
Cache Designs
Computer Architecture

Wei Wang

http://www.cs.utsa.edu/~wwang/

Text Book Chapters
I “Computer Organization and Design,” Chapter 7.2

and 7.3.
I “Computer Architecture: A Quantative Approach,”

Appendix B.

Computer Architecture 2

Road Map
I Cache Placement Policies
I Cache Replacement Policies
I Write Strategies

Computer Architecture 3

Cache Placement Policies

Computer Architecture 4

Cache Placement Policies
I For a cache line, which frame (slot) should it be

stored?
I Three types of cache placement policies

– Direct Mapped Caches
– Fully Associated Caches
– Set Associated Caches

Computer Architecture 5

Cache Line Addresses
I Consider a cache line with a size of 2s bytes, the last

s bits of its address (in binary number) will always be
zero.

– By definition, a new cache line always starts at an address
which is multiple of 2s.

– For example, for cache line size of 64 (26) bytes, a cache
line may start at address 0, 64, 128, ... etc. The binary
representations for these addresses are 0b0000 0000,
0b0100 0000, 0b1000 0000,

I Note that the last six bits are always zero.
– Note that, to save space, I will write address in

hexadecimal numbers in the future.

Computer Architecture 6

Memory Addresses for Data
I For an arbitrary piece of data, the last s bits of its

address does not have to be zero.
I If the last s bits of the memory address of a piece of

data are not zero, then this data must be inside a
cache line.

– The last s bits gives the location of this data within its
cache line.

– We call the last s bits the offset (within the cache line) of
this data.

– E.g.„ for a piece of data at address 0x81 (129 or
0b1000 0001), its offset is 0x1 (0b00 0001) for a 64-byte
cache line.

I The rest bits of the address (i.e., non-offset bits) are
the cache line index.

– E.g., for address 0x81, its cache line index is 0x2 (0b10).

Computer Architecture 7

Memory Addresses for Data cont’d
I An illustration of memory address with offset and

cache line index.

offsetCache Line Index {
s bits

address:

I E.g.„ for address 0x81 with 64-byte cache lines, we
have,

Cache Line Index

0000 0000 0000 0000 0000 0000 10 00 0001

offset

address:

Computer Architecture 8

Direct Mapped Caches
I The simple example we have seen in the “Introduction

to Cache” lecture is a direct mapped cache.
I The placement policies for a cache with 2N

frames/slots with cache line size of 2s is,
– For a piece of data at address a, let its cache line index be

cidx,
– it will be mapped to the frame/slot at index cidx%2N .
– E.g., a cache line at address 0x81 has a cache line index

of 0x2 if cache line size is 64 bytes. Therefore, if the cache
has 24 slots,it will be mapped to the slot at 0x2%24 = 2.

I Note that, for a cache with 2N slots, and each slot can
store a cache line of 2s bytes, the size of this cache is
2N × 2s bytes.

Computer Architecture 9

Fast Modulo Operation
I A key benefit of Direct Mapped Cache is that frame

index can be easily computed from memory
addresses.

– The cache line index cidx, can be easily acquired from a
memory address by extracting the cache line index bits.

– The modulo operation on the cache line index is its last N
bits

I These N bits are called frame index bits or simply
index bits.

I The rest of the bits in cache line index are called tag.
They are also THE tags used to identify a cache line.

offsetIndex

s bits

address:

Cache Line Index

Tag

N bits

Computer Architecture 10

Direct Mapped Cache Organization

Tag index offset

D
e
co

d
e
r

Slot 0

Slot 1

Slot 2

Slot N-1
Data

Compare Tag Select Word

Valid & Tag

Mem addr of the
requested word (data):

Requested
Word

Hit or
Miss?

Tag Data
State

I The index bits are sent to decoder, which activates
the corresponding frame/slot for tag comparison and
word (data) accesses.

Computer Architecture 11

An Example of Direct Mapped Cache

I 22 = 4 locations in our cache
I Cache line size = 64 bytes
I References to memory

addresses:
– 0x000, 0x108 (264), 0x000,

0x108 (264), 0x05C (92),
0x1A0 (416), 0xAD8 (2776)

Slot tag valid data
0
1
2
3

Table: 4-slot cache layout

Computer Architecture 12

An Example of Direct Mapped Cache cont’d

I Initially, the cache
is empty and all
valid bits are 0.

Slot tag valid data
0 0
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 13

An Example of Direct Mapped Cache cont’d

I First data accessed
located at 0x000.

I Binary address is
0b0000 0000 0000.

– Offset is 0b00 0000
– cache line beginning

address is 0x000.
– Index is 0b00, i.e., slot

id is 0
– Tag is 0b0000 or 0x0

I Slot 0 does not have
data, a cache miss to
slot 0.

Slot tag valid data
0 0x0 1 64B from 0x000
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 14

An Example of Direct Mapped Cache cont’d

I Second data accessed
locate at 0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– cache line beginning

address is 0x100.
– Index is 0b00, i.e., slot

id is 0
– Tag is 0b0001 or 0x1

I Slot 0 has tag 0x0,
which does match tag
0x1, thus a cache miss
to slot 0.

– Data from 0x000 will be
evicted and replaced
with data from 0x100.

Slot tag valid data
0 0x1 1 64B from 0x100
1 0
2 0
3 0

Table: 4-slot cache layout

I Note that, the cache still have
empty slots, but we are
already seeing cache
evictions.

Computer Architecture 15

An Example of Direct Mapped Cache cont’d

I 3rd data accessed
locate at 0x0, or
0b0000 0000 0000, or 0.

– Offset is 0b00 0000
– cache line beginning

address is 0x000.
– Index is 0b00, i.e., slot

id is 0
– Tag is 0b0000 or 0x0

I Slot 0 has tag 0x1,
which does match tag
0x0, thus a cache miss
to slot 0.

– Data from 0x100 will be
evicted and replaced
with data from 0x000.

Slot tag valid data
0 0x0 1 64B from 0x000
1 0
2 0
3 0

Table: 4-slot cache layout

I Again, a cache eviction
despite empty slots.

Computer Architecture 16

An Example of Direct Mapped Cache cont’d

I 4th data accessed
locate at 0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– cache line beginning

address is 0x100.
– Index is 0b00, i.e., slot

id is 0
– Tag is 0b0001 or 0x1

I Slot 0 has tag 0x0,
which does match tag
0x1, thus a cache miss
to slot 0.

– Data from 0x000 will be
evicted and replaced
with data from 0x100.

Slot tag valid data
0 0x1 1 64B from 0x100
1 0
2 0
3 0

Table: 4-slot cache layout

I Third eviction while the cache
has empty slots. Actually, the
main problem with Direct
Mapped Cache is that it may
experiences high cache
misses despite the cache still
have many empty slots.

Computer Architecture 17

An Example of Direct Mapped Cache cont’d

I 5th data accessed
locate at 0x05c, or
0b0000 0101 1100, or 92.

– Offset is 0b01 1100
– cache line beginning

address is 0x040.
– Index is 0b01, i.e., slot

id is 1
– Tag is 0b0000 or 0x0

I Slot 1 does not have
valid data, thus a cache
miss to slot 1.

Slot tag valid data
0 0x1 1 64B from 0x100
1 0x0 1 64B from 0x040
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 18

An Example of Direct Mapped Cache cont’d

I 6th data accessed
locate at 0x1a0, or
0b0001 1010 0000, or
416.

– Offset is 0b10 0000
– cache line beginning

address is 0x180.
– Index is 0b10, i.e., slot

id is 2
– Tag is 0b0001 or 0x1

I Slot 2 does not has valid
data, thus a cache miss
to slot 2.

Slot tag valid data
0 0x1 1 64B from 0x100
1 0x0 1 64B from 0x040
2 0x1 1 64B from 0x180
3 0

Table: 4-slot cache layout

Computer Architecture 19

An Example of Direct Mapped Cache cont’d

I 7th data accessed
locate at 0xad8, or
0b1010 1101 1000, or
2776.

– Offset is 0b01 1000
– cache line beginning

address is 0xac0.
– Index is 0b11, i.e., slot

id is 3
– Tag is 0b1010 or 0xa

I Slot 3 does not has valid
data, thus a cache miss
to slot 3.

Slot tag valid data
0 0x1 1 64B from 0x100
1 0x0 1 64B from 0x040
2 0x1 1 64B from 0x180
3 0xa 1 64B from 0xac0

Table: 4-slot cache layout

Computer Architecture 20

Pros and Cons of Direct Mapped Cache
I Pros:

– Very easy and fast to compute the frame/slot index given
an address.

– Fast index calculation allows quickly determining if there is
a hit or miss.

– Easy computation also simplify the hardware
implementation.

I Cons:
– Can have high cache miss rate even if there are still many

empty slots in the cache.
I In the previous example, we have 100% miss rate.
I Certain memory access patterns may always

experience cache misses.

Computer Architecture 21

Fully Associative Caches
I In Fully Associative Caches, a cache line can be

mapped into any slot.
I When a cache miss happens for data at address A

(with cache line index of cidx),
– If there is empty slot in the cache, use the first empty slot

to store cache line of cidx.
– If there is no empty slot, a cache replacement policy is

used to select a non-empty cache line to store the cache
line of cidex.

I The old data at the select non-empty slot will be
evicted. This evicted cache line is called a victim.

I Typical cache replacement policy will select the
oldest or least used cache slot to store.

I More on cache replacement policy will be discussed
in this lecture.

Computer Architecture 22

Fully Associative Caches cont’d
I Since a piece of data can be stored in any frame/slot,

the memory is not used for calculating the frame/slot
index.

I Consequently, a memory address is only partitioned
into two parts: tag and offset.

offset

s bits

address:

Cache Line Index

Tag

I E.g., for address 0x081 (0b0000 1000 00001), the
offset is 0b00 0001, while the tag is 0b0000 00.

Computer Architecture 23

Full Associative Cache Organization

Tag offset
Slot 0

Slot 1

Slot 2

Slot N-1

Data

Compare Tag

Select Word

Valid & Tag

Mem addr of the
requested word (data):

Requested
Word

Hit or
Miss?

Tag Data
State

MUX

I For each data access, all tags of all slots have to be
read out to compare with the tag of the requested
data’s tag.

Computer Architecture 24

An Example of Fully Associative Cache

I 22 = 4 locations in our cache
I Cache line size = 64 bytes
I References to memory

addresses (same as the
example for Direct Mapped
Cache):

– 0x000, 0x108 (264), 0x000,
0x108 (264), 0x05C (92),
0x1A0 (416), 0xAD8 (2776)

Slot tag valid data
0
1
2
3

Table: 4-slot cache layout

Computer Architecture 25

An Example of Fully Associative Cache cont’d

I Initially, the cache
is empty and all
valid bits are 0.

Slot tag valid data
0 0
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 26

An Example of Full Associative Cache cont’d

I First data accesse
located at 0x000.

I Binary address is
0b0000 0000 0000.

– Offset is 0b00 0000
– cache line

beginning address
is 0x000.

– Tag is 0b0000 00 or
0x00

I Cache is empty, a
cache miss occurs.

I Pick the first empty
slot, slot 0, to store
this cache line.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 27

An Example of Fully Cache cont’d

I Second data
accessed locate at
0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– cache line

beginning address
is 0x100.

– Tag is 0b0001 00 or
0x04

I No slot has tag 0x04,
a cache miss occurs.

I Pick the first empty
slot, slot 1, to store
this cache line.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0x04 1 64B from 0x100
2 0
3 0

Table: 4-slot cache layout

Computer Architecture 28

An Example of Fully Associative Cache cont’d

I 3rd data accessed
locate at 0x0, or
0b0000 0000 0000, or
0.

– Offset is 0b00 0000
– cache line

beginning address
is 0x000.

– Tag is 0b0000 00 or
0x00

I Slot 0 has tag 0x0,
thus a cache hit to
slot 0.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0x04 1 64B from 0x100
2 0
3 0

Table: 4-slot cache layout

I Unless Direct Mapped Cache,
this 3rd access is a cache hit to
slot 0.

Computer Architecture 29

An Example of Fully Associative Cache cont’d

I 4th data accessed
locate at 0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– cache line beginning

address is 0x100.
– Tag is 0b0001 00 or

0x04
I Slot 1 has tag 0x04, thus

a cache hit to slot 1.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0x04 1 64B from 0x100
2 0
3 0

Table: 4-slot cache layout

I Again, a cache hit, unlike
Direct Mapped Cache.

Computer Architecture 30

An Example of Fully Associative Cache cont’d

I 5th data accessed
locate at 0x05c, or
0b0000 0101 1100, or
92.

– Offset is 0b01 1100
– cache line

beginning address
is 0x040.

– Tag is 0b0000 01 or
0x01

I No slot has tag 0x01,
a cache miss occurs.

I Pick the first empty
slot, slot 2, to store
this cache line.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0x04 1 64B from 0x100
2 0x01 1 64B from 0x040
3 0

Table: 4-slot cache layout

Computer Architecture 31

An Example of Full Associative Cache cont’d

I 6th data accessed
locate at 0x1a0, or
0b0001 1010 0000, or
416.

– Offset is 0b10 0000
– cache line

beginning address
is 0x180.

– Tag is 0b0001 10 or
0x06

I No slot has tag 0x06,
a cache miss occurs.

I Pick the first empty
slot, slot 3, to store
this cache line.

Slot tag valid data
0 0x00 1 64B from 0x000
1 0x04 1 64B from 0x100
2 0x01 1 64B from 0x040
3 0x06 1 64B from 0x180

Table: 4-slot cache layout

Computer Architecture 32

An Example of Full Associative Cache cont’d

I 7th data accessed
locate at 0xad8, or
0b1010 1101 1000, or
2776.

– Offset is 0b01 1000
– cache line

beginning address
is 0xac0.

– Tag is 0b1010 11 or
0x2b

I Not slot has tag 0x2b,
thus a cache miss.

I Pick the oldest slot,
slot 0, to store this
cache line.

Slot tag valid data
0 0x2b 1 64B from 0xac0
1 0x04 1 64B from 0x100
2 0x01 1 64B from 0x040
3 0x06 1 64B from 0x180

Table: 4-slot cache layout

I Here we use a very simple
replacement policy: choosing
the slot with the oldest cache
line.

Computer Architecture 33

Pros and Cons of Fully Associative Cache
I Pros:

– Much fewer cache misses than other cache placement
policies. A cache miss only occurs when the cache is not
large enough to hold all of the working set.

I In the previous example, there are two cache hits,
whereas in the Direct Mapped Cache, there are no
cache hits at all.

I Cons:
– It takes a long time to compare the tags of all slots.

I Tags can be checked in parallel, but it requires
considerably more transistors to implement parallel
tag comparison logics.

I This extra time is required even for cache hits. The
increased hit time would degrade the overall cache
performance.

– Control logic is more complex since all slots have to be
activated and selected for every data access.

Computer Architecture 34

Set Associative Caches
I Directed Mapped cache has too many misses, Fully

Associative caches are too slow. Can we strike a
balance between miss rates and cache speeds?

I Set Associative caches combines the ideas from both
directed mapped cache and fully associative cache to
achieve this balance.

– A cache is partition into sets of slots, and the set id for a
memory address can be directly determined similarly as
Direct Mapped cache.

– Within a set, there are several fully associated slots. A
cache line mapped to this set can be stored in any these
slots.

I A N-way associative cache is a Set Associative
cache with N slots/ways per set.

– The number of sets depends on the cache size and N. For
a cache with X bytes, there are X

2s·N sets, where 2s is the
cache line size.

Computer Architecture 35

Set Associative Caches cont’d
I Similar to Direct Mapping cache, a few bits in the

memory address is used to determine the
corresponding set index.

I Consequently, a memory address is only partitioned
into three parts: tag, set index and offset.

– If there are 2T sets, then there are T bits for set index.

offsetSet Index

s bits

address:

Cache Line Index

Tag

T bits

I E.g., If there are two (21) sets, there is only one bit for
set index. For address 0x081 (0b0000 1000 00001),
the offset is 0b00 0001, the set index is 0, and the tag
is 0b0000 00.

Computer Architecture 36

Set Associative Cache Organization

Tag sindex offset
Decoder

Data

S
e
le

ct W
o
rd

Mem addr of the
requested word (data):

Requested
Word

Ta
g

D
a
ta

State

Compare Tag

Valid & Tag

H
it o

r
M

iss?
W

a
y
 0

W
a
y
 1

W
a
y
 N

-1

. . .

Set 0
W

a
y
 0

W
a
y
 1

W
a
y
 N

-1
. . .

Set 1

.

Compare Tag

H
it o

r
M

iss?

M
U

X

Computer Architecture 37

Set Associative Cache Organization cont’d
I The set index of a memory address is used to identify

the set that may storing the cache line of this
address. The tags of all ways (slots) in this set will be
compared to identify the actual slot with the request
data.

Computer Architecture 38

An Example of Set Associative Cache

I 2-Way set
associative cache
with 2 sets. So there
are 4 slots in total

I Cache line size = 64
bytes

I References to
memory addresses
(same as the
example for Direct
Mapped Cache):

– 0x000, 0x108 (264),
0x000, 0x108 (264),
0x05C (92), 0x1A0
(416), 0xAD8 (2776)

Set Way tag val data
0 0
0 1
1 1
1 1

Table: 4-slot cache layout

Computer Architecture 39

An Example of Set Associative Cache cont’d

I Initially, the cache
is empty and all
valid bits are 0.

Set Way tag valid data
0 0 0
0 1 0
1 0 0
1 1 0

Table: 4-slot cache layout

Computer Architecture 40

An Example of Set Associative Cache cont’d

I First data access
located at 0x000.

I Binary address is
0b0000 0000 0000.

– Offset is 0b00 0000
– cache line starts at

0x000.
– Set index is 0. Tag

is 0b0000 0 or 0x00
I Cache is empty, a

cache miss occurs.
I Pick the first empty

slot, way 0, in set 0 to
store this cache line.

Set Way tag valid data
0 0 0x00 1 64B@0x000
0 1 0
1 0 0
1 1 0

Table: 4-slot cache layout

Computer Architecture 41

An Example of Set Associative Cache cont’d

I 2nd data accessed
locate at 0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– Cache line starts at

0x100.
– Set index is 0, Tag is

0b0001 0 or 0x02
I No slot in set 0 as tag

0x02, a cache miss
occurs.

I Pick the first empty
slot, way 1, in set 0 to
store this cache line.

Set Way tag valid data
0 0 0x00 1 64B@ 0x000
0 1 0x02 1 64B@0x100
1 0 0
1 1 0

Table: 4-slot cache layout

Computer Architecture 42

An Example of Set Associative Cache cont’d

I 3rd data accessed
locate at 0x0, or
0b0000 0000 0000, or
0.

– Offset is 0b00 0000
– Cache line starts at

0x000.
– Set index is 0; tag is

0b0000 0 or 0x00
I Way 0 of set 0 has

tag 0x0, thus a cache
hit.

Set Way tag valid data
0 0 0x00 1 64B@0x000
0 1 0x02 1 64B@0x100
1 0 0
1 1 0

Table: 4-slot cache layout

I Unless direct mapped
cache, this 3rd access is a
cache hit to set 0 way 0.
However, locating the set
index is as fast as direct
mapped cache.

Computer Architecture 43

An Example of Set Associative Cache cont’d

I 4th data accessed
locate at 0x108, or
0b0001 0000 1000, or
264.

– Offset is 0b00 1000
– cache line starts at

0x100.
– Set index is 0; tag is

0b0001 0 or 0x02
I Set 0 way 1 has tag

0x04, thus a cache
hit.

Set Way tag valid data
0 0 0x00 1 64B@0x000
0 1 0x02 1 64B@0x100
1 0 0
1 1 0

Table: 4-slot cache layout

I Again, a cache hit like fully
associative cache. And a
fast set index determination
as direct mapped cache.

Computer Architecture 44

An Example of Set Associative Cache cont’d

I 5th data accessed
locate at 0x05c, or
0b0000 0101 1100, or
92.

– Offset is 0b01 1100
– Cache line starts at

0x040.
– Set index is 1, tag is

0b0000 0 or 0x00
I No ways/slots in Set

1 has tag 0x01, a
cache miss occurs.

I Pick the first empty
slot, way 0, in set 1 to
store this cache line.

Set Way tag valid data
0 0 0x00 1 64B@0x000
0 1 0x02 1 64B@0x100
1 0 0x00 1 64B@0x040
1 1 0

Table: 4-slot cache layout

I Note that way 0 of set 0
also has tag 0x00. As long
as they are in different set,
they will never be accessed
at the same time.

Computer Architecture 45

An Example of Set Associative Cache cont’d

I 6th data accessed
locate at 0x1a0, or
0b0001 1010 0000, or
416.

– Offset is 0b10 0000
– Cache line starts

0x180.
– Set index is 0; tag is

0b0001 1 or 0x03
I No slot in set 0 has

tag 0x03, a cache
miss occurs.

I Pick the oldest slot,
way 0, in set 0 to
store this cache line.

Set Way tag valid data
0 0 0x03 1 64B@0x180
0 1 0x04 1 64B@0x100
1 0 0x01 1 64B@0x040
1 1 0

Table: 4-slot cache layout

I Unlike fully associative
cache, this 6th access
caused a cache eviction
when there is still empty
space in the cache.

Computer Architecture 46

An Example of Set Associative Cache cont’d

I 7th data accessed
locate at 0xad8, or
0b1010 1101 1000, or
416.

– Offset is 0b01 1000
– Cache line starts at

0xac0.
– Set index is 1; tag is

0b1010 1 or 0x15
I No slot in set 1 has

tag 0x15, thus a
cache miss.

I Pick the empty slot,
way 1, in set 1, to
store this cache line.

Set Way tag valid data
0 0 0x03 1 64B@0x180
0 1 0x04 1 64B@0x100
1 0 0x01 1 64B@0x040
1 1 0x15 1 64B@0xac0

Table: 4-slot cache layout

Computer Architecture 47

Pros and Cons of Set Associative Cache
I Pros:

– Fewer cache misses than direct mapped caches.
I In the previous example, there are two cache hits,

similar as fully associative cache.
– Simpler implementation and Faster than fully associative

cache.
– Set associative cache is a trade off between cache miss

rate and implementation complexity/latency.
I More ways => lower cache miss rates, but higher

complexity and higher latency.
I A direct mapped cache is essentially a 1-way set

associative cache. A fully associative cache is
essentially a 1-set set associative cache with all lines
as its ways.

I Cons:
– No much of a con, but it is different to determine the best

number of ways.

Computer Architecture 48

Determining the Best Number of Ways
I Like all engineering parameters, there is no one

number works well for all applications.
I Benchmarks can help us to determine the averagely

best number of ways for a special use case.
I Cache miss rates for different numbers of ways for

SPEC2000 benchmarks,

Computer Architecture 49

Determining the Best Number of Ways cont’d
I Raw data for the above figure:

Cache
Size (KB)

Associativity
1-Way 2-Way 4-Way 8-Way

4 0.098 0.076 0.071 0.071
8 0.068 0.049 0.044 0.044
16 0.049 0.041 0.041 0.041
32 0.042 0.038 0.037 0.037
64 0.037 0.031 0.030 0.029
128 0.021 0.019 0.019 0.019
256 0.013 0.012 0.012 0.012
512 0.008 0.007 0.006 0.006

Computer Architecture 50

Determining the Best Number of Ways cont’d
I Note in the above figure, the largest gains are from

direct mapped (1-way) cache to 2-way set
associative. The improvement is limited after 4 ways.

– Therefore, we usually don’t need a very high number of
ways to achieve nearly lowest miss rates.

I Also, cache miss rates also depend heavily on cache
size (as expected).

– Consequently, for a new CPU design with a new cache
size, we need to conduct new experiments with
benchmarks to determine the number of ways that gives
the lowest miss rates.

Computer Architecture 51

Determining the Best Number of Ways cont’d
I Another limitation of high number of ways is that

more ways means slower cache latency, i.e., higher
cache hit latency.

I Recall that Average Memory Access Time (AMAT)
depends on both hit latency and miss rates.

AMAT = Lathit × Ratehit + Latmiss × Ratemiss

= Lathit × Ratehit + (Lathit + Miss_Penalty)× Ratemiss

= Lathit × (Ratehit + Ratemiss + Miss_Penalty × Ratemiss

= Lathit × 100% + Miss_Penalty × Ratemiss

= Lathit + Miss_Penalty × Ratemiss
(1)

I A higher number of ways reduces Ratemiss but
increases Lathit, and may eventually increase the
overall AMAT .

Computer Architecture 52

Determining the Best Number of Ways cont’d
I Another example from Computer Architecture: A

Quantitative Approach (Figure B.13):
– Assume a case where one more way means slower cache

I Lathit,2−way = 1.36× Lathit,1−way
I Lathit,4−way = 1.44× Lathit,1−way
I Lathit,8−way = 1.52× Lathit,1−way

– Also, using the miss rates from slide 50.
– The AMATs for various cache sizes and ways are,

AssociativityCache
Size (KB) 1-Way 2-Way 4-Way 8-Way

4 3.44 3.25 3.22 3.28
8 2.69 2.58 2.55 2.62
16 2.23 2.40 2.46 2.53
32 2.06 2.30 2.37 2.45
64 1.92 2.14 2.18 2.25
128 1.52 1.84 1.92 2.00
256 1.32 1.66 1.74 1.82
512 1.20 1.55 1.59 1.66

Computer Architecture 53

Determining the Best Number of Ways cont’d
I Note how AMAT deteriorates with more ways. Some

times it gets worse than 1-way (direct mapped cache)
in the cells with red numbers.

I One last note, these numbers are fairly old. Modern
processors usually use 16-way caches as the hit
latency does not deteriorates that fast now.

Computer Architecture 54

Types of Cache Misses: The Three C’s
I Compulsory: On the first access to a cache line; the

cache line must be brought into the cache; also
called cold start misses, or first reference misses.

I Capacity: Occur because cache lines are being
discarded from cache because cache cannot contain
all blocks needed for program execution (program
working set is much larger than cache capacity).

I Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

– The idea is that hits in a fully associative cache that
becomes misses in an N-way set associative cache are
due to more than N distinctive requests to the same set.

– Think the case where the cache has empty slots but there
are still evictions.

Computer Architecture 55

Types of Cache Misses: The Three C’s cont’d
I An illustration of 3C Misses (using SPEC92):

I Based on the figure:
– Compulsory misses are relatively low, comparing to other

two types of misses.
– Bigger cache => less capacity miss.
– More ways => less conflict misses.

Computer Architecture 56

Types of Cache Misses: The Three C’s cont’d
I An other illustration of 3C Misses (using SPEC92):

I Based on the figure:
– Majority misses are capacity misses.
– Except for 1-way, conflict misses are relatively less when

cache is 32KB or larger.
– As cache sizes grow, compulsory misses become more

important (since other capacity misses are reducing).
Computer Architecture 57

Cache Replacement Policies

Computer Architecture 58

Cache Replacement Policies
I If a cache miss occurs when the target set is full, one

of the ways need to be evicted to store the cache line.
I A cache replacement policy determine which way

should e evicted.
I Common cache replacement policies:

– FIFO, first in first out. We have been using this policy in
our examples so far.

– LRU, least recently used: evict the way with
least-recently-used cache line. LRU assumes if a cache
line is not frequently accessed, then it is probably not
needed in the future.

– MRU, most recently used: evict the way with the
most-recently-used cache line. MRU assumes if a cache
line is frequently accessed, then it is probably not needed
in the future.

– And many more.

Computer Architecture 59

Cache Replacement Policies cont’d
I Which replacement policy works better depends on

the application’s memory access pattern.
– Again, the goal here is to minimize cache miss rates while

do not increase cache latency and cache complexity.
I Modern processors typically use a policy based on

LRU.
– Non-LRU policies typically do not work well. LRU’s

assumption fits the memory behaviors of most real
applications.

– However, LRU is hard to implement in hardware.
– Therefore, modern processors usually use a policy roughly

based on LRU. Computer architects also tend to tweak the
LRU policy to make it perform better.

Computer Architecture 60

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Before accesses start.

LRU Q: Way Data
0
1
2
3

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access A, assign A to way 0, and add it to LRU queue.

LRU Q: A Way Data
0 A
1
2
3

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access B, assign B to way 1, and add it to the beginning of

the LRU queue and shift other records towards the end.

LRU Q: B A Way Data
0 A
1 B
2
3

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access C, assign C to way 2, and add it to the beginning of

the LRU queue and shift other records towards the end.

LRU Q: C B A Way Data
0 A
1 B
2 C
3

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access D, assign D to way 3, and add it to the beginning of

the LRU queue and shift other records towards the end.

LRU Q: D C B A Way Data
0 A
1 B
2 C
3 D

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, assign E to the least used way. Since A is a the

end of the list, A’s slot is the least used. Therefore, assign
E to way 0. Also, drop A from LRU Q and add E to the
beginning of the LRU queue and shift other records
towards the end.

LRU Q: E D C B Way Data
0 E
1 B
2 C
3 D

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access B, a hit to way 2. Move B to the beginning of the

LRU queue and shift other records towards the end.

LRU Q: B E D C Way Data
0 E
1 B
2 C
3 D

Computer Architecture 61

LRU Policy
I Typically LRU policy requires maintaining a queue

recording the recent access history of the ways within
a set.

– A queue is required for each cache set.
I For example, consider the following accesses to the

same set in a 4-way cache: A, B, C, D, E, B, F.
– Access F, assign F to the least used way. Since C is a the

end of the list, A’s slot is the least used. Therefore, assign
F to way 2. Also, drop C from LRU Q and add F to the
beginning of the LRU queue and shift other records
towards the end.

LRU Q: F B E D Way Data
0 E
1 B
2 F
3 D

Computer Architecture 61

Not-Recently-Used Policy and Clock
Algorithm

I Implementing an LRU queue with shifting and
inserting in the hardware is fairly complex. Therefore,
computer architects look for simple implementations
that are similar to the behavior of the LRU policy.

I Not-Recently-Used (NRU) policy is approximation of
LRU. The Clock Adaptive Replacement (CAR)
algorithm is a typical implementation of NRU policy.

– In CAR, the ways of a set are checked circularly similar to
a clock.

– Each way maintains a used-bit to indicate if it is accessed
recently.

– For a cache hit, set the used bit of the way that gets hit to 1.
– For a cache miss, visit each way clockwise to find a way

that has a used-bit of 0. This way is then the victim for
eviction and replacement. During this visit, set every
used-bit to 0 if it is 1.

Computer Architecture 62

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Before accesses start, clock hand points to way 0. All ways

have used-bits of 0.

Way 0: X, 0

Way 1: X, 0Way 2: X, 0

Way 3: X, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access A. Find the first way with a used-bit of 0, which is

way 0 there. Assign A to way 0, update its used-bit to 1.

Way 0: A, 1

Way 1: X, 0Way 2: X, 0

Way 3: X, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access B. Find the first way with a used-bit of 0 by moving

the clock hand clockwise. Here, way 1 has 0 used-bit.
Assign B to way 1, update its used-bit to 1.

Way 0: A, 1

Way 1: B, 1Way 2: X, 0

Way 3: X, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access C. Find the first way with a used-bit of 0 by moving

the clock hand clockwise. Here, way 2 has 0 used-bit.
Assign C to way 2, update its used-bit to 1.

Way 0: A, 1

Way 1: B, 1Way 2: C, 1

Way 3: X, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access D. Find the first way with a used-bit of 0 by moving

the clock hand clockwise. Here, way 3 has 0 used-bit.
Assign D to way 2, update its used-bit to 1.

Way 0: A, 1

Way 1: B, 1Way 2: C, 1

Way 3: D, 1

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 0 first. Used-bit is 1, reset it to 0

Way 0: A, 0

Way 1: B, 1Way 2: C, 1

Way 3: D, 1

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 1. Used-bit is 1, reset it to 0

Way 0: A, 0

Way 1: B, 0Way 2: C, 1

Way 3: D, 1

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 2. Used-bit is 1, reset it to 0

Way 0: A, 0

Way 1: B, 0Way 2: C, 0

Way 3: D, 1

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 3. Used-bit is 1, reset it to 0

Way 0: A, 0

Way 1: B, 0Way 2: C, 0

Way 3: D, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access E, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 0. Used-bit is 0, find the victim. Assign E to

way 0, and set the used-bit to 1

Way 0: E, 1

Way 1: B, 0Way 2: C, 0

Way 3: D, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access B, a cache hit to way 1. Update the way 1’s

used-bit to 1.

Way 0: E, 1

Way 1: B, 1Way 2: C, 0

Way 3: D, 0

Computer Architecture 63

An Example of CAR Algorithm
I Again, consider the following accesses to the same

set in a 4-way cache: A, B, C, D, E, B, F.
– Access F, a cache miss, need to find replacement by

visiting ways clock wise to find a way with a used-bit of 0.
I Visit way 2 first. Used-bit is 0, find the victim. Assign

F to way 0, and set the used-bit to 1.

Way 0: E, 1

Way 1: B, 1Way 2: F, 1

Way 3: D, 0

Computer Architecture 63

Write Strategies

Computer Architecture 64

Write Policies
I Writes are only about 21% of data cache traffic
I Optimize cache for reads, do writes “on the side”

– Reads can do tag check/data read in parallel
– Writes must be sure we are updating the correct data and

the correct amount of data (1-8 byte writes)
– Writes have to be serial to ensure correctness. However,

serial process is slow.
I Two cases to consider,

– What to do on a write hit?
– What to do on a write miss?

Computer Architecture 65

Write Hit Policies
I Write hits: write requests hit data in the cache. Writes

can be directed to cache instead of memory.
I Question: When to propagate new values to

memory?
I Write back – Information is only written to the cache:

– Higher level caches and memory are only updated when it
is evicted (dirty bits say when data has been modified)

– Can write at speed of cache
– Caches become temporarily inconsistent with higher levels

of cache and memory.
– Uses less memory bandwidth/power (multiple consecutive

writes may require only 1 final write to memory at eviction)
– Multiple writes within a cache line can be merged into one

write
– Evictions are longer latency now (requires a memory write)

Computer Architecture 66

Write Hit Policies cont’d
I Write hits: write requests hit data in the cache. Writes

can be directed to cache instead of memory.
I Question: When to propagate new values to

memory?
I Write Through – Information is written to cache and to

the lower-level memory:
– Main memory is always “consistent/coherent”
– Easier to implement – no dirty bits
– Reads never result in writes to lower levels (cheaper)
– Higher bandwidth needed as every write needs to be sent

to memory
– Processors may need to stalls to wait for the finish of slow

memory writes.
I Write buffers used to avoid write stalls

– Required for memory with I/O data (e.g., video memory) to
ensure consistent between CPU and I/O devices.

Computer Architecture 67

Write Buffers

CPU

Cache Write buffer

memory

I Small chunks of memory to
buffer outgoing writes.

I Instead of memory, processor
writes to write buffer and
return.

I The memory controller sends
data in write buffers to
memory without processor
management.

Computer Architecture 68

Write Buffers cont’d
I Processor can continue when data written to buffer,

allowing overlap of processor execution with memory
update

I Full write buffers will still cause processors to stall.
I Write buffers can also serve read requests: if a cache

miss requests some data happens to be in the write
buffer, the data can be served from write buffer.

Computer Architecture 69

Write Combining at Write Buffers
I If there are multiple writes to different parts of the

same cache line, they can be combined in the write
buffers to save memory bandwidth.

I After all writes to the cache line is done, one memory
write request is issued to update the whole cache line
in the memory.

– Th memory read/write transaction size is typically the
cache lines size.

I Modern CPU usually implements write combining
instead of pure write-through.

Computer Architecture 70

Write Buffer Flush Policy
I When to flush?

– Aggressive flushing => Reduce chance of stall cycles due
to full write buffer

– Conservative flushing => Write combining more likely
(entries stay around longer) => reduces memory traffic

– On-chip L2 caches => More aggressive flushing
I What to flush?

– Selective flushing of particular entries?
– Flush everything below a particular entry
– Flush everything

Computer Architecture 71

Actually CPU Implementation
I Users can specify a part of memory to be write-back,

write-combined or un-cached.
I Un-cached memory behaves like pure write-through

for memory writes.
I Write-combined memory has weak coherence, which

may affect program correctness if used for normal
data accesses (i.e., non-I/O data).

Computer Architecture 72

Write misses?
I Write Allocate

– A cache block/slot is allocated on a write miss
– Standard write hit actions follow the cache block/slot

allocation
– Write misses = Read Misses
– Goes well with write-back

I No-write Allocate
– Write misses do not allocate a block
– Only update lower-level memory
– Cache blocks/slots only allocated on read misses!
– Goes well with write-through

Computer Architecture 73

Case Study: Intel Kabylake
I L1I Cache 32 KiB/core, 8-way set associative
I L1D Cache 32 KiB/core, 8-way set associative
I L2 Cache 256 KiB/core, 4-way set associative
I L3 Cache 2 MiB/core, 16-way set associative

Computer Architecture 74

Case Study: AMD Zen (Ryzen)
I L1I Cache 64 KiB/core, 4-way set associative
I L1D Cache 32 KiB/core, 8-way set associative
I L2 Cache 512 KiB/core, 8-way set associative
I L3 Cache 2 MiB/core, 16-way set associative

Computer Architecture 75

Case Study: ARM Coretex A72
I L1I Cache 48 KiB/core, 3-way set associative
I L1D Cache 32 KiB/core, 2-way set associative
I L2 Cache 512 KiB to 4 MiB, 16-way set associative

Computer Architecture 76

Acknowledgment
This lecture is partially based on the slides from Dr. David
Brooks.

Computer Architecture 77

	Cache Placement Policies
	Memory Addresses
	Direct Mapped Caches
	Fully Associative Caches
	Set Associative Cache
	3C Cache Misses

	Cache Replacement Policies
	Write Strategies
	Case Studies
	Acknowledgment

