
Computer Architecture 1

Pipelining

Wei Wang

Computer Architecture 2

Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter
6 “Enhancing Performance with Pipelining.”

● “Computer Architecture: A Quantitative
Approach,” Appendix C “Pipelining: Basic and
Intermediate Concepts.”

Computer Architecture 3

Road Map

● Overview of Pipelining
● Structure Hazard
● Data Hazard
● Control Hazard
● Summary of Hazard Solutions
● Superscalar

Computer Architecture 4

Overview of Pipelining

Computer Architecture 5

Overview of Pipelining

● Pipelining is a processor implementation technique in
which multiple instructions are overlapped in execution.
– CPU pipelining is exactly the same like factory pipelines.

● In fact, one of the major reason of breaking instruction
execution into stages is to support pipelining.
– Pipelining essentially overlaps different instructions working

on different stages.

● Since 70’s, nearly all computers have been pipelined.

Computer Architecture 6

Pipelining vs No-pipelining

● For simplicity, we assume all instructions need 5 stages.
● Without pipelining, 3 instructions takes 15 cycles

– Average CPI is 15/3=5 cycles.

● With pipelining, 3 instructions take only 7 cycles
– Average CPI is only 7/3= 2.33 cycles.

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

76 8 9 1021 3 4 5 1211 13 14 15Cycles:

instr1:

instr2:

instr3:

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

76 8 9 1021 3 4 5 1211 13 14 15Cycles:

instr1:

instr2:

instr3:
Next instr can be issued
as soon as previous
instr enters ID stage.

Computer Architecture 7

Ideal Pipelining Performance

● Without piplining, assume instruction execution takes time T,
– Single Instruction latency is T
– Throughput = 1/T
– M-Instruction Latency = M*T

● If the execution is broken into an N-stage pipeline, idealy, a
new instruction finishes each cycle
– The time for each stage is t = T/N
– Throughput = 1/t
– M-instruction Latency ≈ M * t = M * T/N << M*T

● Ideal CPI with pipelining is 1.

Computer Architecture 8

Ideal is impossible

● Two reasons why ideal is
impossible
– Pipeline overhead

● Latches, clock skew, jitters
– Prolong the time each stage takes to

execute

– Hazards
● Situations that prevent the next

instruction from executing in its
designated clock cycle

● Hardware resource contention,
data dependency, branch
instructions and exceptions

● The major hurdle of pipelining

Clock Skew of IBM Power4
Taken from IBM Hot Chips 99
Presentation

Computer Architecture 9

Structural Hazard

Computer Architecture 10

Structural Hazards

● When two different instructions want to use the same
hardware resource in the same cycle (resource
conflict).

● For example, in the following execution, instr1 and
instr4 have two structural hazards at memory and
register file.

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

instr1:

instr2:

instr3:
IDIF EXE MEM WBinstr4:

instr1’s MEM stage
and instr4’s IF
stage both require
accessing memory,
thus a resource
conflict.

instr1’s WB stage writes to
registers, and instr4’s ID stage
reads registers, both requiring
accessing register file, thus a
resource conflict.

Computer Architecture 11

Structural Hazards Solutions

● Solution 1: separate hardware resources
– For example, for the contention of MEM and IF stages

● IF stage only reads instructions
● MEM stage only accesses (read/write) data
● We can then separate memory for instructions and data
● This structural hazard is the one of the motivations of using

separated instruction and data L1 caches.

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB

instr1:

instr2:

instr3:
IDIF (IM) EXE MEM (DM) WBinstr4:

Cycles: 76 821 3 4 5

Hazard removed
as MEM accesses
data memory (DM)
and IF stage
accesses instruction
memory (IM).

Computer Architecture 12

Structural Solutions cont’d

● Solution 2: let the accesses to the same hardware component
happens at different part of a cycle
– For example, for the contention of WB and ID stages

● Let WB stage accesses registers at the first half of a cycle (e.g., at the falling edge of
a cycle).

● Let ID stage accesses registers at the second half of a cycle (e.g., at the rising edge
of a cycle).

– Alternatively, we can also make a stage multi-cycle and let the conflicted
accesses happen at different cycles. This solution can accommodate more
than two conflicting stages.

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB

instr1:

instr2:

instr3:
IDIF (IM) EXE MEM (DM) WBinstr4:

Cycles: 76 821 3 4 5

Hazard removed
as WB happens at
first half of a cycle
while ID happens at
the second half of
a cycle.

Computer Architecture 13

Structural Solutions cont’d

● Solution 3: Duplicate resources
– Duplicate the contended resources. E.g., add more

ALUs, if ALUs are contended.
– Useful for cheap resources, frequent cases

● Separate ALU/PC adders, Reg File Ports

– Advantage: does not increase CPI
– Disadvantage: increases cost, possibly increases

cycle time.

Computer Architecture 14

Structural Solutions cont’d

● Good news
– Structural hazards don’t occur as long as each

instruction uses a resource
● At most once
● Always in the same pipeline stage
● For one cycle

– RISC ISAs are designed with this in mind, reduces
structural hazards

– For assignments and exams on simple pipelining (i.e.,
not OoO), always assume no structural hazards.

Computer Architecture 15

Data Hazards

Computer Architecture 16

Data Hazards

● Data hazards when an instruction depends on the result of a
previous instruction that exposes overlapping of instructions

● Three types of Data Hazards
– Read-After-Write (RAW)

● True data-dependence (Most important)

– Write-After-Read (WAR)
– Write-After-Write (WAW)

Read-after-Write
(RAW)

Read-after-Write
(RAW)

x = …
… = x

Write-after-Read
(WAR)

… = x
x = …

Write-after-Write
(WAW)

x = …
x = …

Computer Architecture 17

Read-After-Write (RAW) Hazard

● For example, for the following code:
– Instr1 writes R3 in cycle 5
– However, instr2 needs R3 in cycle 3 and instr3

needs R3 in cycle 4, before the latest R3 is written.
– Instr4 reads R3 at the second half of cycle 5.

Therefore, there is no data hazard for instr4.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBR3 is written

back in cycle 5,
much later than
when instr2
and instr3 need
it.

No data hazard for
instr4, since its ID (
register read) happens
after instr1’s WB.

Computer Architecture 18

RAW Hazard Solutions

● Before solving RAW hazard, pipeline needs to
be able to identify the data dependency that
causes RAW hazard.

● The hardware component for detecting data
hazard is called pipeline interlock
– Need to keep register ID’s along with pipestages
– Use comparators to check for hazards

Computer Architecture 19

RAW Hazard Solutions cont’d

● Solution 1 (simplest): Stall the pipeline
– Stops some instructions from executing
– Make them wait for older instructions to complete
– Simple implementation to “freeze” (de-assert write-enable

signals on pipeline latches)
– Inserts a “bubble” into the pipe

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

Bubble

9 10

Bubble

Bubble Bubble
BubbleBubble

After inserting two bubbles
in to the pipeline (stalls the
pipeline for two cycles), none
of the instructions has data
hazards.

Computer Architecture 20

RAW Hazard Solutions cont’d

● Solution 1 (simplest): Stall the pipeline
– The downside of stalling is obviously the longer execution time. For example, for the

following four instructions, stalling the pipeline prolongs the execution time from 8
cycles to 10 cycles.

● Given that applications have a lot of internal dependencies, this performance penalty can be quite
serious.

– The advantages of stalling are
● Easy and low cost to implement
● Can solve nearly all pipeline hazards, including structural, data and control hazards.

– Stalling is the last solution to any hazards that cannot solved by other solutions.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

Bubble Bubble

9 10

BubbleBubble
Bubble Bubble

After inserting two bubbles
in to the pipeline (stalls the
pipeline for two cycles), none
of the instructions has data
hazards.

Computer Architecture 21

RAW Hazard Solutions cont’d

● Solution 2: Bypass/forwarding
– Data is usually ready at the end of EXE or MEM stages.
– Basic idea,

● add comparator for each combination of destination and source registers that can have RAW
hazards.

● Add muxes to datapath to select proper value instead of register file.
● The forwarded data are from inter-stage registers.
● Only stall when absolutely necessary

– In the following example, R3’s data is ready at the end of cycle 3.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBR3’s data is

ready at the
end of cycle 3.

Computer Architecture 22

RAW Hazard Solutions cont’d

● Solution 2: Bypass/forwarding
– In the following example, we can start forwarding the value of R3 at the end

of cycle 3 to instr2 and instr3.
– Advantage: no negative impact on performance. E.g., in the following

example, it still takes 8 cycles to execute the four instructions.
– Disadvantage:

● Fairly complex change to the control unit and other pipeline resources
● Cannot solve all RAW hazards (forwarding is only doable when the value is ready).

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBForward R3’s value at the

end of EXE and MEM
stages to instr2 and instr3’s
EXE stage. Both instr2 and
instr3 stages use forwarded
value instead of reg reads.

Computer Architecture 23

Load-Use Hazards

● Unfortunately, we can’t forward “backward in
time.”

● Pipeline must be stalled to handle this
dependency with forwarding.

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
EXE MEM (DM) WB

Instr3: add R6, R7, R8

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

ID EXE MEM (DM) WBInstr3: add R6, R7, R8 IF (IM)
Bubble
Bubble

Computer Architecture 24

Instruction Scheduling

● Alternatively, we can remove the bubble (i.e., avoid
stalling) by rearranging the instructions.

● Both compilers and CPU can perform instruction
scheduling.
– For compiler, it is more challenging to identify the opportunities

of instruction scheduling due to unknown memory addresses
at compilation time (hence unknown dependences)

– CPU can performance dynamic instruction scheduling with out-
of-order (OoO) execution.

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

Instr2: add R4, R3, R5
Instr3: add R6, R7, R8

IDIF (IM) EXE MEM (DM) WB

Computer Architecture 25

Other Data Hazards: WARs and
WAWs

● Write-After-Read (WAR) and Write-After-Write Hazards
– Can’t happen in our simple 5-stage pipeline because the order of the

instructions is always strictly followed

● But they may happen when the order of instructions are
changed. E.g.,
– in OoO executions,
– if the stages require different execution time
– When some instructions have cache misses

● Nonetheless, WAR and WAW can also be handled using stalls
and forwarding.

● What about RARs?

Computer Architecture 26

Control Hazards

Computer Architecture 27

Control Hazards

● Control hazards happens when there are PC-
modifying instructions (branch, jump, etc) that prevent
knowing which instruction to execute until branch
target is computed and conditions are checked.

● In our simple model, the PC for the instruction after a
branch is only known at the end of MEM stage.

Computer Architecture 28

An Example of Control Hazards

● Branch instruction prevents the issue of next
instruction until MEM stage.

● Essentially, pipeline is stalled until next PC is
known.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: branch target

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)BubbleBubble Bubble

3 bubbles are
required before
next instruction
is issued.

Computer Architecture 29

Control Hazard Solutions

● Solution 1: Fast branch resolution
– Add extra adder to ID stage to compute branch target
– Only works for simple conditional jump (compare to 0).

● For some conditional jumps in CISC ISA that requires
comparing two registers, the comparison can be slow.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: branch target

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)Bubble

Put branch
handling logic
in ID reduces
the bubbles to 1.

Computer Architecture 30

Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Always assume branch is not taken, i.e., the next

sequential instruction should be executed.
– If this assumption is correct, not delay in the

pipeline.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: fall-through

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)

Issue next sequential instr right
after a branch. If assumption is
correct, no bubbles.

Computer Architecture 31

Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Always assume branch is not taken, and the next sequential instruction is executed.
– If the assumption is wrong, need to flush the pipeline to scratch all incorrectly issued

instructions.
● Instructions issued before the actual branch status is known are called speculatively issued

instructions.
● Speculatively issued instructions cannot write to registers and memory until the speculation is

verified.

Instr1: branch

Cycles: 76 821 3 4 5

Wrong Instr2

IDIF (IM) EXE MEM (DM) WB
ID EXEIF (IM)

If assumption is wrong, the
pipeline needs to be flushed
to scratch all incorrectly issued
instruction.

Wrong Instr3 IDIF (IM)

Correct Instr2 ID EXE MEM (DM) WBIF (IM)

flush flush
flush flush flush

Wrong Instr4 IDIF (IM) flush flush flush

Computer Architecture 32

Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Assume-not-taken may not help that much

● Branch characteristics
– Integer Benchmarks: 14-16% instructions are conditional branches
– FP: 3-12%
– On Average:

● 67% of conditional branches are “taken”
● 60% of forward branches are taken
● 85% of backward branches are taken

– Why? Because most branches are from loops!

– Why not assume taken?
● Branch target is not known when next instruction needs to be issued.

Computer Architecture 33

Control Hazard Solutions cont’d

● Solution 3: Branch Delay Slots
– Find one instruction that will be executed no matter which way the branch

goes
– Now we don’t care which way the branch goes!

● Harder than it sounds to find instructions

– What to put in the slot (80% of the time)
● Instructions from before the branch (independent of branch)
● Instructions that surely will be executed after the branch

– Must be independent from the branch and the taken/non-taken path.

● Instruction from taken or not-taken path
– Similar to assume-not-taken or assume-taken.
– Helps if you go the right way

– Slots don’t help much with today’s machines
● Interrupts are more difficult to handle because the order of the instruction changes

Computer Architecture 34

Control Hazard Solutions cont’d

● Solution 4: Branch Prediction
– The actual solution for branches in modern

processors is predicting whether the branch is
taken and predicting what is the branch target.

– Incorrect predictions still need flushing the pipeline.
– We will discuss branch prediction in details in the

lecture for speculative execution.

Computer Architecture 35

Control Hazards Due to Exceptions

● Instructions experiencing exceptions during
execution also causes control hazards.

● For exceptions, the solution is to flush the
pipeline.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2

IDIF (IM) EXE MEM (DM) WB
IDIF (IM)

If there is an exception, the
pipeline must be flushed with
all instructions in the pipeline
scratched.

Instr3 IF (IM)
flush flush

Excpetion!
flush
flush flush flush flush

Computer Architecture 36

Summary of Hazard Solutions

Computer Architecture 37

Hazard Solutions

● Generic solution for all hazards:
– stall and/or flush the pipeline

● A side note, NOP instructions are issued for stalls, while instructions are switched to NOPs for flushing.

● Solutions only for structural hazard
– Separate hardware resources
– Separate hardware access time
– Duplicate resources

● Solutions only for data hazard
– Bypass/forwarding
– Instruction scheduling

● Solutions only for control hazard
– Move branch logics to the ID stage.
– Assume not taken
– Branch delay slot
– Branch prediction

Computer Architecture 38

Superscalar

Computer Architecture 39

Superscalar

● Modern processors usually have a number of
pipeline hardware components.
– Another benefit of Moore’s law.

● Therefore, modern processors usually can issue
multiple instructions at each cycle.
– Usually Superscalar is accompanied with OoO to ensure

there are independent instructions that can be issued at
the same time.

– Obviously, multi-issue pipelines are more complex to
implement and manage.

Computer Architecture 40

Illustration of A Two-issue
Supersalar CPU

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

● Ideally, a two-issue Superscalar CPU has a CPI
of 0.5 cycles, and IPC of 2.

Computer Architecture 41

Case Study: Intel Skylake Pipeline

● Maximum 8-issue per core.
● Pipeline stages: 14-19

Figure from
Intel
Optimization
Reference
Manual.

Wikichip
has a better
figure.

Computer Architecture 42

Case Study: IBM Power9

● 4-8 Issue (maximum 8 fetch 6 decode)
– Technically more of a SMT design than a Superscalar.

● 12-16 Pipeline stages

Figure from I
Wikichip.

Computer Architecture 43

Acknowledgment

● These slides are partially based on the lecture
notes from Dr. David Brooks.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

