
Computer Architecture 1

Basic CPU Implementation

Wei Wang

Computer Architecture 2

Optional Readings from Textbooks

● “Computer Organization and Design,” Chapters
4.3 and 4.4.

● “Computer Architecture: A Quantitative
Approach,” Appendix A “Instruction Set
Principles.”

Computer Architecture 3

Road Map

● Execution Stages Recap
● Data Path for ALU Instructions
● Data Path for Memory Instructions
● Data Path for Branch Instructions
● Control Signals and Multicycle Implementation
● Exceptions
● Micro-programming

Computer Architecture 4

Execution Stages Recap

Computer Architecture 5

Instruction Execution Stages
● When implementing ISA, we typically partition the execution

of an instruction into stages and implement each stage with
transistors separately.

● Why
– Many instructions share common steps in executions. Therefore,

they can shared the common functional units.
– Break down into stages with well-defined execution times (in CPU

cycles) makes instruction scheduling and management easier.
– Another divide-and-conquer or abstraction, simplifies the

designing process.
– To support CPU pipelining (more on this in the next lecture).

Computer Architecture 6

Stages of Instruction Execution
● Common stages for all instructions:

● Unique stages for different
types of instructions:
– ALU Ops:

– Memory Ops:

– Control Ops:

Instruction
Decode

Instruction
Fetch

Register
Fetch

Write
BackExecution

Calculate
Eff. Addr

Calculate
Eff. Addr

Branch
Complete

Memory
Access

Write
Back

Computer Architecture 7

Five Common Stages of Instruction
Executions

● In a typical yet simple RISC CPU
implementation, the processor is partitioned into
5 connected stages.

● Every instruction goes through all stages,
although this instruction does not necessarily
trigger the functional units of every stage.
 ID:

Instruction
Decode &
Register

Fetch

IF: Instruction
Fetch

Exec:
Execution &
Calc Effc.

Addr

Mem:
Memory

Access &
Branch

Complete

WB:
Write
Back

Computer Architecture 8

Data Path for ALU Instructions

Computer Architecture 9

ALU Instruction Execution Summary
● An ALU instruction does arithmetic or logic

operations on two source operands.
● Since we will learn a simple RISC implementations,

the source operands and the destination operands
are all in registers.
– One source operand may also be a immediate value

● The instruction goes through four stages: IF, ID,
EXEC and WB.
– No memory access for ALU instructions.

Computer Architecture 10

Clock Cycles
● The start of each stage of execution is triggered by the clock

signal.
– The clock signal indicates the input data into the stage are stable

and ready to be read; and the output data are stable and ready to
be written out.

● The clocking methodology defines the approach used to
determine when data is valid and stable relative to the clock.

● Here, we assume an edge-triggered clocking methodology.
– The edge-triggered clocking methodology is a clocking scheme in

which all state changes occur on a clock edge.

Computer Architecture 11

Edge-Triggered Clocking
● A typical clock cycle with rising (up) and falling (down) edges:

● The rising and falling edges trigger data read and write. For example,
– All data reads of a stage happen at the falling edge and must be done before the

clock rises again.
– All data writes happen at the rising edge and must be done before the clock falls

again.
● Of course, each clock cycle must be long enough for each stage to finish

reading and writing data.
● No feedback in one cycle: a stage cannot read its own outputs in one cycle.

RisingFalling

One cycle

Computer Architecture 12

Control Signal

● Control signals are used for multiplexer (MUX)
selection or for directing the operation of a
functional unit; contrasts with a data signal,
which contains information that is operated on
by a functional unit.

● Control signals are usually generated by
instruction decoder and the control unit to
regulate the data flow in the data path.

Computer Architecture 13

ALU Instruction Data Path
with An Example

● Consider the following instruction as an
example:
– Instruction: add R1, R2, R3
– Operation: R1 = R2 + R3
– Source registers: R2 (src1) and R3 (src2)
– Destination register: R1

Computer Architecture 14

ALU Instruction Data Path
with An Example: IF Stage

A
D

D
PC →addr

 read→
 data
 Memory
→write
 data

+4

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an
active data
path.

NPC

Instr

Read or Write

Control signal for
controlling whether to
read from or write to
memory. For IF, it is a
memory read for sure.

Computer Architecture 15

ALU Instruction Data Path
with An Example: ID Stage

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Instr.

Sign
Extend16 bits 32 bits

Instr[src1]

Instr[src2]

Dest register
id passes
through to
next stage.
For this instr
the dest is R1.

ID
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr
the srcs are
R2 and R3.

insr[immd]

No immd in
this instr. Data
path is inactive.

Src Reg
values
Src Reg
values

Read or Write
Control signal for
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd

Computer Architecture 16

ALU Instruction Data Path
with An Example: EXE Stage

IF
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

NPC passes through to
next stage.

A
LU

m
ux

m
ux

Src1 Reg data

Src2 Reg data
immd

No immd in
this instr. Data
path is inactive.

ALU_Src1

ALU_Src2

Computation
result
(ALU_Out).

ALU_Out

Control signal for src2
input into ALU. For
this instr, the input
should be R2 instead
of immdiate value.

Zero?

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add.

Src2 Reg data

Src1 Reg data

Computer Architecture 17

ALU Instruction Data Path
with An Example: MEM Stage

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

→addr
 read→
 data
 Memory

→write
 data M

E
M

/W
B

 In
te

r-
st

ag
e

B
uf

fe
r

ALU_Out

Src2 Reg data

ALU_Out

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

m
ux PCALU_Out

NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

ALU instrs do not
need memory access.
So memory is not
accessed here.

Read or Write

Computer Architecture 18

ALU Instruction Data Path
with An Example: WB Stage

M
E

M
/W

B
 In

te
r-

st
ag

e
B

uf
fe

r

m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Read or Write
Control signal for
controlling whether to
read or write registers.
For WB, it is a write.

Mem_Data
ALU_Out

Control signal for selecting
the source of write back.
For this add instr, the source
is the ALU_Out, written to R1.

For this add instr,
the dest Reg is
R1.

Computer Architecture 19

ALU Instruction Data Path
with 2nd Example

● Consider the following instruction as an
example:
– Instruction: sub R1, R2, 101
– Operation: R1 = R2 - 101
– Source registers: R2 (src1) and 101 (src2)
– Destination register: R1
– Immediate value: 101

Computer Architecture 20

ALU Instruction Data Path
with 2nd Example: IF Stage

A
D

D
PC →addr

 read→
 data
 Memory
→write
 data

+4

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an
active data
path.

NPC

Instr

Read or Write

Control signal for
controlling whether to
read from or write to
memory. For IF, it is a
memory read for sure.

IF stage is
the same for

all Instrs

Computer Architecture 21

ALU Instruction Data Path
with 2nd Example: ID Stage

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Instr.

Sign
Extend16 bits 32 bits

Instr[src1]

Instr[src2]

Dest register
id passes
through to
next stage.
For this instr
the dest is R1.

ID
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr,
only one src
is from reg.

insr[immd]

Extend 16-bit
immd to
32-bit.

Src Reg
values

Read or Write
Control signal for
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd

Computer Architecture 22

ALU Instruction Data Path
with 2nd Example: EXE Stage

IF
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

NPC passes through to
next stage.

A
LU

m
ux

m
ux

Src1 Reg data

immd
immd

No immd in
this instr. Data
path is inactive.

ALU_Src1

ALU_Src2

Computation
result
(ALU_Out).

ALU_Out

Control signal for src2
input into ALU. For
this instr, the input
should be immediate
value instead of register.

Zero?

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to subtract.

Src2 Reg data

Src1 Reg data

Computer Architecture 23

ALU Instruction Data Path
with 2nd Example: MEM Stage

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

→addr
 read→
 data
 Memory

→write
 data M

E
M

/W
B

 In
te

r-
st

ag
e

B
uf

fe
r

ALU_Out

Src2 Reg data

ALU_Out

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

m
ux PCALU_Out

NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

ALU instrs do not
need memory access.
So memory is not
accessed here.

Read or Write

Computer Architecture 24

ALU Instruction Data Path
with 2nd Example: WB Stage

M
E

M
/W

B
 In

te
r-

st
ag

e
B

uf
fe

r

m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Read or Write
Control signal for
controlling whether to
read or write registers.
For WB, it is a write.

Mem_Data
ALU_Out

Control signal for selecting
the source of write back.
For this add instr, the source
is the ALU_Out, written to R1.

For this add instr,
the dest Reg is
R1.

Computer Architecture 25

Data Path for Memory Instructions

Computer Architecture 26

Memory Instruction Data Path
with An Example

● Consider the following memory store instruction
as an example:
– Instruction: mov [R1+100], R2
– Operation (memory write): *(R1+100) = R2
– Source registers: R1 (src1) and R2 (src2)
– Destination register: none
– Immediate value: 100

Computer Architecture 27

Memory Instruction Data Path
with An Example: IF Stage

A
D

D
PC →addr

 read→
 data
 Memory
→write
 data

+4

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an
active data
path.

NPC

Instr

Read or Write

Control signal for
controlling whether to
read from or write to
memory. For IF, it is a
memory read for sure.

IF stage is
the same as

ALU Instr

Computer Architecture 28

Memory Instruction Data Path
with An Example: ID Stage

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Instr.

Sign
Extend

16 bits 32 bits

Instr[src1]

Instr[src2]

No dest
register.

ID
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr
the srcs are
R1 and R2.

instr[immd]

Extended
16-bit immd
to 32-bit.

Src Reg
values
Src Reg
values

Read or Write
Control signal for
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd

Computer Architecture 29

Memory Instruction Data Path
with An Example: EXE Stage

IF
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

NPC passes through to
next stage.

A
LU

m
ux

m
ux

Src1 Reg data

immd
immd

ALU_Src1

ALU_Src2

Effective addr.
(ALU_Out).

ALU_Out

Control signal for src2
input into ALU. For
this instr, the input
should be immediate
value instead of register

Zero?

Instr[dest]

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add to
compute eff. addr.

Src2 Reg data

Src1 Reg data

Src2 Reg (R2)
data is passed
on for memory
write.

Computer Architecture 30

Memory Instruction Data Path
with An Example: MEM Stage

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

→addr
 read→
 data
 Memory

→write
 data M

E
M

/W
B

 In
te

r-
st

ag
e

B
uf

fe
r

ALU_Out

Src2 Reg data

ALU_Out

Instr[dest]

m
ux PCALU_Out

NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

 Control signal for
memory access. This
instr is a memory
write.

Read or Write

Write instr. does not
have read output.

Computer Architecture 31

Memory Instruction Data Path
with An Example: WB Stage

M
E

M
/W

B
 In

te
r-

st
ag

e
B

uf
fe

r

m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Read or Write

Mem_Data

Memory write instr. does
not need WB to register.
So no data path is
 active.

Computer Architecture 32

Data Path for Branch Instructions

Computer Architecture 33

Branch Instruction Data Path
with An Example

● Consider the following instruction as an example:
– Instruction: jnz 96
– Operation (if the condition is not zero):
if(not zero)
 PC = PC + 4 + 96 //go to instr 100B away
else
 PC = PC + 4 // go to next sequential instr

– Source registers: ZF (src1, zero flag register) and PC (src2, not from
register file)

– Destination register: PC
– Immediate value: 96
– Note this branch instr is a relative jump, with the target address is +96

bytes relative to the next sequential instruction.

Computer Architecture 34

Branch Instruction Data Path
with An Example: IF Stage

A
D

D
PC →addr

 read→
 data
 Memory
→write
 data

+4

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an
active data
path.

NPC

Instr

Read or Write

Control signal for
controlling whether to
read from or write to
memory. For IF, it is a
memory read for sure.

IF stage is
the same for

all Instr

Computer Architecture 35

Branch Instruction Data Path
with An Example: ID Stage

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Instr.

Sign
Extend

16 bits 32 bits

Instr[src1]

Instr[src2]

Dest reg
is not in
register
file

ID
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr,
the only src
from register
is ZF.

instr[immd]

ZF Reg
value

Read or Write
Control signal for
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd

Extended
16-bit immd
to 32-bit.

Computer Architecture 36

Branch Instruction Data Path
with An Example: EXE Stage

IF
/E

X
E

 In
te

r-
st

ag
e

B
uf

fe
r

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

NPC

NPC passes through to
next stage.

A
LU

m
ux

m
ux

Src1 Reg data

immd
immd

ALU_Src1

ALU_Src2

Effective addr.
(ALU_Out).

ALU_Out

Control signal for src2
input into ALU. For
this instr, the input
should be immediate
value instead of register

Zero?

Instr[dest]

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add to
compute eff. addr.

Src2 Reg data

NPC

ZF Reg
value

Src1 Reg data Zero?

Control signal for src2
input into ALU. For
branch instr, the input
should be NPC
value instead of register

Computer Architecture 37

Branch Instruction Data Path
with An Example: MEM Stage

E
X

E
/M

E
M

 In
te

r-
st

ag
e

B
uf

fe
r

→addr
 read→
 data
 Memory

→write
 data M

E
M

/W
B

 In
te

r-
st

ag
e

B
uf

fe
r

ALU_Out

Src2 Reg data

ALU_Out

Instr[dest]

m
ux PCALU_Out

NPC

For branch instr, the PC
is set to be NPC (is zero)
or the ALU_Out (not zero)
based on ZF register.

Mem_Data

Control signal for
memory access. This
instr has no memory
access.

Read or Write

Zero?

“ZF is zero or not”
controls this mux.

Effective address of
branch target.

Computer Architecture 38

Branch Instruction Data Path
with An Example: WB Stage

M
E

M
/W

B
 In

te
r-

st
ag

e
B

uf
fe

r

m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read
 Register 1
→Read
 Register 2 Read →
 Data 1
 Register File

→Write Read →
 Register Data 2
→Write
 Data

Read or Write

Mem_Data

branch instr. does not
need WB to register file.
So no data path is
 active.

Computer Architecture 39

Putting All Stages in One Figure

Computer Architecture 40

A Simple Implementation of the
5-stage RISC CPU

+4

* figure by Hellisp from Wikibooks.org

Computer Architecture 41

Control Signals and Multi-cycle Implementation

Computer Architecture 42

Control Signals

● There are many control signals in the data path
that controls various multiplexors and the
read/write to register files and memory.

● The control signals are usually determined by
the instruction.

● A central Control unit generates these control
signals based on current instruction.

Computer Architecture 43

Control Signals

● At the ID phase, the instruction is also sent to
the control unit to generate corresponding
control signals.

IF
/ID

 In
te

r-
st

ag
e

B
uf

fe
r NPC

Instr
Control

Instr

Register Read/write

Memory Read/write

ALU_Src1

ALU_Src2

ALU Control

Write back source

Computer Architecture 44

Inter-stage Buffers
● The design we have seen takes one cycle to execute

every stage.
● Therefore, an instruction typically take multiple cycles to

execute.
● The design that execute an instruction in multiple cycles

is called Multi-cycle Implementation.
● The inter-stage buffers/registers are typically required for

multi-cycle implementation to store data between stages.
– Typically, we need at least instruction register, ALU source

registers, ALU output registers and memory load/store buffers.

Computer Architecture 45

 Multi-cycle Implementation
● A main benefit of multi-cycle implementation is that different

type of instructions takes different cycles to execute.
– ALU instr: 4 stages => 4 cycles
– Memory loads: 5 stages => 5 cycles
– Memory stores: 4 stages => 4 cycles
– Branches: 4 stages => 4 cycles

● Given a program with a mixture of all types of instructions,
the average execution time for an instruction will be less
than 5 cycles.
– i.e., CPI < 5 cycles

Computer Architecture 46

Exceptions

Computer Architecture 47

Exceptions
● There are many unexpected events that can happen with in

an processors. E.g.,
– Undefined instruction (wrong opcode or instr encoding)
– Divide by zero
– Arithmetic overflow
– External interrupts (mostly I/O requests and software system

calls).
● Basically, an exception is an unscheduled event that

disrupts program execution.
– An interrupt is an exception that comes from outside of the

processor.

Computer Architecture 48

Exceptions and Control Unit

● Control unit is also responsible for handling
exceptions and interrupts.

● When there is an exception, control is required
to store current processor states (i.e., save
context), and transfer to the exception handling
mechanism.
– Sometimes, exception handling also involves

waking up the OS and notify the OS of the
exception.

Computer Architecture 49

Micro-programming

Computer Architecture 50

Micro-programming
● Modern processors are too complex to use the hardwired design

we have seen in previous slides.
– The last hardwired Intel processor was Pentium 4.

● Therefore, the main components in processor (especially the
control) are actually implemented as a programmable micro-
controllers.
– Essentially all kinds of logic gates that can be connected in various ways

based on user needs.
● Computer architects write high-level code to program these micro-

controllers to dictate how processor operates.
– Programmable controllers also allows fixing processor bugs after

processors are released.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

