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Optional Readings from Textbooks

● “Computer Organization and Design,” Chapters 
4.3 and 4.4.

● “Computer Architecture: A Quantitative 
Approach,” Appendix A “Instruction Set 
Principles.”
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Road Map

● Execution Stages Recap
● Data Path for ALU Instructions
● Data Path for Memory Instructions
● Data Path for Branch Instructions
● Control Signals and Multicycle Implementation
● Exceptions
● Micro-programming
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Execution Stages Recap
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Instruction Execution Stages
● When implementing ISA, we typically partition the execution 

of an instruction into stages and implement each stage with 
transistors separately.

● Why
– Many instructions share common steps in executions. Therefore, 

they can shared the common functional units.
– Break down into stages with well-defined execution times (in CPU 

cycles) makes instruction scheduling and management easier.
– Another divide-and-conquer  or abstraction, simplifies the 

designing process.
– To support CPU pipelining (more on this in the next lecture).
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Stages of Instruction Execution
● Common stages for all instructions:

● Unique stages for different 
types of instructions:
– ALU Ops:

 
– Memory Ops:

– Control Ops:

Instruction 
Decode

Instruction 
Fetch

Register 
Fetch

Write 
BackExecution

Calculate
Eff. Addr

Calculate
Eff. Addr

Branch
Complete

Memory
Access

Write 
Back



Computer Architecture 7

Five Common Stages of Instruction 
Executions

● In a typical yet simple RISC CPU 
implementation, the processor is partitioned into 
5 connected stages.

● Every instruction goes through all stages, 
although this instruction does not necessarily 
trigger the functional units of every stage.
  ID: 

Instruction 
Decode &
Register

Fetch

IF: Instruction 
Fetch

Exec:
Execution &
Calc Effc.

Addr

Mem: 
Memory

Access &
Branch

Complete

WB:
Write 
Back
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Data Path for ALU Instructions
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ALU Instruction Execution Summary
● An ALU instruction does arithmetic or logic 

operations on two source operands.
● Since we will learn a simple RISC implementations, 

the source operands and the destination operands 
are all in registers.
– One source operand may also be a immediate value

● The instruction goes through four stages: IF, ID, 
EXEC and WB.
– No memory access for ALU instructions.
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Clock Cycles
● The start of each stage of execution is triggered by the clock 

signal.
– The clock signal indicates the input data into the stage are stable 

and ready to be read; and the output data are stable and ready to 
be written out.

● The clocking methodology defines the approach used to 
determine when data is valid and stable relative to the clock.

● Here, we assume an edge-triggered clocking methodology.
– The edge-triggered clocking methodology is a clocking scheme in 

which all state changes occur on a clock edge.
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Edge-Triggered Clocking
● A typical clock cycle with rising (up) and falling (down) edges:

● The rising and falling edges trigger data read and write. For example,
– All data reads of a stage happen at the falling edge and must be done before the 

clock rises again.
– All data writes happen at the rising edge and must be done before the clock falls 

again.
● Of course, each clock cycle must be long enough for each stage to finish 

reading and writing data.
● No feedback in one cycle: a stage cannot read its own outputs in one cycle.

RisingFalling

One cycle
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Control Signal

● Control signals are used for multiplexer (MUX) 
selection or for directing the operation of a 
functional unit; contrasts with a data signal, 
which contains information that is operated on 
by a functional unit.

● Control signals are usually generated by 
instruction decoder and the control unit to 
regulate the data flow in the data path.
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ALU Instruction Data Path 
with An Example

● Consider the following instruction as an 
example:
– Instruction: add R1, R2, R3
– Operation: R1 = R2 + R3
– Source registers: R2 (src1) and R3 (src2)
– Destination register: R1
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ALU Instruction Data Path 
with An Example: IF Stage

A
D

D
PC →addr

                             read→
                             data
            Memory
→write
    data

+4

IF
/ID

 In
te

r-
st

ag
e 

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr 
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction 
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an 
active data 
path.

NPC

Instr

Read or Write

Control signal for 
controlling whether to
read from or write to 
memory. For IF, it is a
memory read for sure.
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ALU Instruction Data Path 
with An Example: ID Stage

IF
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→Read 
    Register 1
→Read 
    Register 2                          Read →
                                              Data 1
                  Register File

→Write                                   Read →
    Register                             Data 2
→Write 
    Data

Instr.

Sign
Extend16 bits 32 bits

Instr[src1]

Instr[src2]

Dest register
id passes
through to
next stage.
For this instr
the dest is R1.

ID
/E

X
E

 In
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ag
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B
uf

fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr
the srcs are
R2 and R3.

insr[immd]

No immd in
this instr. Data
path is inactive.

Src Reg
values
Src Reg
values

Read or Write
Control signal for 
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd
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ALU Instruction Data Path 
with An Example: EXE Stage
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NPC

NPC passes through to
next stage.

A
LU

m
ux

m
ux

Src1 Reg data

Src2 Reg data
immd

No immd in
this instr. Data
path is inactive.

ALU_Src1

ALU_Src2

Computation
result 
(ALU_Out).

ALU_Out

Control signal for src2 
input into ALU. For 
this instr, the input
should be R2 instead
of immdiate value.

Zero?

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add.

Src2 Reg data

Src1 Reg data
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ALU Instruction Data Path 
with An Example: MEM Stage

E
X

E
/M

E
M

 In
te

r-
st

ag
e 

B
uf

fe
r

→addr
                             read→
                             data
         Memory

→write 
    data M
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ALU_Out

Src2 Reg data

ALU_Out

Instr[dest]
Dest register
id (R1) passes
through to
next stage.

m
ux PCALU_Out

NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

ALU instrs do not
need memory access.
So memory is not
accessed here.

Read or Write
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ALU Instruction Data Path 
with An Example: WB Stage

M
E
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B
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m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read 
    Register 1
→Read 
    Register 2                          Read →
                                              Data 1
                  Register File

→Write                                   Read →
    Register                             Data 2
→Write 
    Data

Read or Write
Control signal for 
controlling whether to
read or write registers.
For WB, it is a write.

Mem_Data
ALU_Out

Control signal for selecting
the source of write back.
For this add instr, the source
is the ALU_Out, written to R1.

For this add instr,
the dest Reg is
R1.
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ALU Instruction Data Path 
with 2nd Example

● Consider the following instruction as an 
example:
– Instruction: sub R1, R2, 101
– Operation: R1 = R2 - 101
– Source registers: R2 (src1) and 101 (src2)
– Destination register: R1
– Immediate value: 101
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ALU Instruction Data Path 
with 2nd Example: IF Stage

A
D

D
PC →addr

                             read→
                             data
            Memory
→write
    data

+4

IF
/ID

 In
te

r-
st

ag
e 

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr 
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction 
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an 
active data 
path.

NPC

Instr

Read or Write

Control signal for 
controlling whether to
read from or write to 
memory. For IF, it is a
memory read for sure.

IF stage is 
the same for

all Instrs



Computer Architecture 21

ALU Instruction Data Path 
with 2nd Example: ID Stage

IF
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    Register 1
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    Register 2                          Read →
                                              Data 1
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    Data

Instr.
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Instr[src1]

Instr[src2]
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For this instr
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ID
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NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr,
only one src
is from reg.

insr[immd]

Extend 16-bit
immd to 
32-bit.

Src Reg
values

Read or Write
Control signal for 
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd
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ALU Instruction Data Path 
with 2nd Example: EXE Stage
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Computation
result 
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Control signal for src2 
input into ALU. For 
this instr, the input
should be immediate 
value instead of register.
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Instr[dest]
Dest register
id (R1) passes
through to
next stage.

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to subtract.

Src2 Reg data

Src1 Reg data
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ALU Instruction Data Path 
with 2nd Example: MEM Stage
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NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

ALU instrs do not
need memory access.
So memory is not
accessed here.

Read or Write
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ALU Instruction Data Path 
with 2nd Example: WB Stage
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Instr[dest]
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Select

ALU_Out

→Read 
    Register 1
→Read 
    Register 2                          Read →
                                              Data 1
                  Register File

→Write                                   Read →
    Register                             Data 2
→Write 
    Data

Read or Write
Control signal for 
controlling whether to
read or write registers.
For WB, it is a write.

Mem_Data
ALU_Out

Control signal for selecting
the source of write back.
For this add instr, the source
is the ALU_Out, written to R1.

For this add instr,
the dest Reg is
R1.
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Data Path for Memory Instructions
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Memory Instruction Data Path 
with An Example

● Consider the following memory store instruction 
as an example:
– Instruction: mov [R1+100], R2
– Operation (memory write): *(R1+100) = R2
– Source registers: R1 (src1) and R2 (src2)
– Destination register: none
– Immediate value: 100
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Memory Instruction Data Path 
with An Example: IF Stage

A
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                             read→
                             data
            Memory
→write
    data
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/ID
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B
uf
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Take Program Counter (PC)
, i.e., the current instr 
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction 
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an 
active data 
path.

NPC

Instr

Read or Write

Control signal for 
controlling whether to
read from or write to 
memory. For IF, it is a
memory read for sure.

IF stage is 
the same as

ALU Instr
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Memory Instruction Data Path 
with An Example: ID Stage
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    Register 1
→Read 
    Register 2                          Read →
                                              Data 1
                  Register File

→Write                                   Read →
    Register                             Data 2
→Write 
    Data

Instr.

Sign
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Instr[src1]
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ID
/E

X
E
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fe
r

NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr
the srcs are
R1 and R2.

instr[immd]

Extended
16-bit immd
to 32-bit.

Src Reg
values
Src Reg
values

Read or Write
Control signal for 
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd
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Memory Instruction Data Path 
with An Example: EXE Stage

IF
/E

X
E

 In
te

r-
st

ag
e 

B
uf

fe
r

E
X

E
/M

E
M

 In
te

r-
st

ag
e 

B
uf

fe
r

NPC

NPC passes through to
next stage.
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Effective addr. 
(ALU_Out).

ALU_Out

Control signal for src2 
input into ALU. For 
this instr, the input
should be immediate 
value instead of register

Zero?

Instr[dest]

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add to
compute eff. addr.

Src2 Reg data

Src1 Reg data

Src2 Reg (R2)
data is passed
on for memory
write.
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Memory Instruction Data Path 
with An Example: MEM Stage
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Instr[dest]
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NPC

Since this is not a
branch instr, PC is set
to be NPC, the next
sequential instr’s addr.

NPC

Mem_Data

 Control signal for
memory access. This
instr is a memory
write.

Read or Write

Write instr. does not
have read output.
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Memory Instruction Data Path 
with An Example: WB Stage
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                  Register File
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Read or Write

Mem_Data

Memory write instr. does 
not need WB to register.
So no data path is
  active.
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Data Path for Branch Instructions
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Branch Instruction Data Path 
with An Example

● Consider the following instruction as an example:
– Instruction: jnz 96
– Operation (if the condition is not zero): 
if(not zero)
   PC = PC + 4 + 96 //go to instr 100B away
else
   PC = PC + 4 // go to next sequential instr

– Source registers: ZF (src1, zero flag register) and PC (src2, not from 
register file)

– Destination register: PC
– Immediate value: 96
– Note this branch instr is a relative jump, with the target address is +96 

bytes relative to the next sequential instruction.
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Branch Instruction Data Path 
with An Example: IF Stage
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                             read→
                             data
            Memory
→write
    data

+4

IF
/ID

 In
te

r-
st

ag
e 

B
uf

fe
r

Take Program Counter (PC)
, i.e., the current instr 
address, to read memory
to obtain current instr.

Compute the address of
next sequential instruction 
(NPC), which is PC+4.
4 means 4 bytes (32 bits).

Both NPC and current
instruction are stored into
inter-stage buffer for next
stage (ID) to read.

Orange arrow
indicates an 
active data 
path.

NPC

Instr

Read or Write

Control signal for 
controlling whether to
read from or write to 
memory. For IF, it is a
memory read for sure.

IF stage is 
the same for

all Instr
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Branch Instruction Data Path 
with An Example: ID Stage
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    Register 1
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    Register 2                          Read →
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                  Register File
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    Register                             Data 2
→Write 
    Data

Instr.
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Instr[src1]
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E
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NPC

Instr[dest]

NPC passes through to
next stage.

Read Source
operands from
register file.
For this instr,
the only src
from register
is ZF.

instr[immd]

ZF Reg
value

Read or Write
Control signal for 
controlling whether to
read or write registers.
For ID, it is a read.

Src1 Reg data

Src2 Reg data

immd

Extended
16-bit immd
to 32-bit.
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Branch Instruction Data Path 
with An Example: EXE Stage
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ALU_Src1
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Effective addr. 
(ALU_Out).

ALU_Out

Control signal for src2 
input into ALU. For 
this instr, the input
should be immediate 
value instead of register

Zero?

Instr[dest]

Src2 Reg data

ALU_Control Control signal for
ALU, to select
math ops. For
this instr, ALU is
set to add to
compute eff. addr.

Src2 Reg data

NPC

ZF Reg
value

Src1 Reg data Zero?

Control signal for src2 
input into ALU. For 
branch instr, the input 
should be NPC 
value instead of register
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Branch Instruction Data Path 
with An Example: MEM Stage
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Control signal for
memory access. This
instr has no memory
access.

Read or Write

Zero?

“ZF is zero or not” 
controls this mux.

Effective address of
branch target.
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Branch Instruction Data Path 
with An Example: WB Stage

M
E

M
/W

B
 In

te
r-

st
ag

e 
B

uf
fe

r

m
ux

Instr[dest]

WB Src
Select

ALU_Out

→Read 
    Register 1
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    Register 2                          Read →
                                              Data 1
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    Data

Read or Write

Mem_Data

branch instr. does not 
need WB to register file.
So no data path is
  active.
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Putting All Stages in One Figure
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A Simple Implementation of the 
5-stage RISC CPU

+4

* figure by Hellisp from Wikibooks.org
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Control Signals and Multi-cycle Implementation
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Control Signals

● There are many control signals in the data path 
that controls various multiplexors and the 
read/write to register files and memory.

● The control signals are usually determined by 
the instruction.

● A central Control unit generates these control 
signals based on current instruction.
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Control Signals

● At the ID phase, the instruction is also sent to
the control unit to generate corresponding 
control signals.

IF
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r NPC

Instr
Control

Instr

Register Read/write

Memory Read/write

ALU_Src1

ALU_Src2

ALU Control

Write back source
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Inter-stage Buffers
● The design we have seen takes one cycle to execute 

every stage.
● Therefore, an instruction typically take multiple cycles to 

execute.
● The design that execute an instruction in multiple cycles 

is called Multi-cycle Implementation.
● The inter-stage buffers/registers are typically required for 

multi-cycle implementation to store data between stages.
– Typically, we need at least instruction register, ALU source 

registers, ALU output registers and memory load/store buffers.
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 Multi-cycle Implementation
● A main benefit of multi-cycle implementation is that different 

type of instructions takes different cycles to execute.
– ALU instr: 4 stages => 4 cycles
– Memory loads: 5 stages => 5 cycles
– Memory stores: 4 stages => 4 cycles
– Branches: 4 stages => 4 cycles

● Given a program with a mixture of all types of instructions, 
the average execution time for an instruction will be less 
than 5 cycles.
– i.e., CPI < 5 cycles
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Exceptions
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Exceptions
● There are many unexpected events that can happen with in 

an processors. E.g.,
– Undefined instruction (wrong opcode or instr encoding)
– Divide by zero
– Arithmetic overflow
– External interrupts (mostly I/O requests and software system 

calls).
● Basically, an exception is an unscheduled event that 

disrupts program execution. 
– An interrupt is an exception that comes from outside of the 

processor.
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Exceptions and Control Unit

● Control unit is also responsible for handling 
exceptions and interrupts.

● When there is an exception, control is required 
to store current processor states (i.e., save 
context), and transfer to the exception handling 
mechanism.
– Sometimes, exception handling also involves 

waking up the OS and notify the OS of the 
exception.
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Micro-programming
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Micro-programming
● Modern processors are too complex to use the hardwired design 

we have seen in previous slides.
– The last hardwired Intel processor was Pentium 4.

● Therefore, the main components in processor (especially the 
control) are actually implemented as a programmable micro-
controllers.
– Essentially all kinds of logic gates that can be connected in various ways 

based on user needs.
● Computer architects write high-level code to program these micro-

controllers to dictate how processor operates.
– Programmable controllers also allows fixing processor bugs after 

processors are released.
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