploits spacial and temporal locality

Registers

L1 Cache
L2 Cache
L3 Cache

DRAM Memory

Disk, Tape ...

B
ig

g
e
r

Fa
st

e
r

Computer Architecture 7



Caching is Everywhere
I In computer architecture, almost everything is a

cache!
– Registers are “a cache” on variables – software managed
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– Translation-lookaside Buffer (TLB) a cache on page table
– Branch target buffer a cache on branch targets.

Computer Architecture 8



Common Cache Hierarchy
I Most processors today have three levels of caches.

– One major design constraint for caches is their physical
sizes on CPU die. Limited by their sizes, we cannot have
too many caches.

– Some high-performance and/or embedded processors
have L4 caches, which, however, use DRAM cells instead
of common SRAM cells.

I L1 Cache
– L1 caches are closest to the CPU computation logics.
– To avoid pipeline structure hazards, L1 caches are usually

partitioned into data cache (D-cache) and instruction
cache (I-cache).

– L1 caches are mostly 64KB per core, as bigger caches are
too slow to access and will be physically too far away from
computation logics.

Computer Architecture 9



Common Cache Hierarchy cont’d
I L2 caches

– L2 caches are slightly further away from CPU. Thus L2
caches are slower than L1 caches, but can have larger
storage space.

– Typically, L2 caches are unified (for both data and
instructions).

I L3 caches
– L3 caches are the largest caches and typically aim at

holding all of a working set in it.
– L3 caches usually are located out side CPU core’s die due

to its bulky size.

Computer Architecture 10



Example: Skylake Due-core CPU

Figure: Floorplan for a Due-core Skylake CPU (figure from
Wikichip.org)

Computer Architecture 11



Example: Skylake Due-core CPU cont’d

Figure: Floorplan for a Skylake CPU core (figure from
Wikichip.org)

Computer Architecture 12



Memory Hierarchy Specs

Type Capacity Latency Approx. Bandwidth
Register <2KB 1ns 150GB/s

L1 Cache <64KB 4ns 100GB/s
L2 Cache <8MB 10ns 50GB/s
L3 Cache <64MB 20ns 32GB/s
Memory <4GB per rank 100ns 10GB/s

SSD >1GB 5ms 300MB/s
HDD >1GB 10ms 10MB/s

Computer Architecture 13



Program Locality is Why Caches Work
I Memory hierarchy exploit program locality:

– Programs tend to reference parts of their address space
that are local in time and space

I Temporal locality: recently referenced addresses are
likely to be referenced again (reuse)

I Spatial locality: If an address is referenced, nearby
addresses are likely to be referenced soon

I Programs that don’t exploit locality won’t benefit from
caches

– Machine-learning applications typically have low data
locality.

– These programs are called streaming programs. They are
the main focus of today’s system research.

Computer Architecture 14



An Example of Locality
1 j = val1;
2 k = val2;
3 for (i=0; i<10000;i++) {
4 A[i] += j;
5 B[i] += k;
6 }

I Data Locality: i,A,B, j, k?
– i: reused and updated for all iterations; hence temporally

local;
– j and k: reused and stay constant for all iterations; hence

temporally local;
– A and B: if A[i] and B[i] is accessed, A[i + 1] and B[i + 1]

will soon be accessed; hence spatially local.
I Instruction Locality?

– The same loop body is executed over all iterations; hence
temporally local.

Computer Architecture 15



Terminologies
I Lower levels in the hierarchy are closer to the CPU

– L1-caches are right outside the CPU.
– L2-caches usually surround the CPU cores.
– L3-caches usually are located outside the physical die of

the CPU cores (the uncore part of CPU).
I At each level a block is the minimum amount of data

whose presence is checked at each level
– Blocks are also often called cache lines or simply lines.
– Block size is always a power of 2.
– Contemporary processors usually have a cache line of 64

bytes.

Computer Architecture 16



Terminologies cont’d
I A reference is said to hit at a particular level if the

cache line is found at that level. A reference is said to
miss at a particular level if the cache line is NOT
found at that level.

– Hit rate (HR): HitRate = Hits
References

– Miss rate (MR): MissRate = Misses
References

I Access time of a hit is the hit time
I The additional time to fetch a block on a miss is

called the miss penalty.
– If there is a cache miss, then data has to be fetched from

higher level of caches or memory.
– If the cache miss happens at level x, then data will be

fetched from caches with levels larger than x or from
memory. The data will be stored in the level-x cache after
fetching.

– Since a cache miss can take a long time, pipeline may be
stalled during a cache miss.

Computer Architecture 17



Terminologies cont’d
I Miss penalty = Access Time + Transfer time
I Access time is a function of latency

– “Time for memory to get request and process it”
I Transfer time is a function of bandwidth

– “Time for all of a block to get back”
– Even if the data to be accessed is only 1 byte, a whole

cache line is fetched into cache. This is based on the
expectation of spatial locality. That is, if one byte is
accessed, the next byte is likely to be accessed soon.

Computer Architecture 18



Terminologies cont’d
I Access time is typically constant (i.e., the latency),

while the transfer time depends on the size of a
cache line.

Access Time

Transfer Time

Block (cache line) Size

M
is

s 
Pe

n
a
lt

y

Computer Architecture 19



Access Time vs. Transfer Time

Cache

Memory

Cache line

t1

t3

t2

I Time decomposition for a cache miss to the memory.
– t1: time to send memory request (i.e., address) to the

memory device
– t2: time for the memory device to locate the data
– t3: time for sending the data block back to cache

I Access time = t1 + t2
I Transfer time = t3
I Cache miss penalty = t1 + t2 + t3

Computer Architecture 20



Latency vs. Bandwidth
There is an old network saying: Bandwidth problems can
be cured with money. Latency problems are harder
because the speed of light is fixed. – David Clark, MIT
I Latency is about the time for completing one task.
I Bandwidth is about the number of tasks that can be

done within a time window.
– Bandwidth can be increased by simply having more

workers working on multiple tasks simultaneously.
– Bandwidth is equally affected by latency and

parallelization.
I With memory, for bandwidth we can:

– Wider buses, larger block sizes, more DRAM channels
I Latency is still much harder:

– Have to get request from cache to memory (off-chip)
– Have to do memory lookup
– Have to have bits travel on wire back on-chip to cache

Computer Architecture 21



Caching Bascis

Computer Architecture 22



Caching Basics
I Most basic caching questions:

– How do we know if a piece of data is in the cache?
– If it is, how do we find it?
– If it isn’t, how do we get it?

Computer Architecture 23



More Detailed Questions
I Cache line placement policy?

– Where does a cache line go when it is fetched?
I Cache line identification policy?

– How do we find a cache line in the cache?
I Cache line replacement policy?

– When fetching a cache line into a full cache, how do we
decide what other cache line gets kicked out?

I Write strategy?
– Does any of this differ for reads vs. writes?

Computer Architecture 24



General View of Caches
I Cache is made of frames

– Frame = data + tag + state bits
– Tag is the memory address of currently stored cache line
– State bits: Valid bit (has valid data in frame?), Dirty (data is

written?)
I Cache line matching algorithm

– Find frame(s)
– If (incoming tag != stored tag) then a cache miss occurs

I Evict cache line currently in frame
I Read requested data from memory or higher level of

caches.
I Replace with cache line read from memory or higher

level of caches.
I Return appropriate word within cache line

Computer Architecture 25



Simple Cache Example
I Direct-mapped cache: Each cache line has a specific

spot in the cache.
– That is, if the cache line is in the cache, only one slot for it

based on its tag (memory address).
I Makes cache line placement, ID, and replacement

policies easy
– Cache line placement

I It goes to its one assigned slot based on its tag
(address).

– Cache line identification:
I We look at the tag for that one assigned slot

– Cache line replacement: What gets kicked out?
I Whatever is in its assigned spot

– Write strategy:
I “Allocate on write” (more on write strategies later)

Computer Architecture 26



Simple Cache Example cont’d

I 4 locations in our cache
I Block Size = 1 byte
I Data reference stream:
I References to memory

addresses (Tags):
– 0, 1, 2, 3, 4, 5, 2, 3, 7

I Tag to cache slot mapping
– slot = address%cache_size

Slot tag valid data
0
1
2
3

Table: 4-slot cache layout

Computer Architecture 27



Simple Cache Example cont’d

I Initially, the cache
is empty. So all
slots are invalid
(valid bit is 0).

Slot tag valid data
0 0
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 0.

– Data should be
mapped to slot
0%4 = 0.

– Slot 0 is invalid,
data is not in
cache, a cache
miss occurred.

– Read data from
memory, and
store data in slot
0.

Slot tag valid data
0 0 1 data@addr 0
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 1.

– Data is not in
cache, a cache
miss occurred.

– Data is mapped
to slot 1%4 = 1.

Slot tag valid data
0 0 1 data@addr 0
1 1 1 data@addr 1
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 2.

– Data is not in
cache, a cache
miss occurred.

– Data is mapped
to slot 2%4 = 2.

Slot tag valid data
0 0 1 data@addr 0
1 1 1 data@addr 1
2 2 1 data@addr 2
3 0

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 3.

– Data is not in
cache, a cache
miss occurred.

– Data is mapped
to slot 2%4 = 3.

Slot tag valid data
0 0 1 data@addr 0
1 1 1 data@addr 1
2 2 1 data@addr 2
3 3 1 data@addr 3

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 4.

– Data should be
mapped to slot
4%4 = 0.

– Slot 0 has tag 0.
Thus, data from
address 4 is not
in cache, a
cache miss
occurred.

– Since data at
address 0 is in
the slot 0, it is
evicted.

Slot tag valid data
0 4 1 data@addr 4
1 1 1 data@addr 1
2 2 1 data@addr 2
3 3 1 data@addr 3

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 5.

– Data is not in
cache, a cache
miss occurred.

– Data is mapped
to slot 5%4 = 1.

– Since data at
address 1 is in
the slot 1, it is
evicted.

Slot tag valid data
0 4 1 data@addr 4
1 5 1 data@addr 5
2 2 1 data@addr 2
3 3 1 data@addr 3

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 2.

– Data should be
mapped to slot
2%4 = 2.

– Slot 2 has data
from address 2,
a cache hit

Slot tag valid data
0 4 1 data@addr 4
1 5 1 data@addr 5
2 2 1 hit!=>data@addr 2
3 3 1 data@addr 3

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 3.

– Data should be
mapped to slot
3%4 = 3.

– Slot 3 has data
from address 3,
a cache hit

Slot tag valid data
0 4 1 data@addr 4
1 5 1 data@addr 5
2 2 1 data@addr 2
3 3 1 hit!=>data@addr 3

Table: 4-slot cache layout

Computer Architecture 28



Simple Cache Example cont’d

I Read data at
address 7.

– Data should be
mapped to slot
7%4 = 3.

– Slot 3 does not
have data from
address 7, a
cache miss
occurred.

– Since data at
address 3 is in
the slot 3, it is
evicted.

Slot tag valid data
0 4 1 data@addr 4
1 5 1 data@addr 5
2 2 1 data@addr 2
3 7 1 data@addr 7

Table: 4-slot cache layout

Computer Architecture 28



Cache Performance Equations

Computer Architecture 29



Hit Rate and Miss Rate
I Miss Rate: the percentage of data accesses are

cache misses.
I Hit Rate: the percentage of data accesses are cache

hits.
I For the example in slide 26, there are 9 accesses in

total, and 2 of them are hits.
– The hit rate is then 2/9 = 22.2%.
– The miss rate is then 7/9 = 77.8%.

Computer Architecture 30



Average Memory Access Time
I Average memory access time (AMAT) is used to

represent the average memory latency for a series of
memory accesses.

I AMAT = Latencyhit × Ratehit + Latencymiss × Ratemiss
– Typically, Latencymiss = Latencyhit + Miss_Penalty.

I For the example in slide 26, assume the hit latency is
1ns, miss penalty is 100ns. The AMAT for these
example is then,

AMAT = Latencyhit × Ratehit + Latencymiss × Ratemiss

= Latencyhit × Ratehit + (Latencyhit + Miss_Penalty)× Ratemiss

= 1ns × 22.2% + (1ns + 100ns) ∗ 77.8%
= 78.8ns

(1)

Computer Architecture 31



Memory Time and Execution Time
I In general, an application’s execution time can be

partitioned into memory access time and
computation time.

I Cache misses typically cause pipeline stalls, which
constitute the majority of memory access time.

I Therefore we can roughly decompose execution time
into

Timeexec = Timecomp + Timememory

= Timecomp + Timemem_stalls

= Timecomp + Latencymiss × Ratemiss

(2)

Computer Architecture 32



Memory Time and Execution Time cont’d
I For better accuracy, it is also better to consider read

and write accesses separately in the above
equations.

I Strictly speaking, the execution time here is just CPU
time. Actual execution time also includes I/O wait
time and OS scheduling overheads.

Computer Architecture 33



Hit Latency, Miss Latency and Miss Rate
I Miss latency is mostly determined by

– The speed of DRAM;
– The latency of the data path from CPU to DRAM.

I Hit latency is mostly determined by
– The latency of the data path from CPU to cache.
– The size of the cache. Larger caches are slower to probe.
– The time it takes to compare tags.

I Miss rate is the major cache optimization metric.
Most cache optimizations aim at reducing miss rates.

– Since the miss latency is much higher than the hit latency,
cache misses dominate memory access time. Therefore,
reducing miss rates can significantly help memory
performance.

– Some cache optimizations, however, may reduce miss
rates but increase cache latency (e.g., use bigger caches).

Computer Architecture 34



Acknowledgment
This lecture is based on the slides from Dr. David Brooks.

Computer Architecture 35


	Cache Performance Equations

