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Course Instructor

• Name:

• Wei Wang

• Office:

• NPB 3.210

• Email:

• wei.wang@utsa.edu

• Always include “CS5363” in the title

• Research Areas:
• Compiler, Architecture, Cloud and SE

mailto:wei.wang@utsa.edu
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Course Meetings, Web Pages, 

etc.

• Meetings: 

• TR 7:30-8:45pm

• Office Hours:

• Mon 3:00-5:00pm, and Thu 4:00-5:00pm

• In Zoom, link posted in Blackboard

• Website 

https://wwang.github.io/teaching/Spring2021/CS5363/S

yllabus/general_info.html
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Online Teaching

• Lectures:

• I will record and post lectures in Panopto.

• Exams:

• Will be delivered through Blackboard

• For privacy reason, I can’t proctor the exam 

as in-person teaching.

• Assignments and Projects

• Submit through Blackboard
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Course Textbooks 

• Reference Book

• Compilers: Principles, Techniques, and Tools, 

2nd Edition, 

•by Alfred V. Aho, Monica S. Lam, Ravi 

Sethi, Jeffrey D. Ullman 

•AKA “Dragon Book”
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Course Topics

➢Formal Languages and Automaton

➢Lexical Analysis

➢Parsing

➢Code Generation

➢Compiler Optimization

➢Functional Languages
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Grading Scheme

• Mid-Term Exam: 20%

• Final Exam: 20%

• Assignments: 20%

• Projects: 35%

• Develop a compiler for a C-like language

• Course participation and other extra point

opportunities: 5%

• Be active in class
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Other Related Information 

• Mid-Term Exam: Mar 18th Thursday, in-class

• Final Exam: Thu, May 13, 07:00 pm - 08:50 pm

• All exam days are fixed.

• Plan your travel accordingly

• No make-up exam will be given unless university-sanctioned

reasons.

• Prerequisites:
• You must be able to program in C and C++.

• CS2233 Discrete Math and CS3343 Algo.

• It is better if you have taken OS, Arch and undergrad PL.

• Late submission docked with 10% if late within a week.

No submissions accepted after a week.
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More on the Course Project

➢The project consists a number of phases

➢ Lexical Analysis

➢ Parser

➢ Semantic Analysis (two phases)

➢Code Generation

➢Documentation

➢ Except Lexical analysis and Documentation, each phase

takes about a week of full time programming.

➢ Do the implementation yourself!

➢ Must have a functional compiler to get a B or above.
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PL and Compilers: An Introduction
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Overview and History (1)

➢ Cause
– Software for early computers was written in

assembly language

– The benefits of reusing software on different CPUs
started to become significantly greater than the
cost of writing a compiler

➢ The first real compiler
– FORTRAN compilers of the late 1950s
– 18 person-years to build

11
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Overview and History (2)

12

➢ Compiler technology
– is more broadly applicable and has been

employed in rather unexpected areas.

✓ Text-formatting languages like nroff and troff;
preprocessor packages like eqn, tbl, pic

✓Silicon compiler for the creation of VLSI
circuits

✓ Command languages of OS

✓ Query languages of Database systems
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What Do Compilers Do (1)

➢A compiler acts as a translator, 
transforming human-oriented programming 
languages into computer-oriented machine 
languages. 

✓Ignore machine-dependent details for 
programmer

Programming 
Language
(Source)

Compiler
Machine
Language
(Target)
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What Do Compilers Do (2)

➢Compilers may generate three types of code:

– Pure Machine Code
•Machine instruction set without assuming the
existence of any operating system or library.

•Mostly being OS or embedded applications.

– Augmented Machine Code
•Code with OS routines and runtime support
routines.
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What Do Compilers Do (2)

➢Compilers may generate three types of code:

– Virtual Machine Code
•Virtual instructions, can be run on any
architecture with a virtual machine interpreter or
a just-in-time compiler

•Ex. Java
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What Do Compilers Do (3)
➢Another way that compilers differ from one 

another is in the format of the target machine 
code they generate:

– Assembly or other source format

– Re-locatable binary
•Relative address

•A linkage step is required

– Absolute binary
•Absolute address

•Can be executed directly

16
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Interpreters & Compilers

➢Interpreter
– A program that reads a source program and

produces the results of executing that
program

➢Compiler
– A program that translates a program from

one language (the source) to another (the
target)
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Commonalities

➢Compilers and interpreters both must read
the input

– a stream of characters

– understand it; analysis

w h i l e ( k < l e n g t h ) {

i f ( a [ k ] > 0 ) {

n P o s + + ;

}

}
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Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis
running = true;

while (running) {

analyze next statement;

execute that statement;

}

– May involve repeated analysis of some
statements (loops, functions)
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Compiler

➢Read and analyze entire program

➢Translate to semantically equivalent program in

another language

– Presumably easier to execute or more efficient

– Should “improve” the program in some fashion

➢Offline process

– Tradeoff: compile time overhead (preprocessing step)

vs execution performance
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Typical Implementations

➢Compilers

– FORTRAN, C, C++, Java, COBOL, etc. etc.

– Strong need for optimization, etc.

➢Interpreters

– PERL, Python, awk, sed, sh, csh, postscript
printer, Java VM

– Effective if interpreter overhead is low relative
to execution cost of language statements
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Hybrid approaches

➢Well-known example: Java
– Compile Java source to byte codes – Java Virtual

Machine language (.class files)

– Execution
✓Interpret byte codes directly, or

✓Compile some or all byte codes to native code
–(particularly for execution hot spots)

–Just-In-Time compiler (JIT)

➢Variation: VS.NET
– Compilers generate MSIL

– All IL compiled to native code before execution
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Compilers: The Big picture

Source code

Compiler

Assembly code

Assembler

Object code

(machine code)

Fully-resolved object

code (machine code)

Executable image

Linker

Loader
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Idea: Translate in Steps

➢Series of program representations

➢ Intermediate representations optimized for

program manipulations of various kinds

(checking, optimization)

➢Become more machine-specific, less language-

specific as translation proceeds



25

Structure of a Compiler

➢First approximation

– Front end: analysis

✓Read source program and understand its structure

and meaning

– Back end: synthesis

✓Generate equivalent target language program

Source TargetFront End Back End
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Implications

➢Must recognize legal programs (& complain

about illegal ones)

➢Must generate correct code

➢Must manage storage of all variables

➢Must agree with OS & linker on target format

Source TargetFront End Back End
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More Implications

➢Need some sort of Intermediate Representation

(IR)

➢Front end maps source into IR

➢Back end maps IR to target machine code

Source TargetFront End Back End
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Standard Compiler Structure

Source code

(character stream)
Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Intermediate code

Optimization

Code generation

Assembly code

Intermediate code

Front end
(machine-independent)

Back end
(machine-dependent)
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Front End

➢Split into two parts

– Scanner: Responsible for converting character stream

to token stream

✓Also strips out white space, comments

– Parser: Reads token stream; generates IR

➢Both of these can be generated automatically

– Source language specified by a formal grammar

– Tools read the grammar and generate scanner &

parser (either table-driven or hard coded)

Scanner Parser
source tokens IR
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Tokens

➢Token stream: Each significant lexical

chunk of the program is represented by a

token

– Operators & Punctuation: {}[]!+-=*;: …

– Keywords: if while return goto

– Identifiers: id & actual name

– Constants: kind & value; int, floating-point

character, string, …
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Scanner Example

• Input text
// this statement does very little

if (x >= y) y = 42;

• Token Stream

– Note: tokens are atomic items, not character strings

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON
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Parser Output (IR)

➢Many different forms

– (Engineering tradeoffs)

➢Common output from a parser is an

abstract syntax tree

– Essential meaning of the program without the

syntactic noise
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Parser Example

• Token Stream Input • Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)
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Static Semantic Analysis

➢During or (more common) after parsing

– Type checking

– Check for language requirements like “declare

before use”, type compatibility

– Preliminary resource allocation

– Collect other information needed by back end

analysis and code generation
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Back End

➢Responsibilities

– Translate IR into target machine code

– Should produce fast, compact code

– Should use machine resources effectively

✓Registers

✓Instructions

✓Memory hierarchy
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Back End Structure

➢Typically split into two major parts with sub
phases

– “Optimization” – code improvements

✓May well translate parser IR into another IR

– Code generation
✓Instruction selection & scheduling

✓Register allocation



37

The Result

• Input

if (x >= y)

y = 42;

• Output

mov eax,[ebp+16]

cmp eax,[ebp-8]

jl L17

mov [ebp-8],42

L17:
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Optimized Code
s4addq $16,0,$0

mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

Unoptimized Code

Example (Output assembly code)

lda $30,-32($30)

stq $26,0($30)

stq $15,8($30)

bis $30,$30,$15

bis $16,$16,$1

stl $1,16($15)

lds $f1,16($15)

sts $f1,24($15)

ldl $5,24($15)

bis $5,$5,$2

s4addq $2,0,$3

ldl $4,16($15)

mull $4,$3,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

stl $2,20($15)

ldl $0,20($15)

br $31,$33

$33:

bis $15,$15,$30

ldq $26,0($30)

ldq $15,8($30)

addq $30,32,$30

ret $31,($26),1
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Compilation in a Nutshell 1

Source code

(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

(AST)

Semantic Analysis

if (b == 0) a = b;

if ( b ) a = b ;0==

if
==

b 0

=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean

Decorated AST
int

;

;
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Compilation in a Nutshell 2

Intermediate Code Generation

Optimization

Code generation

if

==

int b int 0

=

int a
lvalue

int b

boolean int
;

CJUMP ==

MEM

int 4

+

CONST MOVE

0 MEM MEM

int 4 int 4

NOP

+ +

CJUMP ==

CONST MOVE

0 DX CX

NOPCX
CMP CX, 0

CMOVZ DX,CX
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Compiler Design and Programming 
Language Design

41

➢An interesting aspect is how programming
language design and compiler design
influence one another.

➢Programming languages that are easy to
compile have many advantages
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Compiler Design and Programming 
Language Design(2)

42

➢Languages such as Snobol and APL are usually
considered non-compilable

➢What attributes must be found in a
programming language to allow compilation?
– Can the scope and binding of each identifier

reference be determined before execution begins?
– Can the type of object be determined before

execution begins?
– Can existing program text be changed or added to

during execution?
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Computer Architecture and Compiler 
Design

➢Compilers should exploit the hardware-

specific feature and computing capability to

optimize code.

➢The problems encountered in modern

computing platforms:

– Instruction sets for some popular architectures are

highly non-uniform.

43
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Computer Architecture and Compiler 
Design

– High-level programming language operations

are not always easy to support.

✓Ex. exceptions, threads, dynamic heap access …

– Exploiting architectural features such as cache,

distributed processors and memory

– Effective use of a large number of processors

44
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Compiler Design Considerations
➢Debugging Compilers

– Designed to aid in the development and

debugging of programs.

➢Optimizing Compilers

– Designed to produce efficient target code

➢Re-targetable Compilers

– A compiler whose target architecture can be

changed without its machine-independent

components having to be rewritten.

45
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Why Study Compilers?  (1)

➢Compiler techniques are everywhere

– Parsing (little languages, interpreters)

– Database engines

– AI: domain-specific languages

– Text processing

✓Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools

– Mathematics (Mathematica, Matlab)
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Why Study Compilers?  (2)

➢Fascinating blend of theory and engineering

– Direct applications of theory to practice

•Parsing, scanning, static analysis

– Some very difficult problems (NP-hard or

worse)

•Resource allocation, “optimization”, etc.

•Need to come up with good-enough solutions

➢The crucial part of our computer systems.

• Security and performance rely on compilers.
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Why Study Compilers?  (3)

➢ Ideas from many parts of CSE

– AI: Greedy algorithms, heuristic search

– Algorithms: graph algorithms, dynamic programming,
approximation algorithms

– Theory: Grammars DFAs and PDAs, pattern
matching, fixed-point algorithms

– Systems: Allocation & naming, synchronization,
locality

– Architecture: pipelines & hierarchy management,
instruction set use
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Why Study Compilers?  (4)

➢Renewed interest in compiler research

– Today’s systems are becoming heterogeneous and 
exascale.

–We are using CPU, GPU, FPGA and ASICs.

–We are forced to run with hundreds of thousands of 
processors.

– Code generation, resource management, 
programmability, all need to be revisited

– There is actual a requirement to rethink the way we 
design the whole computer system.
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Class Summary

➢Compilers: Introduction

– Why Compilers?

– Input and Output

– Structure of Compilers

– Compiler Design
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Next Class

➢Foundation of Compilers

– Formal Languages

– Grammars

– Automatons


