
1

Introduction to Compilation

Wei Wang

22

Course Instructor

• Name:

• Wei Wang

• Office:

• NPB 3.210

• Email:

• wei.wang@utsa.edu

• Always include “CS5363” in the title

• Research Areas:
• Compiler, Architecture, Cloud and SE

mailto:wei.wang@utsa.edu

33

Course Meetings, Web Pages,

etc.

• Meetings:

• TR 7:30-8:45pm

• Office Hours:

• Mon 3:00-5:00pm, and Thu 4:00-5:00pm

• In Zoom, link posted in Blackboard

• Website

https://wwang.github.io/teaching/Spring2021/CS5363/S

yllabus/general_info.html

44

Online Teaching

• Lectures:

• I will record and post lectures in Panopto.

• Exams:

• Will be delivered through Blackboard

• For privacy reason, I can’t proctor the exam

as in-person teaching.

• Assignments and Projects

• Submit through Blackboard

55

Course Textbooks

• Reference Book

• Compilers: Principles, Techniques, and Tools,

2nd Edition,

•by Alfred V. Aho, Monica S. Lam, Ravi

Sethi, Jeffrey D. Ullman

•AKA “Dragon Book”

66

Course Topics

➢Formal Languages and Automaton

➢Lexical Analysis

➢Parsing

➢Code Generation

➢Compiler Optimization

➢Functional Languages

77

Grading Scheme

• Mid-Term Exam: 20%

• Final Exam: 20%

• Assignments: 20%

• Projects: 35%

• Develop a compiler for a C-like language

• Course participation and other extra point

opportunities: 5%

• Be active in class

88

Other Related Information

• Mid-Term Exam: Mar 18th Thursday, in-class

• Final Exam: Thu, May 13, 07:00 pm - 08:50 pm

• All exam days are fixed.

• Plan your travel accordingly

• No make-up exam will be given unless university-sanctioned

reasons.

• Prerequisites:
• You must be able to program in C and C++.

• CS2233 Discrete Math and CS3343 Algo.

• It is better if you have taken OS, Arch and undergrad PL.

• Late submission docked with 10% if late within a week.

No submissions accepted after a week.

99

More on the Course Project

➢The project consists a number of phases

➢ Lexical Analysis

➢ Parser

➢ Semantic Analysis (two phases)

➢Code Generation

➢Documentation

➢ Except Lexical analysis and Documentation, each phase

takes about a week of full time programming.

➢ Do the implementation yourself!

➢ Must have a functional compiler to get a B or above.

1010

PL and Compilers: An Introduction

11

Overview and History (1)

➢ Cause
– Software for early computers was written in

assembly language

– The benefits of reusing software on different CPUs
started to become significantly greater than the
cost of writing a compiler

➢ The first real compiler
– FORTRAN compilers of the late 1950s
– 18 person-years to build

11

12

Overview and History (2)

12

➢ Compiler technology
– is more broadly applicable and has been

employed in rather unexpected areas.

✓ Text-formatting languages like nroff and troff;
preprocessor packages like eqn, tbl, pic

✓Silicon compiler for the creation of VLSI
circuits

✓ Command languages of OS

✓ Query languages of Database systems

13

What Do Compilers Do (1)

➢A compiler acts as a translator,
transforming human-oriented programming
languages into computer-oriented machine
languages.

✓Ignore machine-dependent details for
programmer

Programming
Language
(Source)

Compiler
Machine
Language
(Target)

14

What Do Compilers Do (2)

➢Compilers may generate three types of code:

– Pure Machine Code
•Machine instruction set without assuming the
existence of any operating system or library.

•Mostly being OS or embedded applications.

– Augmented Machine Code
•Code with OS routines and runtime support
routines.

15

What Do Compilers Do (2)

➢Compilers may generate three types of code:

– Virtual Machine Code
•Virtual instructions, can be run on any
architecture with a virtual machine interpreter or
a just-in-time compiler

•Ex. Java

16

What Do Compilers Do (3)
➢Another way that compilers differ from one

another is in the format of the target machine
code they generate:

– Assembly or other source format

– Re-locatable binary
•Relative address

•A linkage step is required

– Absolute binary
•Absolute address

•Can be executed directly

16

17

Interpreters & Compilers

➢Interpreter
– A program that reads a source program and

produces the results of executing that
program

➢Compiler
– A program that translates a program from

one language (the source) to another (the
target)

18

Commonalities

➢Compilers and interpreters both must read
the input

– a stream of characters

– understand it; analysis

w h i l e (k < l e n g t h) {

i f (a [k] > 0) {

n P o s + + ;

}

}

19

Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis
running = true;

while (running) {

analyze next statement;

execute that statement;

}

– May involve repeated analysis of some
statements (loops, functions)

20

Compiler

➢Read and analyze entire program

➢Translate to semantically equivalent program in

another language

– Presumably easier to execute or more efficient

– Should “improve” the program in some fashion

➢Offline process

– Tradeoff: compile time overhead (preprocessing step)

vs execution performance

21

Typical Implementations

➢Compilers

– FORTRAN, C, C++, Java, COBOL, etc. etc.

– Strong need for optimization, etc.

➢Interpreters

– PERL, Python, awk, sed, sh, csh, postscript
printer, Java VM

– Effective if interpreter overhead is low relative
to execution cost of language statements

22

Hybrid approaches

➢Well-known example: Java
– Compile Java source to byte codes – Java Virtual

Machine language (.class files)

– Execution
✓Interpret byte codes directly, or

✓Compile some or all byte codes to native code
–(particularly for execution hot spots)

–Just-In-Time compiler (JIT)

➢Variation: VS.NET
– Compilers generate MSIL

– All IL compiled to native code before execution

23

Compilers: The Big picture

Source code

Compiler

Assembly code

Assembler

Object code

(machine code)

Fully-resolved object

code (machine code)

Executable image

Linker

Loader

24

Idea: Translate in Steps

➢Series of program representations

➢ Intermediate representations optimized for

program manipulations of various kinds

(checking, optimization)

➢Become more machine-specific, less language-

specific as translation proceeds

25

Structure of a Compiler

➢First approximation

– Front end: analysis

✓Read source program and understand its structure

and meaning

– Back end: synthesis

✓Generate equivalent target language program

Source TargetFront End Back End

26

Implications

➢Must recognize legal programs (& complain

about illegal ones)

➢Must generate correct code

➢Must manage storage of all variables

➢Must agree with OS & linker on target format

Source TargetFront End Back End

27

More Implications

➢Need some sort of Intermediate Representation

(IR)

➢Front end maps source into IR

➢Back end maps IR to target machine code

Source TargetFront End Back End

28

Standard Compiler Structure

Source code

(character stream)
Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Intermediate code

Optimization

Code generation

Assembly code

Intermediate code

Front end
(machine-independent)

Back end
(machine-dependent)

29

Front End

➢Split into two parts

– Scanner: Responsible for converting character stream

to token stream

✓Also strips out white space, comments

– Parser: Reads token stream; generates IR

➢Both of these can be generated automatically

– Source language specified by a formal grammar

– Tools read the grammar and generate scanner &

parser (either table-driven or hard coded)

Scanner Parser
source tokens IR

30

Tokens

➢Token stream: Each significant lexical

chunk of the program is represented by a

token

– Operators & Punctuation: {}[]!+-=*;: …

– Keywords: if while return goto

– Identifiers: id & actual name

– Constants: kind & value; int, floating-point

character, string, …

31

Scanner Example

• Input text
// this statement does very little

if (x >= y) y = 42;

• Token Stream

– Note: tokens are atomic items, not character strings

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

32

Parser Output (IR)

➢Many different forms

– (Engineering tradeoffs)

➢Common output from a parser is an

abstract syntax tree

– Essential meaning of the program without the

syntactic noise

33

Parser Example

• Token Stream Input • Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

34

Static Semantic Analysis

➢During or (more common) after parsing

– Type checking

– Check for language requirements like “declare

before use”, type compatibility

– Preliminary resource allocation

– Collect other information needed by back end

analysis and code generation

35

Back End

➢Responsibilities

– Translate IR into target machine code

– Should produce fast, compact code

– Should use machine resources effectively

✓Registers

✓Instructions

✓Memory hierarchy

36

Back End Structure

➢Typically split into two major parts with sub
phases

– “Optimization” – code improvements

✓May well translate parser IR into another IR

– Code generation
✓Instruction selection & scheduling

✓Register allocation

37

The Result

• Input

if (x >= y)

y = 42;

• Output

mov eax,[ebp+16]

cmp eax,[ebp-8]

jl L17

mov [ebp-8],42

L17:

38

Optimized Code
s4addq $16,0,$0

mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

Unoptimized Code

Example (Output assembly code)

lda $30,-32($30)

stq $26,0($30)

stq $15,8($30)

bis $30,$30,$15

bis $16,$16,$1

stl $1,16($15)

lds $f1,16($15)

sts $f1,24($15)

ldl $5,24($15)

bis $5,$5,$2

s4addq $2,0,$3

ldl $4,16($15)

mull $4,$3,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

ldl $3,16($15)

addq $3,1,$4

mull $2,$4,$2

stl $2,20($15)

ldl $0,20($15)

br $31,$33

$33:

bis $15,$15,$30

ldq $26,0($30)

ldq $15,8($30)

addq $30,32,$30

ret $31,($26),1

39

Compilation in a Nutshell 1

Source code

(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

(AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0

=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean

Decorated AST
int

;

;

40

Compilation in a Nutshell 2

Intermediate Code Generation

Optimization

Code generation

if

==

int b int 0

=

int a
lvalue

int b

boolean int
;

CJUMP ==

MEM

int 4

+

CONST MOVE

0 MEM MEM

int 4 int 4

NOP

+ +

CJUMP ==

CONST MOVE

0 DX CX

NOPCX
CMP CX, 0

CMOVZ DX,CX

41

Compiler Design and Programming
Language Design

41

➢An interesting aspect is how programming
language design and compiler design
influence one another.

➢Programming languages that are easy to
compile have many advantages

42

Compiler Design and Programming
Language Design(2)

42

➢Languages such as Snobol and APL are usually
considered non-compilable

➢What attributes must be found in a
programming language to allow compilation?
– Can the scope and binding of each identifier

reference be determined before execution begins?
– Can the type of object be determined before

execution begins?
– Can existing program text be changed or added to

during execution?

43

Computer Architecture and Compiler
Design

➢Compilers should exploit the hardware-

specific feature and computing capability to

optimize code.

➢The problems encountered in modern

computing platforms:

– Instruction sets for some popular architectures are

highly non-uniform.

43

44

Computer Architecture and Compiler
Design

– High-level programming language operations

are not always easy to support.

✓Ex. exceptions, threads, dynamic heap access …

– Exploiting architectural features such as cache,

distributed processors and memory

– Effective use of a large number of processors

44

45

Compiler Design Considerations
➢Debugging Compilers

– Designed to aid in the development and

debugging of programs.

➢Optimizing Compilers

– Designed to produce efficient target code

➢Re-targetable Compilers

– A compiler whose target architecture can be

changed without its machine-independent

components having to be rewritten.

45

46

Why Study Compilers? (1)

➢Compiler techniques are everywhere

– Parsing (little languages, interpreters)

– Database engines

– AI: domain-specific languages

– Text processing

✓Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools

– Mathematics (Mathematica, Matlab)

47

Why Study Compilers? (2)

➢Fascinating blend of theory and engineering

– Direct applications of theory to practice

•Parsing, scanning, static analysis

– Some very difficult problems (NP-hard or

worse)

•Resource allocation, “optimization”, etc.

•Need to come up with good-enough solutions

➢The crucial part of our computer systems.

• Security and performance rely on compilers.

48

Why Study Compilers? (3)

➢ Ideas from many parts of CSE

– AI: Greedy algorithms, heuristic search

– Algorithms: graph algorithms, dynamic programming,
approximation algorithms

– Theory: Grammars DFAs and PDAs, pattern
matching, fixed-point algorithms

– Systems: Allocation & naming, synchronization,
locality

– Architecture: pipelines & hierarchy management,
instruction set use

49

Why Study Compilers? (4)

➢Renewed interest in compiler research

– Today’s systems are becoming heterogeneous and
exascale.

–We are using CPU, GPU, FPGA and ASICs.

–We are forced to run with hundreds of thousands of
processors.

– Code generation, resource management,
programmability, all need to be revisited

– There is actual a requirement to rethink the way we
design the whole computer system.

50

Class Summary

➢Compilers: Introduction

– Why Compilers?

– Input and Output

– Structure of Compilers

– Compiler Design

51

Next Class

➢Foundation of Compilers

– Formal Languages

– Grammars

– Automatons

