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Abstract—Clouds have been adopted widely by many organizations for their supports of flexible resource demands and low cost,
which is normally achieved through sharing the underlying hardware among multiple cloud tenants. However, such sharing with the
changes in resource contentions in virtual machines (VMs) can result in large variations for the performance of cloud applications,
which makes it difficult for ordinary cloud users to estimate the run-time performance of their applications. In this paper, we propose
online learning methodologies for performance modeling and prediction of applications that run repetitively on multi-tenant clouds (such
as on-line data analytic tasks). Here, a few micro-benchmarks are utilized to probe the in-situ perceivable performance of CPU, memory
and I/O components of the target VM. Then, based on such profiling information and in-place measured application’s performance,
the predictive models can be derived with either Regression or Neural-Network techniques. In particular, to address the changes in
the intensity of resource contentions of a VM over time and its effects on the target application, we proposed periodic model retraining
where the sliding-window technique was exploited to control the frequency and historical data used for model retraining. Moreover, a
progressive modeling approach has been devised where the Regression and Neural-Network models are gradually updated for better
adaptation to recent changes in resource contention. With 17 representative applications from PARSEC, Nas Parallel and CloudSuite
benchmarks being considered, we have extensively evaluated the proposed online schemes for the prediction accuracy of the resulting
models and associated overheads on both a private and public clouds. The evaluation results show that, even on the private cloud
with high and radically changed resource contention, the average prediction errors of the considered models can be less than 20%
with periodic retraining. The prediction errors generally decrease with higher retraining frequencies and more historical data points but
incurring higher run-time overheads. Furthermore, with the neural-network progressive models, the average prediction errors can be
reduced by about 7% with much reduced run-time overheads (up to 265X) on the private cloud. For public clouds with less resource
contentions, the average prediction errors can be less than 4% for the considered models with our proposed online schemes.

Index Terms—Performance Modeling and Prediction; Periodic re-training; Progressive learning; Profiling; Multi-Tenant Clouds;
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1 INTRODUCTION

Due to the low cost-of-ownership, public clouds have been
increasingly adopted by many organizations to serve as their
main computing infrastructures. However, this low cost is
generally achieved through sharing the hardware resources
by multiple virtual machines (VMs) on the same host with
multi-tenancy of different users in the clouds. Such sharing
of hardware can lead to resource contention, which in turn
will negatively affect the performance of the applications
running in the VMs [1]. The impacts of such contention
on the performance can be application specific depending on
their resource requirements. Moreover, as the number of VMs
and their running applications on the same host change over
time, the impact and severity of such contention can vary
significantly, causing the performance of the same application
fluctuates in a quite large range at run-time.

Such performance variations have made it very challenging
to predict the performance of an application running in the
cloud environment. However, to design efficient auto-scaling
policies and select the correct type and number of VM
instances, it is critical for cloud users to obtain the accurate
knowledge on the performance of given applications to meet
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their performance and cost objectives. There have been many
studies on the prediction of the application’s performance
under hardware resource contention [2, 3, 4, 5]. However,
most of these studies have focused on system level techniques
that normally require extensive knowledge of the applications
(including their resource demands and detailed memory be-
haviors) that share the hardware resources [6, 7, 8]. Although
some studies on predictive techniques do not require prior
knowledge of the co-running applications (such as Bubble-
flux [9] and ESP [10]), they would require access to low level
hardware performance monitoring units (PMU).

In public clouds, ordinary users typically do not have control
over which groups of applications and their associated VMs
will share the hardware, nor do they have a-prior knowledge
of the behaviors of these applications. In addition, such users
generally do not have access to special hardware registers
or counters about the underlying host machines in the cloud
environment. Therefore, it is imperative to design and develop
a user-level prediction framework for ordinary cloud users.

To estimate the resource contention of key components
(such as CPU, memory and storage) in clouds, profiling tech-
niques with micro-benchmarks have been widely deployed [11,
12]. For instance, Leitner et al. studied the usage of 23 micro-
benchmarks to model the performance of two applications run-
ning on different cloud instances [13]. Moreover, Baughman et
al. used actual application executions with different input data
sizes to model the application’s performance [14]. However,
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both studies have focused on profiling the average performance
of a particular hardware resource rather than considering the
run-time resource contention severity. Note that, to enable
efficient resource management and job scheduling, it may be
necessary to predict the performance of a cloud application
at the run-time by considering the in-situ severity of resource
contention.

Based on the profiling technique with micro-benchmarks,
we have studied uPredict, a user-level performance predictive
framework for cloud applications, in our previous work [15].
With a set of specially devised micro-benchmarks that run
right before an application was executed, the resource con-
tention in CPU, memory and disk I/O was accessed respec-
tively. Then, uPredict exploits such contention information
with the in-place measured performance of a give applica-
tion to build offline application-specific regression or neural-
network based predictive models. The models essentially re-
flect the sensitivity of the application’s performance to the
levels of encountered resource contention and thus can be used
to predict its performance based on the in-situ profiling in-
formation from the micro-benchmarks. The evaluation results
verified the feasibility of uPredict with reasonable prediction
errors in both a private cloud with potentially high resource
contention and two public clouds [15].

Note that, the predictive models in uPredict were trained
offline and rather static, which may not be able to model the
rapidly changing resource contention in cloud environment.
To address this problem, we propose online performance
modeling and prediction schemes in this paper, where some
preliminary results have been reported in [16]. In particular, to
take advantage of the recently collected profiling information
and performance data, we studied an online approach with
periodic re-training for model refinement. Here, the predictive
models were re-trained periodically based on a user-defined
adaptation frequency, which is specified as the batch size to
indicate the number of new iterations before a model is re-
trained at run-time. Moreover, based on the concept of sliding-
window, the number of historical data points to be utilized
to re-train a model is determined by a window-size, which
denotes the number of batches [16].

For neural-network based predictive models, simple (shal-
low) models are not capable of accurately modeling the high
dimensional relation between the profiling information and
application performance. However, complex (deep) models
require a large number of training data points. Therefore,
to address such a model complexity issue, we proposed an-
other online approach based on a recently studied progressive
model [17]. Here, the model complexity increases over time
by adding more layers to the neural-network with the ability
of knowledge transfer [18]. That is, instead of learning the
model parameters from the scratch as in periodic re-training,
the progressive modeling approach can gradually update the
existing neural-network model’s parameters and architecture
with recently collected profiling and performance data. This
gives progressive model training a better chance to model
the application performance and respond faster and more
accurately to changes in the intensity of resource contention
without losing the knowledge learned from past data points.

The proposed online schemes have been evaluated exten-
sively with 17 representative applications from PARSEC, Nas
Parallel Benchmark (NPB) and CloudSuite [19, 20, 21] run-
ning on both a private cloud and two public clouds, including
Amazon Web Services (AWS) [22] and Google Compute
Engine (GCE) [23]. The private cloud was managed with
OpenStack on a local cluster with intentionally introduced
high levels of resource contention caused by co-located VMs
running either CPU or I/O intensive applications.

For the private cloud with high resource contention, the
evaluation results show that, with the periodic re-training
scheme, smaller batch sizes (i.e., higher adaptation frequen-
cies) and larger window sizes (i.e., more historical data points)
can generally lead to more accurate predictive models with
reduced prediction errors. However, higher run-time overheads
can be introduced with smaller batch sizes and large window
sizes. For instance, with the batch size of 1 and window size
of ∞ (i.e., the model is re-trained after each iteration with
all historic data points being considered), the resulting Lasso
regression based predictive models have the average prediction
error of 17% with overall run-time overhead of 1325 seconds.
When the batch size is 50 and the window size is 5, the
average prediction error is about 19.58% with the overall run-
time overhead of 10.8 seconds (a reduction of 120X). When
the online progressive modeling approach is adopted with the
batch size of 50, the resulting neural-network models have
the average prediction error of 16%, which is a significant
improvement over the 35% error of the Lasso models with
the periodic re-training approach. For public clouds with less
resource contention, the average prediction error is less than
4% for the resulting progressive neural-network models, which
indicates that the online schemes can accurately predict the
performance of the considered applications in public clouds.

The main contributions of this work can be summarized as
follows:

• A periodic re-training approach for the online perfor-
mance modeling and prediction is proposed, where the
sliding-window technique is utilized to control the fre-
quency and historical data points for re-training [16];

• An online progressive modeling approach has been pro-
posed for neural-network based predictive models to bet-
ter incorporate the recent changes of resource contention
in cloud environment without losing past knowledge;

• The proposed online schemes were evaluated extensively
with representative benchmark applications on both a
private and two public clouds. The trade-offs between
the achieved prediction accuracy of the online schemes
and the associated overhead were thoroughly evaluated.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the closely related works. Section 3 reviews
the preliminary concepts and presents the overview of the
online framework. Section 4 introduces the online periodic
model re-training and adaptation techniques. The progressive
modeling approach is presented in Section 5. The evaluation
results are presented and discussed in Section 6. Section 7
discusses the limitation of this work and points out our future
work. Finally, Section 8 concludes the paper.
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2 CLOSELY RELATED WORKS

Many research studies have been investigated to increase
the quality of resource provisioning in clouds by predicting
and leveraging the incoming requests received by the cloud
providers [24, 25, 26, 27]. In [28], Huang et. al. used Recurrent
Neural Networks (RNN) with LSTM cells to predict the load
and performance of the cloud servers based on the number
of requests received. Here, dedicated systems serving only a
single type of application to multiple clients were considered.
Most of these research studies have focused on the number
of requests received and different workload resource require-
ments without considering contention due to collocation.

There are also many research studies that exploit resource
profiling for performance analysis of applications in a con-
trolled environments (e.g., on dedicated servers) [3, 10, 29,
30]. Caunta estimates the performance degradation due to
collocation using resource profiling [29]. QuMan uses profiling
to estimate the required resource of an application and thus
makes collocation decisions [30]. ESP and DeepDive use
hardware counters to capture the source of interference and
performance bottleneck due to collocation [3, 10]. Despite
these studies, the performance degradation due to contention
in the cloud environment is not preventable and still exist. This
comes from the fact that the information of applications may
not be known before they are deployed in clouds. Moreover,
migrating a VM can be expensive and will cause network
contention after the deployment. Such migration can also lose
the access to the VM which jeopardises the Service Level
Agreement (SLA) objectives.

Some research studies have mainly focused on modeling
and prediction of a specific type of applications (e.g., Spark)
due to the existence of additional information about job states
and execution [31, 32, 33, 34]. For instance, Fei Zu et. al.
used existing Directed Acyclic Graph (DAG) information of a
Spark job about the task to predict the average performance of
the big data application in different instances. The predicted
performance was used to decide the number of spot instances
to use for execution of the spark jobs with the objective of
reducing the cost [31]. This category of work only predicted
the average performance, and would require DAG information
which is not applicable to all applications.

Performance evaluation and modeling of applications run-
ning on the cloud has been the topic of many research
studies [35, 36, 37, 38, 39]. Mao et. al. [35] considered cus-
tomizable workloads on the cloud to profile the performance
of different instances and build a performance-cost model of
cloud providers. In [37], the authors presented Graphalytics,
a graph analytics benchmark for GPU-based cloud services,
with the focus on modeling the performance regarding variable
input sizes. TeaStore [36] uses micro-service based profiling
on the cloud to model and evaluate the effect of parametric
changes of a workload on achieved performance. In [38],
instructions are injected into an application’s source code to
benchmark the progress of different execution stages, which
are later used for predicting the overall application perfor-
mance. To assist users in selecting the best instance satisfying
their performance needs, the authors exploited user-provided

weights and profiled performance of different system resources
to provide a ranked list of VM configurations [39]. To predict
the performance of applications in cloud environments, PARIS
has been designed as a predictive model that exploits resource
profiling information obtained from the OS on different public
cloud services [40]. Similarly, Scheuner and Leitner used
micro-benchmark profiles to predict the application’s perfor-
mance on various VMs in different clouds [41]. However, these
studies can only model and predict an application’s average
performance on various clouds. In particular, they cannot be
utilized to predict the in-situ performance of an application
running on clouds. Such runtime performance information can
be important for cloud users to make proper decisions on when
to trigger auto-scaling operations [42] and for time-sensitive
applications to satisfy their timeliness requirements [43, 44].

3 OVERVIEW AND PRELIMINARY

In this work, we focus on applications (such as data and graph
analytics that deployed in online machine learning applica-
tions [7, 45]) that repeatedly run on a single VM at the request
of users in the cloud environment. To focusing on evaluating
the accuracy of modeling the experienced contention and
corresponding application performance, we assume that the
applications’ execution times are affected only by the resource
contention (i.e., interference) caused by the collocated VMs
on the same host machine and do not consider varying input
data sizes. That is, the data to be processed in each iteration is
assumed to have a fixed size. However, we would like to point
out that the predictive model considered in this work can be
easily extended to incorporate different data sizes, especially
when such a size has a known (e.g., linear) relation with
the application’s execution time. For these cases, two models
could be trained, where one input-performance model focuses
on the application execution time regarding to different input
sizes, and another contention-performance model for different
contention levels. Using the contention-performance model,
the performance for the fixed input size in different contention
levels can be predicted and scaled to get the execution time
for the targeted input data size using the input-performance
model.

As in our previous work [15], we assume that ordinary
cloud users do not have access to performance counters in the
hypervisor and special registers in the underlying hardware of
the host machine. That is, the proposed online schemes inter-
acts only with the target VM in which the user’s application
will run. In what follows, we first present the overview and
workflow for the proposed online predictive framework. The
micro-benchmarks for assessing resource contention in CPU,
memory and I/O are reviewed next.

3.1 Overview of Online Methodology
The overview of the proposed online framework for perfor-
mance modeling and prediction is shown in Fig. 1. Here, as
the first step, a few specially designed micro-benchmarks [15]
(see Section 3.2 for details) will run in the target VM to assess
the current level of resource contention in CPU, memory and
I/O components caused by other applications running in VMs
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Fig. 1: Overview and workflow of the online framework.

collocated on the same host machine. Then, the application
will run in the target VM in step 2. The measured performance
(execution time) of the application will be correlated with the
obtained profiling information from the micro-benchmarks in
step 1 to form a data tuple. Due to changes in collocated VMs
and/or their applications, the interference experienced by the
application may change during its execution. It is possible to
exploit interval based profiling for long-running applications.
However, exploring such changes is beyond the scope of this
paper and will be left for our future work.

Once the first set of data tuples are collected, the initial
performance model can be trained using machine learning
techniques, such as Regression or Neural Networks (step
5; see Sections 4.1 and 5.2). Then, with every new set of
data collected, the existing performance predictive models for
the application can be retrained or updated at run-time. As
shown in the figure, we use the batch size to control how
frequently a predictive model is re-trained (see Section 4.2).
Once the model is obtained, based on the profiling information
from running the micro-benchmarks at the beginning of each
iteration, the application’s performance can be predicted at
run-time (step 7).

3.2 Resource-Contention and Micro-benchmarks
In [15], we have devised a set of micro-benchmarks to estimate
the contention levels of key resource components (i.e., CPUs,
memory and disks) in a VM due to interference from the
collocated VMs and their applications on the same host
machine. From our previous study [15], we found that the
prolonged (shortened) execution of a micro-benchmark can
be a indicator of increased (decreased) contention level for the
corresponding resource, respectively. That is, the profiling in-
formation from the micro-benchmarks provides an estimation
on the perceivable performance of these components delivered
to a user application at run-time. Given that we focus on
applications running only on a single VM, we do not consider
network issues in this work, which will be studied in our
future work when applications running on multiple VMs are
considered. In what follows, we explain the detailed design
for each micro-benchmark [15].

CPUs: For resource contention in CPUs, a multi-threaded
micro-benchmark is utilized to stress the performance of the

virtual CPUs of a given VM [15]. Here, each thread will loop
through and decrements an in-register counter that is initiated
with a given value. These in-register operations ensure that
the performance of this micro-benchmark is not affected by
memory at run-time and thus examine the contention in CPUs
to the maximum extent. The amount of time for each thread to
reach zero for the in-register counter is recorded. The number
of created threads at run-time for this micro-benchmark will
be equal to the number of virtual CPUs of the target VM. In
the end, the averaged execution time (tcpu) from all threads
will be used as the indicator of the overall contention level for
all the virtual CPUs in the target VM.

Memory: Similarly, to stress the memory bandwidth of the
target VM, the memory micro-benchmark will access a 2GB
array with the stride size of 128 sequentially [15]. The objec-
tive of such a memory access pattern is to ensure that each data
access needs to access off-core memory rather than the on-chip
caches. Again, the number of threads in this micro-benchmark
is the same as the number of virtual CPUs in the VM and each
of them accesses the equal portion of the array. The execution
time of this micro-benchmark will provide us the insight into
the performance impact of the memory contention experienced
by the target VM in the system.

Disk I/Os: For the I/O performance of the target VM, we
designed the disk micro-benchmark that reads 256MB data
from the disk with the page size of 4KB [15]. During the
execution of this micro-benchmark, the OS file caching will be
disabled to prevent the data file being cached by the OS. The
micro-benchmark adopts four threads, which will introduce
enough I/O operations to stress the disk’s bandwidth while
avoiding too much inter-thread communication. Again, the
execution time for this micro-benchmark to access the required
amount of data in the file will be utilized to indicate the
contention level of the disk.

3.3 Profiling and Performance Data Tuples
In each iteration, these micro-benchmarks will be invoked
sequentially first, followed by the execution of the user’s
application. We assume that the changes in the contention
level of the resources measured by the micro-benchmarks
will affect the execution of the application and be reflected
by the corresponding changes in its execution time. Here,
the profiling information refers to the measured execution
times of the micro-benchmarks. Together with the measured
execution time of the application in each iteration, they form
a data tuple {tCPU , tmem, tdisk, tapp}, which represents the
implicit relationship between the application’s performance
and resource contention of the VM.

For the data tuples, the execution times of a cloud appli-
cation can be obtained directly after its executions without
incurring additional overhead. Hence, in each iteration, the
profiling overhead only includes the extra time to execute the
micro-benchmarks. Although it is desirable to have smaller
profiling overhead, short executions of the micro-benchmarks
may not be able to accurately capture the actual contention of
the resources. For the experiments conducted in this paper,
each micro-benchmark was executed for about 3 seconds
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in each iteration to ensure the proper resource contention
was obtained. In [15], we have shown that the execution
of each micro-benchmark can be shortened to half second
while obtaining almost the same prediction accuracy for the
considered predictive models being deployed offline.

3.4 Predictive Models and Performance Prediction

Once enough profiling and performance data tuples of an
application are collected, various performance predictive mod-
els can be developed and trained based on different machine
learning techniques. For example, several offline regression
and neural-network based predictive models have been studied
in our previous work [15]. Here, the regression based models
can effectively present simple relationship between an appli-
cation’s performance and the profiling information, which are
generally fast to train with high prediction accuracy. However,
for applications with complex behaviors and non-linear rela-
tionships, neural-network based models would be needed to
get better prediction results, which is usually achieved through
time-consuming hyper-parameter optimizations [15].

When an application-specific predictive model was ob-
tained, it can be utilized to predict the performance (e.g.,
execution time) of the application based on the profiling in-
formation from the micro-benchmarks. It has been shown that
both regression and neural-network based predictive models
can quite accurately predict the performance of the considered
applications in both a private and public clouds [15].

Note that, for a given target application and its VM, the
collocated VMs on the same host and their applications may
keep changing constantly. Researches show that 90% of VMs
deployed on the cloud live less than a day [46]. Such frequent
changes in the collocated VMs and their applications can
introduce new resource contention patterns, which may not
be captured by the offline trained predictive models. This
in turn can lead to large prediction errors. In this work, to
incorporate such changing new patterns of resource contention
and adjust the predictive models, we propose two online
model adaption approaches: periodic model retraining and
progressive modeling, which are detailed in the next two
sections, respectively.

4 PERIODIC MODEL RETRAINING

In order to incorporate the new resource contention patterns,
the straightforward approach is to re-train the predictive
models periodically utilizing the profiling information from
the most recent executions of an application. For the approach
of periodic model retraining, there are two major issues that
have to be carefully addressed. The first issue is the retraining
frequency, that is, how often and when the model should be
retrained. The second one is related to the number of historical
data tuples should be exploited to retrain the model. Intuitively,
more historical data tuples with higher retraining frequency
can improve the obtained predictive model on its accuracy,
which in turn can introduce higher run-time overheads.

In this work, we consider a sliding-window based approach
to control the retraining frequency and required historical
data tuples for retraining. Moreover, considering the excessive

overheads to train the neural-network based predictive models
due to its time-consuming hyper-parameter optimization pro-
cess [15], we focus on regression-based predictive models for
the periodic model retraining approach.

4.1 Regression-based Predictive Models
When the relationship between the execution times of a target
application and the levels of resource contention profiled
by the micro-benchmarks is relatively simple, the predictive
models can be derived (or learned) with regression techniques
on a set of data tuples. In general, regression models can
provide high accuracy for simple relationships, and they are
fast to train and not very sensitive to hyper parameters [47].
Based on the profiled data tuples, we have conducted extensive
experiments with different degrees of polynomial regression
and found that, the linear regression and 3-degree polynomial
regression can result in either under-fitting or over-fitting
problems, respectively, and the 2-degree polynomial regression
fit the relationship for the considered applications the best,
which will be considered in this work.

tapp =f(tCPU , tmem, tdisk)

=α1 · t2CPU + α2 · t2mem + α3 · t2disk+
α4 · tCPU · tmem + α5 · tCPU · tdisk + α6 · tmem · tdisk
+ α7 · tcpu + α8 · tmem + α9 · tdisk + α10

(1)

For the 2-degree polynomial regression models, the rela-
tionship between the execution times of an application and
the profiled information of the micro-benchmarks can be
represented as Equation (1). For a given set of obtained
data tuples, there are many existing packages that can be
exploited to find out the values of the coefficients in the
above equation and train the corresponding predictive model
between the application performance and the profiled resource
contention, such as Lasso, Elastic Net and Ridge regression
techniques [48, 49, 50]. We have evaluated the methodology
with these different algorithms and similar results have been
obtained [15]. In this work, for the periodic model retraining
approach, we focus only on the Lasso regression algorithm
and report the evaluation results on its prediction accuracy and
model training overheads accordingly due to space limitation.

4.2 Sliding-Window based Periodic Retraining
Once the coefficients in Equation (1) is determined with the
chosen regression techniques, the obtained predictive model
can be utilized to predict the performance of the given appli-
cation based on the profiling resource contention information
from running the micro-benchmarks. Moreover, after each
iteration, a new data tuple can be obtained from the measured
execution time of the target application as well as the profiled
information of running the micro-benchmarks. Theoretically,
the predictive model could be retrained after each new data
tuple is obtained. With the latest relationship between the
profiled resource contention and the application’s performance
being incorporated, the updated model could provide more
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Fig. 2: Sliding-window based adaptations for the predictive model with batch size of 10 and window size of 2.

accurate prediction for the application’s execution time in the
next iteration. However, retraining after each iteration would
introduce prohibitive run-time overheads as shown in our eval-
uations (see Section 6). Therefore, there is an interesting trade-
off between retraining frequency and run-time overheads.

Retraining Frequency (Batch Size): In this work, to control
the adaptation frequency and regulate how often (and when)
the predictive model should be retrained at run-time, a batch
size is utilized. It denotes the number of data tuples that
should be accumulated in a batch before training the initial
model or re-training/updating the existing model. Fig. 2 shows
an example with the batch size of 10. That is, once an
initial predictive model is obtained using the first batch of
data (after the 10th data point), it will be utilized to predict
the performance of the target application for its execution
in the next 10 iterations. In the meantime, 10 new data
tuples will be generated from the profiling information of the
micro-benchmarks and the measured performance of the target
application. Before the 21st iteration, the predictive model will
be retrained by utilizing the recent data tuples in the training
window.

Clearly, having smaller batch sizes will enforce the predic-
tive model be retrained more frequently at run-time, which
may improve the accuracy of the prediction results. On the
other hand, it will in turn lead to higher run-time overheads.
For the extreme case where the batch size equals 1, the
predictive model will be retrained after every iteration of
running the target application. The trade-offs between the pre-
diction accuracy and run-time overheads have been extensively
evaluated as reported in Section 6.
Window Size (Number of Historical Data Tuples): When it
is the time to retrain the predictive model, we have to decide
which part and how many historical data tuples should be
exploited. Intuitively, the most recent data tuples should be
utilized as they contain recent resource contention information
that can help the predictive model to get better prediction re-
sults for the target application’s execution in future iterations.
Moreover, instead of utilizing all historical data tuples, which
can lead to prohibitive run-time overhead as well as excessive
memory space demand for model retraining, we adopt the
sliding-window technique to control the number of historical
data tuples to be utilized for retraining the model.

Specifically, a sliding-window contains a certain number of
the most recent batches (which is denoted as window size).
Only the data tuples in these batches will be utilized to retrain

the predictive model. At the beginning of the execution, the
first few sliding-windows may not have enough batches and
contain fewer number of data tuples for training. For the
example shown in Fig. 2, it has the window size of 2. Here,
the first sliding-window has only one batch of 10 data tuples.

Once enough number of batches are accumulated, the
predictive model will be retrained with a certain number of
most recent data tuples that are determined by both batch and
window sizes. For the example in Fig. 2, it has the batch
size of 10 and window size of 2. Therefore, (up to) 20 most
recent data tuples in the training window will be utilized to
train/retrain the predictive model.

When the window size is set as ∞, this extreme case
will reduce to where all historical data tuples are needed
for retraining the predictive model. Moreover, when a given
number (e.g., 100) of historical data tuples are desired to
retrain the model, various combinations of batch and window
sizes can be adopted (e.g., batch and window sizes of being
20 and 5 vs. 10 and 10). Apparently, these settings will affect
the overall prediction accuracy and the runtime overheads (see
Section 6 for the detailed evaluation results).

5 PROGRESSIVE MODELING

For the periodic model retraining approach, one major lim-
itation is the number of historical data tuples (i.e., window
size) utilized for retraining the predictive models. Ideally, all
historical data tuples should be utilized (with the window
size being ∞) to incorporate all observed patterns of resource
contention. However, in addition to incurring excessive run-
time overheads, it may not be always feasible to keep all the
historical data tuples [51, 52]. Therefore, instead of completely
retraining the predictive models from scratch for each iteration,
in this section, we consider progressive modeling approach
that focuses on updating the existing predictive models utiliz-
ing the recently collected data tuples. The goal is to have
the resulting predictive models to incorporate the recently
observed patterns of resource contention while still keeping
the knowledge of the old resource contention patterns. In
particular, we consider two types of progressive modeling
techniques: regression models with online adaptation and the
progressive neural-network models.

5.1 Regression Models: Online Adaptation
In Section 4, the periodic retraining adopts the Lasso re-
gression to take advantage of Singular Value Decomposition
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(SVD) matrix factorization technique to find the coefficients
in Equation (1) [53]. Although SVD can accurately estimate
the parameters with relatively low overhead, the SVD based
approach is lack of the ability to update the existing param-
eters with new performance data tuples. On the other hand,
Stochastic Gradient Decent (SGD) algorithm has shown a great
potential in recent years for model optimization and many
existing packages use SGD for online model adaptation to
update the coefficients [54]. Moreover, SGD has the ability to
incorporate a large number of features and data tuples [55],
which make it is very suitable for the objective of online per-
formance modeling, especially considering the long running
features of the cloud applications.

In this section, to adjust the coefficients in Equation (1)
based on their current values (i.e., the existing predictive
models) and the newly collected data tuples, we consider
SGD algorithms for the online adaptation of regression mod-
els. Specifically, to adjust the coefficients of the regression
models, we consider two different implementations of the
online regression techniques using SGD algorithm in Scikit-
learn package [56]. First, the default regression model with
L2 regularization and online modification using SGD (denoted
as sgdReg). Second, a slightly modified version in which the
L2 regularization has been replaced with L1 regularization to
implement an online version of the Lasso regression (denoted
as sgdRegLasso). In Lasso regressions, L1 regularization will
limit the size of the coefficients and yields a sparse model by
eliminating coefficients with small values that can help better
deal with high-dimensional data, where L2 regularization
using Euclidean distance would be better in dealing with the
scale of the features [57].

5.2 Progressive Neural Network Models
Neural-network based models have shown the ability to model
any linear and non-linear behaviors efficiently [58, 59]. In our
previous work [15], we observed that using a complex neural-
network with many layers would require many training data
points in the very beginning. This is not feasible for online
learning as the training data points are gradually collected.
Also, very shallow neural networks have poor performance
and are not capable of learning higher dimensional correlations
between the micro-benchmarks and application performance.

In [60], a Neural-Network (NN) based progressive modeling
approach has been studied, which updates the existing model
for its parameters instead of retraining all parameters from
scratch. Such a progressive approach allows the knowledge in
an existing trained model be transferred to a new model that
is capable of extracting more insights from all collected data.
Here, the model’s hyper-parameters are updated gradually
when more new data tuples are collected [17]. Following the
same principles, we also consider a progressive neural network
model in this work, where the number of layers can increase
when more data tuples become available. This will help to
model the higher dimensional correlation between the micro-
benchmarks and application performance more accurately.

Knowledge Transfer and equivalent Identity Matrix:
Specifically, in order to preserve the learned relationship

between an application’s execution times and the profiled
resource contention from previous data tuples, we adopt a
progressive neural network model that has the ability of knowl-
edge transfer [18], where the knowledge from a previously
trained shallow model can be transferred to a deeper one
with more layers. Here, with the first batch of data tuples,
a fully connected neural network with a single hidden layer
of randomly initiated weights and biases will be trained as the
predictive model to predict the executions of the application
during the next batch. Equation 2 shows the micro-benchmarks
progress as inputs (tCPU , tmem, and tdisk), first hidden layer
weight (w1

x,y) and bias (b11,y) matrices, output layer weight
(wout

y,1 ) and bias (bout1,1 ) matrices, and the final output of the
DNN (tapp), respectively. In the equation, x is the number of
micro-benchmarks (3), and y represents the number of neurons
in the first layer.

([
tCPU tmem tdisk

]
∗
[
w1

x,y

]
+

[
b11,y

])
∗
[
wout

y,1

]
+

[
bout1,1

]
= tapp

(2)
Once the second batch of data tuples are collected, the

single-layer neural network trained in the previous step will
be replaced by a 2-layer neural network by transferring the
weights and biases of the previous model to the new model
with 2 layers. Fig. 3 illustrates the process of augmenting
the neural network from one to two hidden layers while
transferring the knowledge. Specifically, weights and bias in
the blue boxes (w1

x,y, b11,y , wout
y,1 , and bout1,1 matrices above) will

be transferred from the existing neural network model to the
exact same position in the new neural network with two layers.
Equation 3 shows the input, weight, and bias matrices for a
Neural Network (NN) with two hidden layers. As discussed,
the weight and bias matrices for the first hidden layer and
output layer are transferred from NN with 1 layer.

{([
tCPU tmem tdisk

]
∗
[
w1

x,y

]
+
[
b11,y

])
∗
[
w2

y,y

]
+

[
b21,y

]}
∗
[
wout

y,1

]
+

[
bout1,1

]
= tapp

(3)
After a new layer is added to the neural network, if the

new weights (w2
y,y) and biases (b21,y) are initialized to random

values, the accuracy of the model could significantly degrade.
To preserve the functionality of the model and prevent the de-
crease of prediction accuracy, instead of random initialization
of the weights and biases for the new layer, the weights will
be initialized to the equivalent identity matrix (I) and biases
to zero [18]. In the identity matrix (I), the principal diagonal
values are all ones. Considering i as the current number of
layers, Li as the weights matrix for the last layer of the existing
model, and the Ii+1 as the weights for the new layer, the
functionality of the existing model can be preserved as there is
LiIi+1 = Li. Note that, during the training process, all layers
will be able to learn and can take any value as their parameters.
The weights and biases in the green boxes in Fig. 3 shows the
weights initialized to the corresponding identity matrix and
biases initialized to 0.
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Fig. 3: Progressive Neural Networks - number of layers increases from 1 to 2 with knowledge transfer.

Moreover, the model will converge faster and achieves better
accuracy compared to the weights that are initialized with
random values since using the identity matrix will preserver
the functionality [18].

Number of Hidden Layers: In the above process, to process
each new batch of data tuples, a new layer would be added to
the neural network, which can lead to rather deep and complex
models with higher run-time overheads. In this work, to control
the complexity of the resulting neural network models for them
being utilized at run-time, the maximum of hidden layers is
set as 5. That is, after adding five (5) hidden layers when
processing the first five batches of data tuples, additional batch
of data tuples will only be utilized to adjust the parameters of
the five (5) hidden layers without further adding more layers.
In our experiments, we have considered up to 10 layers and
the results show that having five (5) hidden layers is enough to
accurately model all the considered representative benchmarks.

6 EVALUATIONS AND DISCUSSIONS

In what follows, we first present the evaluation methodol-
ogy and experiment settings. Then, the evaluation results
for periodic model retraining with Lasso regression models
on a private cloud are discussed by considering different
batch and window sizes. After that, the evaluation results for
the progressive modeling approach on the private cloud are
presented, which are compared against that of the periodic
model retraining in terms of prediction accuracy and run-
time overheads. Finally, the performance of the progressive
modeling on two public clouds (i.e., Amazon AWS and Google
GCE) are discussed.

6.1 Evaluation Methodology and Setups

We considered a total of 17 benchmarks from CloudSuite [21],
NAS Parallel Benchmarks (NPB) [20] and PARSEC [19].
Specifically, four are from CloudSuite, including In-Memory
Analytic, Graph Analytic, Web Search and Data Serving; five
are from NPB, including ua, lu, sp, ep and bt, with the
input class size of C; and eight from PARSEC, including
streamcluster, blackscholes, bodytrack, canneal,facesim, fer-
ret, swaptions and dedup. These benchmarks were chosen with
the consideration to represent a wide range of applications with
different resource utilization and the duration of experiments.

On the private cloud, these benchmark applications were
compiled and run with the Ubuntu 16.04 environment on a
virtual machine (VM) with 16 vCPUs and 16GB memory.
The VM was created under the OpenStack installed on a
server with dual Intel Xeon E5-2630 16-core processors and
128GB memory. Before the benchmark application run on the
VM, each of the three designed micro-benchmarks runs for 3
seconds sequentially to probe the resource contention levels
of the VM on the host machine. Then, the target benchmark
applications were executed on the VM with 16 worker-threads.

To introduce interference and emulate resource contentions
in the private cloud, varying number of background VMs have
been created on the same host machine during the executions
of the benchmark applications. Specifically, after each 2-hour
interval, a random number (up to 7) is generated to indicate
the number of background VMs should be created for the
next interval of 2 hours. Moreover, each background VM will
randomly choose either a CPU or memory intensive synthetic
application from iBench suite [61] to introduce the different
levels of interference for the key components of the VM that
runs the target benchmark applications.

With the randomly introduced resource contention from the
background VMs and their applications, the micro-benchmarks
and the selected benchmark applications run repeatedly until
1,000 data tuples are collected for each benchmark. These data
tuples are utilized to evaluate the periodic model retraining and
progressive modeling for different regression models on their
prediction accuracy and run-time overheads.

To quantify the accuracy of the predicted execution time of
an application from a model, we define the prediction error
for each data point as:

Prederr =
|timemeasured − timepredicted|

timemeasured
(4)

where timepredicted is the predicted execution time of the
application using a given predictive model with the online
learning approaches based on the profiling data of the micro-
benchmarks and timemeasured denotes the measured execu-
tion time of the application. We report the average prediction
error of all the data points for each benchmark application.

6.2 Periodic Model Retraining on Private Cloud
Fig. 4 first shows the measured execution times (the blue
points) for two representative benchmarks, Streamcluster and
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Fig. 4: Measured and predicted execution times for Streamcluster and Canneal with batch size of 10 and window size of ∞.

Cannel, respectively, on the private cloud. From the figure, we
can see that their performance does change radically at run-
time due to varying levels of resource contention on the host
machine, where their execution times can vary up to 10 times.
Therefore, to support cloud users for proper planning of their
operations, it is crucial to get reasonably accurate performance
prediction for the execution of their applications. Note that, for
Cannel, the execution times for some iterations can be as low
as around 30 seconds. This comes from the fact that, at the
beginning of each 2-hour interval when the background VMs
change, we stop the executions of the interfering applications
for the first 5 minutes.

The figure also shows the predicted execution times of the
Lasso regression model with the periodic model retraining for
these two benchmark applications, where the batch size is 10
and window size is ∞ (i.e., the predictive model is retrained
after every 10 data points and each time all historical data
tuples are utilized for model retraining). We can clearly see
that the predicted results have the same pattern (or trend) as
that of the measured execution times. This also validates our
hypothesis that the devised micro-benchmarks can properly
assess the level of resource contention at run-time.

6.2.1 Prediction Accuracy vs. Batch/Window Sizes
As discussed in Section 4.1, we adopted 2-degree polynomial
regression technique for periodic model retraining. In particu-
lar, we train the predictive model in periodic model retraining
with the Lasso regression [49] and have implemented it using
the Scikit-learn library (version 0.19.2) [56]. We tuned the
regression-based model with an alpha of 1 and a tolerance
value of 0.001.

Fig. 5a first shows the average prediction errors of the
Lasso regression models with periodic model retraining for
the benchmark applications with different batch sizes (i.e.,
10, 20, 30, 40 and 50). Here, the window size is set as 1;
that is, only the data tuples in the last batch are utilized to
retrain the predictive model at run-time, which will be used
to predict the executions of the application in the next batch.

From the figure, we can see that, although having larger batch
sizes reduces the adaptation frequency of the predictive model,
more accurate model can be obtained with more historical data
tuples being used in the last batch, which generally results in
smaller prediction errors. In particular, for ferret, the average
prediction error is reduced from about 341% to 82% for the
batch sizes of 10 and 50, respectively. The overall average
prediction errors for all the benchmarks are reduced from
105% to 34% when the batch size increases from 10 to 50.

Fig. 5bc further show the average prediction errors of the
Lasso regression models with the periodic model retraining for
the cases of window sizes being 5 and 10, respectively. Clearly,
when the window size increases from 1 to 5 (i.e., the number
of historical data tuples for retraining the model increases from
10 to 50), the average prediction errors can be significantly
reduced where the overall average for all applications can
reduce from 112% to 24%. When the window size increases
to 10, the prediction errors can be further reduced, but with
relatively less magnitude. From the results, we can see that
having more historical data tuples for retraining can generally
improve the accuracy of the predictive model in periodic
model retraining. However, such benefits normally reduce as
more data tuples are included with larger window sizes. When
the window size is 10, we can see that the overall average
prediction errors are almost the same (about 18%) for all
different batch sizes. That is, once the number of data tuples
in the training window reaches a certain number (e.g., 100),
the benefit of having even more data tuples is very limited.

For the case of window size being ∞ (i.e., where all
historical data tuples are used for retraining the predictive
model), Fig. 6 further shows the average prediction errors
of periodic model retraining for the benchmark applications
with different batch sizes. In particular, we include the case
with the batch size of 1 to illustrate the limit of increasing
the retraining frequency. From the results, we can see that the
prediction errors do decrease compared to the cases of window
sizes being 5 or 10, but with very limited improvements.
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Fig. 5: Prediction errors of the Lasso Regression Models with periodic model retraining for different batch/window sizes.

Moreover, even when the model is retrained after each iteration
of executing the applications (for the case of batch size being
1), the overall prediction errors reduce less than 5%. However,
as shown below, the overhead of periodic model retraining for
the batch size of 1 can be prohibitive and prevent it from being
deployed at run-time.

6.2.2 Model Retraining and Prediction Overheads

In addition to the prediction accuracy of the Lasso regression
models with the periodic model retraining approach, it is
also important to report its run-time overheads, which can
be a evaluation metric for the approach being utilized as an
online predictor. Table 1 shows the overall time required for
the periodic model retraining to retrain the Lasso regression
predictive models and to predict all 1000 data points under the
different settings of batch/window sizes. Not surprisingly, with

TABLE 1: Overall time (sec.) to retrain/predict.

Batch Size Win. of 1 Win. of 5 Win. of 10 Win of ∞
1 - - - 1325.7
10 12.2 21.8 31.1 129.8
20 7.6 15.8 24.8 64.0
30 5.5 13.4 21.3 40.8
40 4.5 12.2 19.9 31.3
50 3.8 10.8 17.2 22.9

increased batch sizes, the retraining frequency decreases and
it leads to less overhead. On the other hand, when window
size increases, more historical data tuples are utilized for
model retraining, which results in higher run-time overheads.
In particular, for the case of batch size being 1 and window
size of∞, it can take more than 1325 seconds to process these
1000 data points. In comparison, for the case of window size
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Fig. 6: Prediction errors of periodic model retraining: window size of ∞.

being 5 and batch size of 50, it takes only 10.8 seconds (a
reduction of more than 120X), which however can result in
almost the same level of prediction errors (with only up to 3%
difference).

TABLE 2: Average time (sec.) to re-train/predict per batch.

Batch Size Win. of 1 Win. of 5 Win. of 10 Win of ∞
1 - - - 1.32
10 0.12 0.22 0.31 1.31
20 0.15 0.32 0.50 1.30
30 0.16 0.40 0.64 1.23
40 0.18 0.50 0.82 1.30
50 0.20 0.56 0.90 1.20

Table 2 shows the average time to retrain the model using
a new batch of data and to predict the execution time of the
next batch of executions. Here, we can find that, even with a
windows size of 10 and batch size of 50, the time to retrain
and predict all executions of an application in the next batch is
0.9 seconds. In the case of batch size 20 and window size 10,
the time to retrain and predict a batch is only 0.5 seconds.
This time is much shorter than the execution time of the
shortest PARSEC benchmark, which is at least 20 seconds on
our VM. This low overhead demonstrates that periodic model
retraining is efficient for online prediction. For the window size
of infinity (considering all historical data), we can observe that
with different batch sizes, the average overhead is roughly the
same. This is due to the fact that model retraining will happen
on the full history, similarly for all batch sizes, and the time to
predict the next batch of data is negligible and only a few CPU
cycles for different batch sizes using Intel Advanced Vector
Extensions (AVX) [62] vector processing capability. Note that,
as presented earlier in Table 1, this time does not reflect the
overall time spend on retraining and prediction. For instance,
the batch size of 10 requires 99 times model retraining and
prediction, whereas, with the batch size of 50, this process
will be repeated only 19 times.

6.3 Progressive Modeling on Private Cloud
For the progressive modeling approach, in addition to the two
SGD Regression models, which are denoted as sgdReg and
sgdRegLasso, respectively, and the progressive neural-network
model (denoted as dnn), we consider a neural-network model

with hyper-parameter optimization, which will be used as
the baseline for comparison and denoted as dnnBaseHyper.
Here, the baseline DNN model is obtained by utilizing all the
historical data tuples and the Tree Parzen Estimator (TPE)
technique to explore the provided search space and find
optimal hyper-parameters for the model [15].

Another factor to consider for the progressive modeling is
the batch size. From Section 5, we know that only the data
tuples in the newly collected batch will be utilized to update
the parameters of the predictive models in the progressive
modeling approach. Here, based on the evaluation results in
the last section, we considered the batch size of 50 aiming
at a good trade-off between model prediction accuracy and
run-time overhead.

Fig. 7a first shows the average prediction errors of the con-
sidered predictive models with the progressive modeling on the
private cloud for the 17 benchmark applications. Here, we can
see that, the progressive neural-network model has an average
prediction error of 16% while the SGD regression models have
average prediction errors of 22% and 25%, respectively. This
implies that the progressive neural-network model can obtain
7% to 9% improvement in prediction accuracy. This comes
from its ability of knowledge transfer by updating its model
structure as well as parameters with additional data tuples. On
the other hand, the baseline DNN model with hyper-parameter
optimization has the average prediction error of 13%, where
the improvement is marginal (i.e., 3%), especially considering
its excessive training time (about 20 minutes) due to the time-
consuming process of hyper-parameter optimization.

In addition, when comparing to the results of the periodic
model retraining (as shown in Fig. 5), we can see that the
prediction accuracy of the progressive neural-network model
under the progressive modeling approach with the batch size of
50 is comparable to that of the Lasso regression model with
the batch size of 1 and all historical data tuples. However,
as presented in Table 3, the progressive modeling is more
efficient, where the average overhead of model training and
prediction is only 0.25 seconds per batch and 4.9 times less
than that of the periodic model retraining approach.
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Fig. 7: Prediction errors of different predictive models with the progressive modeling on the private and public clouds.

TABLE 3: Progressive Modeling Overhead (sec.)

Time
Alg. SGD Regression Progressive DNN

Overall 1.75 4.75
Average (per batch) 0.09 0.25

6.4 Progressive Modeling on Public Clouds

We have also conducted extensive experiments on real public
clouds, where we have no control on the type, intensity and
sources of resource contentions, to evaluate the prediction
accuracy for the executions of considered benchmark appli-
cations with the proposed progressive modeling approach. As
two widely adopted public clouds, we have run experiments
on both Amazon Web Services (AWS) and Google Compute
Engine (GCE). For AWS, m5d.4xlarge instance type with 16
CPUs, 64GB memory and 80GB standard EBS SSD have been
selected to execute the selected 17 benchmark applications.
Similarly, on GCE, we used a VM of type n1-standard-16

that has 16 VCPUs, 60GB of memory and 80GB SSD drive
to execute the 17 benchmark applications. The same as in
the private cloud, in the experiments, the micro-benchmarks
first run within the VM followed by the executions of the
benchmark applications to collect the data tuples related to the
experienced contention levels in different resources. A total of
700 to 1000 data tuples for each of the benchmark application
have been collected over the course of a month. The number
of collected data tuples for each application varies due to their
different length of execution and the cost constraint.

Fig. 7ab show the average prediction errors of the con-
sidered predictive models under the progressive modeling
approach for the 17 benchmark applications on AWS and
GCE, respectively. Here, we can see that, the prediction errors
are significantly lower when compared to that of the private
cloud. The main reason is that, the resource contention of the
VMs on the AWS and GCE clouds is much less intensive
compared to the setting of the private cloud. With such low
level of resource contention, even the SGD Regression models
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can obtain quite accurate prediction on the performance of the
applications, where similar prediction results from different
predictive models under the progressive modeling approach
can be observed. Specifically, from the figure, we can see
that the prediction accuracy achieved by different predictive
models varies by at most 1% with the progressive neural-
network model performs slightly better. However, we would
like to point out that, the model adaptation overhead for the
SGD regression algorithms is 2.7 times less when compared to
that of the progressive neural-network model (Table 3), which
make them more appealing for being utilized in the online
setting.

7 LIMITATIONS AND FUTURE WORK

Multi-VM applications: In this study, we considered per-
formance modeling and prediction of single-VM applications.
However, with the growing need for more computation power,
applications running on Multi-VM will become more promi-
nent. In our future work, we will extend this study to model
and predict the performance of multi-VM applications. This
requires closely monitoring the resource contention experi-
enced by each collaborating VM and evaluating its effects
on the overall application performance. For instance, high
contention levels may slow down a VM, negatively affecting
an application’s overall performance and vice versa. Thus,
micro-benchmarks should execute on each VM before the
target application to collect contention information. Then, the
results should be sent to a managing VM for modeling and
prediction. Additionally, for multi-VM applications, micro-
benchmarks should be devised to evaluate the contention in
shared network resources (i.e., Network bandwidth/latency)
between the collaborating VMs. High network contention be-
tween the VMs translates to a longer communication duration,
negatively affecting the application performance.
Action-driven performance modeling: Based on a predicted
performance of an application, different actions can be taken to
satisfy the required performance needs. These actions include
migration to a new VM, change in the VM configurations
(scale-up), or increase in the number of the VMs for load-
balancing or multi-VM processing (scale-up) of incoming
requests. In our future work, we plan to evaluate the best
actions that can be taken based on the model’s predicted
performance and accuracy. This study can help to identify the
performance modeling configurations (i.e., batch and windows
size) and approaches (i.e., adaptive retraining or progressive
training) that can support the required accuracy for actions
considered.

8 CONCLUSIONS

Applications running in cloud environment can incur per-
formance variations due to resource contention caused by
collocated VMs and their applications on the same host
machine. Hence, it is important for ordinary cloud users to
have accurate predictions on the executions of their application
to make better planning of their operations and expenditure.
In this paper, considering the changes in resource contention
over time, we studied two online performance modeling and

prediction approaches: periodic model retraining and progres-
sive modeling, where both the regression and neural-network
based predictive models have been considered. Specifically,
based on the profiling technique, a few micro-benchmarks are
utilized to probe the resource contention of major resources
(such as CPU, memory and disks) of a target VM. The in-
place profiled information from the micro-benchmarks and
the measured execution times of an application will be used
to retrain or update the considered predictive models. For
the periodic model retraining approach, the sliding-window
technique is utilized to control the retraining frequency and
the number of historical data tuples to retrain the models.

Our evaluation results show that, for the periodic model
retraining, the prediction errors of the considered models
generally decrease with higher retraining frequencies and more
historical data tuples, which in turn leads to higher run-time
overheads. Moreover, for the progressive modeling approach,
both the regression models and progressive neural-network
model can obtain better prediction accuracy with a moderate
batch size of 50, with much less overhead compared to that
of the periodic model retraining. In addition, for public clouds
where the resource contention is relatively low, the regression
models can achieve comparable prediction accuracy as the
progressive neural-network model with less run-time overhead.
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