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Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter 
6  “Enhancing Performance with Pipelining.”

● “Computer Architecture: A Quantitative 
Approach,” Appendix C “Pipelining: Basic and 
Intermediate Concepts.”
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Road Map

● Overview of Pipelining
● Structure Hazard
● Data Hazard
● Control Hazard
● Summary of Hazard Solutions
● Superscalar
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Overview of Pipelining
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Overview of Pipelining

● Pipelining is a processor implementation technique in 
which multiple instructions are overlapped in execution. 
– CPU pipelining is exactly the same like factory pipelines.

● In fact, one of the major reason of breaking instruction 
execution into stages is to support pipelining. 
– Pipelining essentially overlaps different instructions working 

on different stages.

● Since 70’s, nearly all computers have been pipelined.
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Pipelining vs No-pipelining

● For simplicity, we assume all instructions need 5 stages. 
● Without pipelining, 3 instructions takes 15 cycles

– Average CPI is 15/3=5 cycles.

● With pipelining, 3 instructions take only 7 cycles
– Average CPI is only 7/3= 2.33 cycles.

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

76 8 9 1021 3 4 5 1211 13 14 15Cycles:

instr1:

instr2:

instr3:

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

76 8 9 1021 3 4 5 1211 13 14 15Cycles:

instr1:

instr2:

instr3:
Next instr can be issued
as soon as previous
instr enters ID stage.
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Ideal Pipelining Performance

● Without piplining, assume instruction execution takes time T,
– Single Instruction latency is T
– Throughput = 1/T
– M-Instruction Latency = M*T

● If the execution is broken into an N-stage pipeline, idealy, a 
new instruction finishes each cycle
– The time for each stage is t = T/N
– Throughput = 1/t
– M-instruction Latency ≈ M * t = M * T/N << M*T

● Ideal CPI with pipelining is 1.
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Ideal is impossible

● Two reasons why ideal is 
impossible
– Pipeline overhead

● Latches, clock skew, jitters
– Prolong the time each stage takes to 

execute

– Hazards
● Situations that prevent the next 

instruction from executing in its 
designated clock cycle

● Hardware resource contention, 
data dependency, branch 
instructions and exceptions

● The major hurdle of pipelining

Clock Skew of IBM Power4
Taken from IBM Hot Chips 99
Presentation
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Structural Hazard
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Structural Hazards

● When two different instructions want to use the same 
hardware resource in the same cycle (resource 
conflict).

● For example, in the following execution, instr1 and 
instr4 have two structural hazards at memory and 
register file.

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB

instr1:

instr2:

instr3:
IDIF EXE MEM WBinstr4:

instr1’s MEM stage
and instr4’s IF
stage both require
accessing memory,
thus a resource
conflict.

instr1’s WB stage writes to 
registers, and instr4’s ID stage 
reads registers, both requiring
accessing register file, thus a 
resource conflict.
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Structural Hazards Solutions

● Solution 1: separate hardware resources
– For example, for the contention of MEM and IF stages

● IF stage only reads instructions
● MEM stage only accesses (read/write) data 
● We can then separate memory for instructions and data
● This structural hazard is the one of the motivations of using 

separated instruction and data L1 caches.

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB

instr1:

instr2:

instr3:
IDIF (IM) EXE MEM (DM) WBinstr4:

Cycles: 76 821 3 4 5

Hazard removed
as MEM accesses
data memory (DM)
and IF stage
accesses instruction
memory (IM).
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Structural Solutions cont’d

● Solution 2: let the accesses to the same hardware component 
happens at different part of a cycle
– For example, for the contention of WB and ID stages

● Let WB stage accesses registers at the first half of a cycle (e.g., at the falling edge of 
a cycle).

● Let ID stage accesses registers at the second half of a cycle (e.g., at the rising edge 
of a cycle).

– Alternatively,  we can also make a stage multi-cycle and let the conflicted 
accesses happen at different cycles. This solution can accommodate more 
than two conflicting stages.

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB

instr1:

instr2:

instr3:
IDIF (IM) EXE MEM (DM) WBinstr4:

Cycles: 76 821 3 4 5

Hazard removed
as WB happens at
first half of a cycle 
while ID happens at
the second half of
a cycle.
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Structural Solutions cont’d

● Solution 3: Duplicate resources
– Duplicate the contended resources. E.g., add more 

ALUs, if ALUs are contended.
– Useful for cheap resources, frequent cases

● Separate ALU/PC adders, Reg File Ports

– Advantage: does not increase CPI
– Disadvantage: increases cost, possibly increases 

cycle time.
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Structural Solutions cont’d

● Good news
– Structural hazards don’t occur as long as each 

instruction uses a resource 
● At most once
● Always in the same pipeline stage
● For one cycle

– RISC ISAs are designed with this in mind, reduces 
structural hazards

– For assignments and exams on simple pipelining (i.e., 
not OoO), always assume no structural hazards.
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Data Hazards
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Data Hazards

● Data hazards when an instruction depends on the result of a 
previous instruction that exposes overlapping of instructions

● Three types of Data Hazards
– Read-After-Write (RAW)

● True data-dependence (Most important)

– Write-After-Read (WAR)
– Write-After-Write (WAW)

Read-after-Write
(RAW)

Read-after-Write
(RAW)

x = …
… = x

Write-after-Read
(WAR)

… = x
x = …

Write-after-Write
(WAW)

x = …
x = …
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Read-After-Write (RAW) Hazard

● For example, for the following code:
– Instr1 writes R3 in cycle 5
– However, instr2 needs R3 in cycle 3 and instr3 

needs R3 in cycle 4, before the latest R3 is written.
– Instr4 reads R3 at the second half of cycle 5. 

Therefore, there is no data hazard for instr4.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBR3 is written

back in cycle 5,
much later than
when instr2 
and instr3 need 
it.

No data hazard for
instr4, since its ID (
register read) happens
after instr1’s WB.
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RAW Hazard Solutions

● Before solving RAW hazard, pipeline needs to 
be able to identify the data dependency that 
causes RAW hazard.

● The hardware component for detecting data 
hazard is called pipeline interlock
– Need to keep register ID’s along with pipestages
– Use comparators to check for hazards
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RAW Hazard Solutions cont’d

● Solution 1 (simplest): Stall the pipeline
– Stops some instructions from executing
– Make them wait for older instructions to complete
– Simple implementation to “freeze” (de-assert write-enable 

signals on pipeline latches)
– Inserts a “bubble” into the pipe 

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

Bubble

9 10

Bubble

Bubble Bubble
BubbleBubble

After inserting two bubbles
in to the pipeline (stalls the
pipeline for two cycles), none
of the instructions has data
hazards.
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RAW Hazard Solutions cont’d

● Solution 1 (simplest): Stall the pipeline
– The downside of stalling is obviously the longer execution time. For example, for the 

following four instructions, stalling the pipeline prolongs the execution time from 8 
cycles to 10 cycles.

● Given that applications have a lot of internal dependencies, this performance penalty can be quite 
serious.

– The advantages of stalling are 
● Easy and low cost to implement
● Can solve nearly all pipeline hazards, including structural, data and control hazards.

– Stalling is the last solution to any hazards that cannot solved by other solutions.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

Bubble Bubble

9 10

BubbleBubble
Bubble Bubble

After inserting two bubbles
in to the pipeline (stalls the
pipeline for two cycles), none
of the instructions has data
hazards.
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RAW Hazard Solutions cont’d

● Solution 2: Bypass/forwarding
– Data is usually ready at the end of EXE or MEM stages.
– Basic idea,

● add comparator for each combination of destination and source registers that can have RAW 
hazards.

● Add muxes to datapath to select proper value instead of register file.
● The forwarded data are from inter-stage registers.
● Only stall when absolutely necessary

– In the following example, R3’s data is ready at the end of cycle 3.

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBR3’s data is

ready at the 
end of cycle 3.
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RAW Hazard Solutions cont’d

● Solution 2: Bypass/forwarding
– In the following example, we can start forwarding the value of R3 at the end 

of cycle 3 to instr2 and instr3.
– Advantage: no negative impact on performance. E.g., in the following 

example, it still takes 8 cycles to execute the four instructions.
– Disadvantage:

● Fairly complex change to the control unit and other pipeline resources
● Cannot solve all RAW hazards (forwarding is only doable when the value is ready).

Instr1: add R3, R2, R1

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

Instr3: add R6, R3, R5

Instr4: add R7, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WBForward R3’s value at the 

end of EXE and MEM
stages to instr2 and instr3’s 
EXE stage. Both instr2 and
instr3 stages use forwarded
value instead of reg reads.
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Load-Use Hazards

● Unfortunately, we can’t forward “backward in 
time.”

● Pipeline must be stalled to handle this 
dependency with forwarding.

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

IDIF (IM) EXE MEM (DM) WB
EXE MEM (DM) WB

Instr3: add R6, R7, R8

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

Instr2: add R4, R3, R5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

ID EXE MEM (DM) WBInstr3: add R6, R7, R8 IF (IM)
Bubble
Bubble
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Instruction Scheduling

● Alternatively, we can remove the bubble (i.e., avoid 
stalling) by rearranging the instructions.

● Both compilers and CPU can perform instruction 
scheduling.
– For compiler, it is more challenging to identify the opportunities 

of instruction scheduling due to unknown memory addresses 
at compilation time (hence unknown dependences)

– CPU can performance dynamic instruction scheduling with out-
of-order (OoO) execution.

Instr1: mov R3, [R2]

Cycles: 76 821 3 4 5

IDIF (IM) EXE MEM (DM) WB
IDIF (IM) EXE MEM (DM) WB

Instr2: add R4, R3, R5
Instr3: add R6, R7, R8

IDIF (IM) EXE MEM (DM) WB
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Other Data Hazards: WARs and 
WAWs

● Write-After-Read (WAR) and Write-After-Write Hazards
– Can’t happen in our simple 5-stage pipeline because the order of the 

instructions is always strictly followed

● But they may happen when the order of instructions are 
changed. E.g.,
– in OoO executions, 
– if the stages require different execution time
– When some instructions have cache misses

● Nonetheless, WAR and WAW can also be handled using stalls 
and forwarding.

● What about RARs?
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Control Hazards
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Control Hazards

● Control hazards happens when there are PC-
modifying instructions (branch, jump, etc) that prevent 
knowing which instruction to execute until branch 
target is computed and conditions are checked.

● In our simple model, the PC for the instruction after a 
branch is only known at the end of MEM stage.
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An Example of Control Hazards

● Branch instruction prevents the issue of next 
instruction until MEM stage.

● Essentially, pipeline is stalled until next PC is 
known.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: branch target

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)BubbleBubble Bubble

3 bubbles are
required before
next instruction
is issued.
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Control Hazard Solutions

● Solution 1: Fast branch resolution
– Add extra adder to ID stage to compute branch target
– Only works for simple conditional jump (compare to 0).

● For some conditional jumps in CISC ISA that requires 
comparing two registers, the comparison can be slow.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: branch target

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)Bubble

Put branch
handling logic
in ID reduces
the bubbles to 1.
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Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Always assume branch is not taken, i.e., the next 

sequential instruction should be executed.
– If this assumption is correct, not delay in the 

pipeline.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2: fall-through

IDIF (IM) EXE MEM (DM) WB
ID EXE MEM (DM) WBIF (IM)

Issue next sequential instr right
after a branch. If assumption is
correct, no bubbles. 
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Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Always assume branch is not taken, and the next sequential instruction is executed.
– If the assumption is wrong, need to flush the pipeline to scratch all incorrectly issued 

instructions.
● Instructions issued before the actual branch status is known are called speculatively issued 

instructions.
● Speculatively issued instructions cannot write to registers and memory until the speculation is 

verified.

Instr1: branch

Cycles: 76 821 3 4 5

Wrong Instr2

IDIF (IM) EXE MEM (DM) WB
ID EXEIF (IM)

If assumption is wrong, the
pipeline needs to be flushed
to scratch all incorrectly issued
instruction.

Wrong Instr3 IDIF (IM)

Correct Instr2 ID EXE MEM (DM) WBIF (IM)

flush flush
flush flush flush

Wrong Instr4 IDIF (IM) flush flush flush
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Control Hazard Solutions cont’d

● Solution 2: Assume not taken
– Assume-not-taken may not help that much

● Branch characteristics
– Integer Benchmarks: 14-16% instructions are conditional branches
– FP: 3-12%
– On Average:

● 67% of conditional branches are “taken”
● 60% of forward branches are taken
● 85% of backward branches are taken

– Why? Because most branches are from loops!

– Why not assume taken?
● Branch target is not known when next instruction needs to be issued.
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Control Hazard Solutions cont’d

● Solution 3: Branch Delay Slots
– Find one instruction that will be executed no matter which way the branch 

goes
– Now we don’t care which way the branch goes!

● Harder than it sounds to find instructions

– What to put in the slot (80% of the time)
● Instructions from before the branch (independent of branch)
● Instructions that surely will be executed after the branch

– Must be independent from the branch and the taken/non-taken path.

● Instruction from taken or not-taken path
– Similar to assume-not-taken or assume-taken.
– Helps if you go the right way

– Slots don’t help much with today’s machines
● Interrupts are more difficult to handle because the order of the instruction changes
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Control Hazard Solutions cont’d

● Solution 4: Branch Prediction
– The actual solution for branches in modern 

processors is predicting whether the branch is 
taken and predicting what is the branch target.

– Incorrect predictions still need flushing the pipeline.
– We will discuss branch prediction in details in the 

lecture for speculative execution.
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Control Hazards Due to Exceptions

● Instructions experiencing exceptions during 
execution also causes control hazards.

● For exceptions, the solution is to flush the 
pipeline.

Instr1: branch

Cycles: 76 821 3 4 5

Instr2

IDIF (IM) EXE MEM (DM) WB
IDIF (IM)

If there is an exception, the
pipeline must be flushed with
all instructions in the pipeline
scratched.

Instr3 IF (IM)
flush flush

Excpetion!
flush
flush flush flush flush
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Summary of Hazard Solutions
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Hazard Solutions

● Generic solution for all hazards: 
– stall and/or flush the pipeline

● A side note, NOP instructions are issued for stalls, while instructions are switched to NOPs for flushing.

● Solutions only for structural hazard
– Separate hardware resources
– Separate hardware access time
– Duplicate resources

● Solutions only for data hazard
– Bypass/forwarding
– Instruction scheduling

● Solutions only for control hazard
– Move branch logics to the ID stage.
– Assume not taken
– Branch delay slot
– Branch prediction
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Superscalar
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Superscalar

● Modern processors usually have a number of 
pipeline hardware components.
– Another benefit of Moore’s law.

● Therefore, modern processors usually can issue 
multiple instructions at each cycle.
– Usually Superscalar is accompanied with OoO to ensure 

there are independent instructions that can be issued at 
the same time.

– Obviously, multi-issue pipelines are more complex to 
implement and manage.
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Illustration of A Two-issue 
Supersalar CPU

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

IDIF EXE MEM WB
IDIF EXE MEM WB

● Ideally, a two-issue Superscalar CPU has a CPI 
of 0.5 cycles, and IPC of 2.
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Case Study: Intel Skylake Pipeline

● Maximum 8-issue per core.
● Pipeline stages: 14-19

Figure from 
Intel
Optimization 
Reference
Manual.

Wikichip
has a better
figure.
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Case Study: IBM Power9

● 4-8 Issue ( maximum 8 fetch 6 decode)
– Technically more of a SMT design than a Superscalar.

● 12-16 Pipeline stages

Figure from I
Wikichip.
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