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Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter 
4  “Assessing and Understanding 
Performance.”

● “Computer Architecture: A Quantitative 
Approach,” Chapter 1.8 “Measuring, Reporting 
and Summarizing Performance.”
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Road Map

● Performance Metrics and Measurement
● The CPU Performance Equation
● Amdahl’s Law
● Benchmarks
● Simulators
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Performance Metrics and Measurement
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Performance Metrics

● Execution time is often what we target
● Throughput (tasks/sec) vs. latency (sec/task)
● How do we decide the tasks? Benchmarks

– Processor design is a typical engineering process, no one design works 
the best for all use cases

– Therefore, a processor design is typically optimized for a special set of 
use cases.

– Benchmarks represent the applications for the target use cases.
– Types of benchmarks,

● Representative programs (SPEC, SYSMARK, etc)
● Kernels: Code fragments from real programs (Linpack)
● Toy Programs: Sieve, Quicksort
● Synthetic Programs: Just a representative instruction mix (Whetsone, Dhrystone)B
et

te
r
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Measuring Performance

● Average Execution Time of all applications:

● This is arithmetic mean
– This should be used when measuring performance 

in execution times.

1
n∑i=0

n

timei
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Measuring Performance cont’d

● Weighted Execution Time:

● Weighted average is useful when different types 
of applications have different importance.

1
n∑i=0

n

weight i×timei



Computer Architecture 8

Measuring Performance cont’d

● Normalized performance
– Execution times are normalized to the performance of a 

reference system.

● Geometric mean is better here (arithmetic mean can 
vary depending on the reference system).

● Usually measures performance gains/losses over the 
reference system

n√∏i=0

n ref _ timei
timei
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Harmonic Mean

● 30 mph for the first 10 miles
● 90 mph for the next 10 miles
● Average speed? (30+90)/2 = 60mph
● WRONG! Average speed = total distance / total 

time
– 20/(10/30+10/90) = 45mph
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Harmonic Mean (cont’d)

● The same idea applies when compute the 
average rate of computer operations.

● Consider n applications, each perform On 
operations in ti time, 1<i<n

● Then the average operation rate (number of 
operations per unit time) is

Rateavg=
∑Oi

∑ t i
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CPI and IPC

● CPI: Cycles per instruction
– A common processor performance metric for 

execution times

● IPC: Instructions per cycle
– A common processor performance metric for 

execution rates.
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MIPS 

● Millions of Instructions Per Second (MIPS)
– Not the MIPS ISA!

● MIPS 
 = instruction count/(execution time x 106) 
 = clock rate/(CPI x 106)

● Problems
– ISAs are not equivalent, e.g. RISC vs. CISC

● 1 CISC instruction may equal many RISC!

– Programs use different instruction mixes
– May be ok when comparing same benchmarks, same ISA, same 

compiler, same OS
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MFLOPS

● Millions of FLoating-point Operations Per Second 
(MFLOPS)

● Can be mis-leading either,
– FP-intensive apps needed
– Traditionally, FP ops were slow, integer operations can be ignored
– BUT today, memory operations are usually the slowest!

● “Peak MFLOPS” is a common marketing fallacy
– Basically, it just says #FP-pipes X Clock Rate
– Peak performance is not sustainable, hard to achieve with real 

applications.
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Processor Frequency

● Is this a metric? Maybe as good as the others...
● One number, no benchmarks, what can be 

better?
● Many designs are frequency driven.

– Common before 2004.
– Nowadays, power consumption is also important.
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CPU Performance Equation
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CPU Performance Equation

● Execution_Time = seconds/program

instructions cycles seconds

cycleinstructionprogram
× ×

Algorithm;
ISA;
Compiler;

Compiler (scheduling);
Micro-Architecture;

Technology (transistor 
size);
Physical Chip Design;
Circuit Design;

Affected by
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Common Architecture Tricks

● Instructions/Program (Path-length) is constant
– Same benchmark, same compiler
– Ok usually, but for some ideas compiler may change

● Seconds/Cycle (Cycle-time) is constant
– “My tweak won’t impact cycle-time”
– Often a bad assumption

● Just focus on Cycles/Instruction (CPI or IPC)
– Most academic architecture studies do just this!



Computer Architecture 18

Bottom-line of Performance Metrics

● Two quotes from “Computer Organization and 
Design,”
– “Execution time is the only valid and unimpeachable 

measure of performance.”
– “Similarly, any measure that summarizes 

performance should reflect execution time.”
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Amdahl’s Law
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The Basic Speedup Definition for 
Enhanced Execution

● Speedup of a enhanced execution of an 
application is defined as

Speedup=
Original Execution Time
Enhanced Execution Time
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Amdahl’s Law

● Intuition of Amdahl’s law:
– If a group of applications are p% enhance-able (E) 

and (1-p%) un-enhance-able (UE), 
● the minimum total execution time of these application is 

the execution times of the un-enhance-able portion.
● The maximum speedup is bounded by the un-enhance-

able portion. 

UE : 1-p% E: p% UE: 1-p%

Original Execution Time Minimum execution time.
Given enough enhancement,
The enhance-able portion’s execution
time may approach 0.
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Amdahl’s Law:
 Equation for Speedup

● The equation of Amdahl’s Law:

– Speedup is the overall speedup of all applications 
after enhancement

– p% is the percentage of the enhance-able 
applications

– s is the speedup of the enhanced applications

Speedup=
Original Exec Time
Enhanced Exec Time

=
1−p%+ p%

(1−p%)+
p%
s

=
1

(1−p%)+
p%
s
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Amdahl’s Law: 
The Limit on Speedup

● If the enhance-able applications’ speedup 
approaches infinity:

– i.e., the maximum speedup is bounded by the 
execution time of the unenhance-able applications

lim
(s→∞)

Speedup=
1

1−p%+
p%
s

=
1

1−p%
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Amdahl’s Law Examples

p=Fractionenhance=95 % , s=Speedupenhance=1.1 x

Speedupoverall=
1

(100 %−95 %)+
95 %
1.1

=1.094

p=Fractionenhance=5 % , s=Speedupenhance=10.0 x

Speedupoverall=
1

(100 %−5 %)+
5 %
10.0

=1.047

p=Fractionenhance=5 % , s=Speedupenhance=∞

Speedupoverall=
1

(100 %−5 %)
=1.052

Better to improve
the common cases.
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Visualization of Amdahl’s Law with 
Parallelization as the Enhancement

* Figure by Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551
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Benchmarks
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Benchmarks

● Benchmarks are typical applications that represent a common use 
case.
– Representativity and completeness are two main requirements.

● Common benchmark suites
– SPEC CPU (int and float) represents common desktop and server 

applications
– Rodinia represents common general purpose GPU applications.
– NAS Parallel Benchmark Suite, represents scientific applications.
– TPC benchmark suite, represents online transcational database applications.
– Yahoo! Cloud Serving Benchmark, represents NoSQL database applications.
– Cloud Suite, represents cloud applications.
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Benchmark Suite Example: 
SPEC CPU INT 2006

Benchmark Language Descriptions

400.perlbench C Perl Interpreter

401.bzip2 C Compression

403.gcc C Compiler

429.mcf C Vehicle scheduling, route planning

445.gobmk C The game of Go

456.hmmer C Protein sequence analysis

458.sjeng C A chess program

462.libquantum C Simulates a quantum computer

464.h264ref C A reference implementation of H.264/AVC

471.omnetpp C++ OMNet++ discrete event simulator 

473.astar C++ Pathfinding library for 2D maps

483.xalancbmk C++ XML translation
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Benchmark Suite Example: 
SPEC CPU INT 2017

Benchmark Language Description

600.perlbench_s C Perl interpreter

602.gcc_s C GNU C compiler

605.mcf_s C Route planning

620.omnetpp_s C++ Discrete Event simulation - computer 
network

623.xalancbmk_s C++ XML to HTML conversion via XSLT

625.x264_s C Video compression

631.deepsjeng_s C++ Artificial Intelligence: alpha-beta tree 
search (Chess)

641.leela_s C++ Artificial Intelligence: Monte Carlo tree 
search (Go)

648.exchange2_s Fortran Artificial Intelligence: recursive solution 
generator (Sudoku)

657.xz_s C General data compression
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Benchmark Suite Example: 
SPEC CPU FP 2006

Benchmark Language Descriptions

410.bwaves Fortran Fluid Dynamics 

416.gamess Fortran Quantum Chemistry. 

433.milc C Physics / Quantum Chromodynamics 

434.zeusmp Fortran Physics / CFD 

435.gromacs C, Fortran Biochemistry / Molecular Dynamics 

436.cactusADM C, Fortran Physics / General Relativity 

437.leslie3d Fortran Fluid Dynamics 

444.namd C++ Biology / Molecular Dynamics 

447.dealII C++ Finite Element Analysis 

450.soplex C++ Linear Programming, Optimization 

453.povray C++ Image Ray-tracing 
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Benchmark Suite Example: 
SPEC CPU FP 2006 cont’d

Benchmark Language Descriptions

454.calculix C, Fortran Structural Mechanics 

459.GemsFDTD Fortran Computational Electromagnetics 

465.tonto Fortran Quantum Chemistry 

470.lbm C Fluid Dynamics 

481.wrf C, Fortran Weather

482.sphinx3 C Speech recognition 
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Benchmark Suite Example: 
SPEC CPU FP 2017

Benchmark Language Description

603.bwaves_s Fortran Explosion modeling

607.cactuBSSN_s C++, C, 
Fortran 

Physics: relativity

619.lbm_s C Fluid dynamics

621.wrf_s Fortran, C Weather forecasting

627.cam4_s Fortran, C Atmosphere modeling

628.pop2_s Fortran, C Wide-scale ocean modeling (climate level)

638.imagick_s C Image manipulation

644.nab_s C Molecular dynamics

649.fotonik3d_s Fortran Computational Electromagnetics

654.roms_s Fortran Regional ocean modeling
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The Challenge to Design 
Benchmarks

● Applications and use cases are constantly 
evolving.
– We still do have good (or widely accepted) Machine 

Learning benchmarks yet.

● Too many potential applications, hard to be both 
representative and complete
– When Cloud Suite first came out, people were 

susceptible to it, as its memory behavior 
contradicted common believes.
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Simulators
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Simulators

● What is a simulator?
– A simulator is a software written to model (simulate) the 

operations of real hardware devices.

● Why use simulator?
– Building real chips is expensive.
– In architecture design phase, there are multiple prototype 

designs that need to be tried out (with benchmarks).
– Software simulators are much easier to modify and 

cheaper to experiment with.
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Types of Simulators
● Full system simulator

– Simulate most if not all hardware components, including the processor and memory.
– Typically can run a full OS on it.
– E.g., GEM5,  Simics

● Mirco-architecture Simulator
– Simulate a processor or its interval components
– May be cycle-accurate in that the simulator faithful reproduce the processor operations cycle-by-cycle. Cycle-accurate 

provides details interval insights about the processor.
– Usually can run a simple program with simple or no OS system calls
– E.g., SimpleScalar CPU simulator, CMP$Sim cache simulator

● Instruction Set Simulator
– Simulate whole instruction set execution
– Usually can run a simple program with simple or no OS system calls
– E.g., SPIM simulator simulates MIPS ISA.

● Special Metric Simulators
– There are some simulators that are used to determine rare hardware design metrics, such as power consumptions and 

chip area size.
– E.g., McPAT for power, area and timing simulation.
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Disadvantages of Simulators

● Slow!
– It may take months to simulate just one second (one billion cycles) of 

execution

● In-accurate
– There may be bugs or incorrect assumptions in the simulator.
– To reduce execution time, some simulators simplify the components it 

considers unimportant.
– Cycles are easy to account, but energy usage and chip area sizes are 

hard to determine accurately with simulator. 
– No one believes other people’s simulator results…

● Simulators are typically used in the early step in chip design. Real 
prototype chips are still indispensable in the design flow. 
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