
Computer Architecture 1

Performance Metrics and
Measurement

Wei Wang

Computer Architecture 2

Optional Readings from Textbooks

● “Computer Organization and Design,” Chapter
4 “Assessing and Understanding
Performance.”

● “Computer Architecture: A Quantitative
Approach,” Chapter 1.8 “Measuring, Reporting
and Summarizing Performance.”

Computer Architecture 3

Road Map

● Performance Metrics and Measurement
● The CPU Performance Equation
● Amdahl’s Law
● Benchmarks
● Simulators

Computer Architecture 4

Performance Metrics and Measurement

Computer Architecture 5

Performance Metrics

● Execution time is often what we target
● Throughput (tasks/sec) vs. latency (sec/task)
● How do we decide the tasks? Benchmarks

– Processor design is a typical engineering process, no one design works
the best for all use cases

– Therefore, a processor design is typically optimized for a special set of
use cases.

– Benchmarks represent the applications for the target use cases.
– Types of benchmarks,

● Representative programs (SPEC, SYSMARK, etc)
● Kernels: Code fragments from real programs (Linpack)
● Toy Programs: Sieve, Quicksort
● Synthetic Programs: Just a representative instruction mix (Whetsone, Dhrystone)B
et

te
r

Computer Architecture 6

Measuring Performance

● Average Execution Time of all applications:

● This is arithmetic mean
– This should be used when measuring performance

in execution times.

1
n∑i=0

n

timei

Computer Architecture 7

Measuring Performance cont’d

● Weighted Execution Time:

● Weighted average is useful when different types
of applications have different importance.

1
n∑i=0

n

weight i×timei

Computer Architecture 8

Measuring Performance cont’d

● Normalized performance
– Execution times are normalized to the performance of a

reference system.

● Geometric mean is better here (arithmetic mean can
vary depending on the reference system).

● Usually measures performance gains/losses over the
reference system

n√∏i=0

n ref _ timei
timei

Computer Architecture 9

Harmonic Mean

● 30 mph for the first 10 miles
● 90 mph for the next 10 miles
● Average speed? (30+90)/2 = 60mph
● WRONG! Average speed = total distance / total

time
– 20/(10/30+10/90) = 45mph

Computer Architecture 10

Harmonic Mean (cont’d)

● The same idea applies when compute the
average rate of computer operations.

● Consider n applications, each perform On
operations in ti time, 1<i<n

● Then the average operation rate (number of
operations per unit time) is

Rateavg=
∑Oi

∑ t i

Computer Architecture 11

CPI and IPC

● CPI: Cycles per instruction
– A common processor performance metric for

execution times

● IPC: Instructions per cycle
– A common processor performance metric for

execution rates.

Computer Architecture 12

MIPS

● Millions of Instructions Per Second (MIPS)
– Not the MIPS ISA!

● MIPS
 = instruction count/(execution time x 106)
 = clock rate/(CPI x 106)

● Problems
– ISAs are not equivalent, e.g. RISC vs. CISC

● 1 CISC instruction may equal many RISC!

– Programs use different instruction mixes
– May be ok when comparing same benchmarks, same ISA, same

compiler, same OS

Computer Architecture 13

MFLOPS

● Millions of FLoating-point Operations Per Second
(MFLOPS)

● Can be mis-leading either,
– FP-intensive apps needed
– Traditionally, FP ops were slow, integer operations can be ignored
– BUT today, memory operations are usually the slowest!

● “Peak MFLOPS” is a common marketing fallacy
– Basically, it just says #FP-pipes X Clock Rate
– Peak performance is not sustainable, hard to achieve with real

applications.

Computer Architecture 14

Processor Frequency

● Is this a metric? Maybe as good as the others...
● One number, no benchmarks, what can be

better?
● Many designs are frequency driven.

– Common before 2004.
– Nowadays, power consumption is also important.

Computer Architecture 15

CPU Performance Equation

Computer Architecture 16

CPU Performance Equation

● Execution_Time = seconds/program

instructions cycles seconds

cycleinstructionprogram
× ×

Algorithm;
ISA;
Compiler;

Compiler (scheduling);
Micro-Architecture;

Technology (transistor
size);
Physical Chip Design;
Circuit Design;

Affected by

Computer Architecture 17

Common Architecture Tricks

● Instructions/Program (Path-length) is constant
– Same benchmark, same compiler
– Ok usually, but for some ideas compiler may change

● Seconds/Cycle (Cycle-time) is constant
– “My tweak won’t impact cycle-time”
– Often a bad assumption

● Just focus on Cycles/Instruction (CPI or IPC)
– Most academic architecture studies do just this!

Computer Architecture 18

Bottom-line of Performance Metrics

● Two quotes from “Computer Organization and
Design,”
– “Execution time is the only valid and unimpeachable

measure of performance.”
– “Similarly, any measure that summarizes

performance should reflect execution time.”

Computer Architecture 19

Amdahl’s Law

Computer Architecture 20

The Basic Speedup Definition for
Enhanced Execution

● Speedup of a enhanced execution of an
application is defined as

Speedup=
Original Execution Time
Enhanced Execution Time

Computer Architecture 21

Amdahl’s Law

● Intuition of Amdahl’s law:
– If a group of applications are p% enhance-able (E)

and (1-p%) un-enhance-able (UE),
● the minimum total execution time of these application is

the execution times of the un-enhance-able portion.
● The maximum speedup is bounded by the un-enhance-

able portion.

UE : 1-p% E: p% UE: 1-p%

Original Execution Time Minimum execution time.
Given enough enhancement,
The enhance-able portion’s execution
time may approach 0.

Computer Architecture 22

Amdahl’s Law:
 Equation for Speedup

● The equation of Amdahl’s Law:

– Speedup is the overall speedup of all applications
after enhancement

– p% is the percentage of the enhance-able
applications

– s is the speedup of the enhanced applications

Speedup=
Original Exec Time
Enhanced Exec Time

=
1−p%+ p%

(1−p%)+
p%
s

=
1

(1−p%)+
p%
s

Computer Architecture 23

Amdahl’s Law:
The Limit on Speedup

● If the enhance-able applications’ speedup
approaches infinity:

– i.e., the maximum speedup is bounded by the
execution time of the unenhance-able applications

lim
(s→∞)

Speedup=
1

1−p%+
p%
s

=
1

1−p%

Computer Architecture 24

Amdahl’s Law Examples

p=Fractionenhance=95 % , s=Speedupenhance=1.1 x

Speedupoverall=
1

(100 %−95 %)+
95 %
1.1

=1.094

p=Fractionenhance=5 % , s=Speedupenhance=10.0 x

Speedupoverall=
1

(100 %−5 %)+
5 %
10.0

=1.047

p=Fractionenhance=5 % , s=Speedupenhance=∞

Speedupoverall=
1

(100 %−5 %)
=1.052

Better to improve
the common cases.

Computer Architecture 25

Visualization of Amdahl’s Law with
Parallelization as the Enhancement

* Figure by Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Computer Architecture 26

Benchmarks

Computer Architecture 27

Benchmarks

● Benchmarks are typical applications that represent a common use
case.
– Representativity and completeness are two main requirements.

● Common benchmark suites
– SPEC CPU (int and float) represents common desktop and server

applications
– Rodinia represents common general purpose GPU applications.
– NAS Parallel Benchmark Suite, represents scientific applications.
– TPC benchmark suite, represents online transcational database applications.
– Yahoo! Cloud Serving Benchmark, represents NoSQL database applications.
– Cloud Suite, represents cloud applications.

Computer Architecture 28

Benchmark Suite Example:
SPEC CPU INT 2006

Benchmark Language Descriptions

400.perlbench C Perl Interpreter

401.bzip2 C Compression

403.gcc C Compiler

429.mcf C Vehicle scheduling, route planning

445.gobmk C The game of Go

456.hmmer C Protein sequence analysis

458.sjeng C A chess program

462.libquantum C Simulates a quantum computer

464.h264ref C A reference implementation of H.264/AVC

471.omnetpp C++ OMNet++ discrete event simulator

473.astar C++ Pathfinding library for 2D maps

483.xalancbmk C++ XML translation

Computer Architecture 29

Benchmark Suite Example:
SPEC CPU INT 2017

Benchmark Language Description

600.perlbench_s C Perl interpreter

602.gcc_s C GNU C compiler

605.mcf_s C Route planning

620.omnetpp_s C++ Discrete Event simulation - computer
network

623.xalancbmk_s C++ XML to HTML conversion via XSLT

625.x264_s C Video compression

631.deepsjeng_s C++ Artificial Intelligence: alpha-beta tree
search (Chess)

641.leela_s C++ Artificial Intelligence: Monte Carlo tree
search (Go)

648.exchange2_s Fortran Artificial Intelligence: recursive solution
generator (Sudoku)

657.xz_s C General data compression

Computer Architecture 30

Benchmark Suite Example:
SPEC CPU FP 2006

Benchmark Language Descriptions

410.bwaves Fortran Fluid Dynamics

416.gamess Fortran Quantum Chemistry.

433.milc C Physics / Quantum Chromodynamics

434.zeusmp Fortran Physics / CFD

435.gromacs C, Fortran Biochemistry / Molecular Dynamics

436.cactusADM C, Fortran Physics / General Relativity

437.leslie3d Fortran Fluid Dynamics

444.namd C++ Biology / Molecular Dynamics

447.dealII C++ Finite Element Analysis

450.soplex C++ Linear Programming, Optimization

453.povray C++ Image Ray-tracing

Computer Architecture 31

Benchmark Suite Example:
SPEC CPU FP 2006 cont’d

Benchmark Language Descriptions

454.calculix C, Fortran Structural Mechanics

459.GemsFDTD Fortran Computational Electromagnetics

465.tonto Fortran Quantum Chemistry

470.lbm C Fluid Dynamics

481.wrf C, Fortran Weather

482.sphinx3 C Speech recognition

Computer Architecture 32

Benchmark Suite Example:
SPEC CPU FP 2017

Benchmark Language Description

603.bwaves_s Fortran Explosion modeling

607.cactuBSSN_s C++, C,
Fortran

Physics: relativity

619.lbm_s C Fluid dynamics

621.wrf_s Fortran, C Weather forecasting

627.cam4_s Fortran, C Atmosphere modeling

628.pop2_s Fortran, C Wide-scale ocean modeling (climate level)

638.imagick_s C Image manipulation

644.nab_s C Molecular dynamics

649.fotonik3d_s Fortran Computational Electromagnetics

654.roms_s Fortran Regional ocean modeling

Computer Architecture 33

The Challenge to Design
Benchmarks

● Applications and use cases are constantly
evolving.
– We still do have good (or widely accepted) Machine

Learning benchmarks yet.

● Too many potential applications, hard to be both
representative and complete
– When Cloud Suite first came out, people were

susceptible to it, as its memory behavior
contradicted common believes.

Computer Architecture 34

Simulators

Computer Architecture 35

Simulators

● What is a simulator?
– A simulator is a software written to model (simulate) the

operations of real hardware devices.

● Why use simulator?
– Building real chips is expensive.
– In architecture design phase, there are multiple prototype

designs that need to be tried out (with benchmarks).
– Software simulators are much easier to modify and

cheaper to experiment with.

Computer Architecture 36

Types of Simulators
● Full system simulator

– Simulate most if not all hardware components, including the processor and memory.
– Typically can run a full OS on it.
– E.g., GEM5, Simics

● Mirco-architecture Simulator
– Simulate a processor or its interval components
– May be cycle-accurate in that the simulator faithful reproduce the processor operations cycle-by-cycle. Cycle-accurate

provides details interval insights about the processor.
– Usually can run a simple program with simple or no OS system calls
– E.g., SimpleScalar CPU simulator, CMP$Sim cache simulator

● Instruction Set Simulator
– Simulate whole instruction set execution
– Usually can run a simple program with simple or no OS system calls
– E.g., SPIM simulator simulates MIPS ISA.

● Special Metric Simulators
– There are some simulators that are used to determine rare hardware design metrics, such as power consumptions and

chip area size.
– E.g., McPAT for power, area and timing simulation.

Computer Architecture 37

Disadvantages of Simulators

● Slow!
– It may take months to simulate just one second (one billion cycles) of

execution

● In-accurate
– There may be bugs or incorrect assumptions in the simulator.
– To reduce execution time, some simulators simplify the components it

considers unimportant.
– Cycles are easy to account, but energy usage and chip area sizes are

hard to determine accurately with simulator.
– No one believes other people’s simulator results…

● Simulators are typically used in the early step in chip design. Real
prototype chips are still indispensable in the design flow.

Computer Architecture 38

Acknowledgment

● These slides are partially based on the lecture
notes from Dr. David Brooks.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

