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Abstract—Accurate performance prediction for cloud applica-
tions is an essential component to support many cloud resource
management and auto-scaling policies. However, most existing
studies on performance prediction for cloud applications in multi-
tenant clouds are at the system level and may require access
to performance counters in hypervisors. In this work, we pro-
pose uPredict, a user-level profiler-based performance predictive
framework for single-VM (virtual machine) applications in multi-
tenant clouds. We designed three micro-benchmarks to assess the
contention of CPUs, memory and disks in a VM, respectively.
Based on the measured performance of an application and micro-
benchmarks, the application and VM-specific predictive models
are derived by exploiting various regression and neural network
based techniques. These models can then be used to predict
the application’s performance using the in-situ profiled resource
contention with the micro-benchmarks. We evaluated uPredict
extensively with representative benchmarks from PARSEC, NAS
Parallel Benchmarks and CloudSuite, on a private cloud and two
public clouds. The results show that the average prediction errors
are between 10.4% to 17% for various predictive models on the
private cloud with high resource contention, while the errors
are within 4% on public clouds. A smart load-balancing scheme
powered by uPredict is presented and can effectively reduce the
execution and turnaround times of the considered application by
19% and 10%, respectively.

I. INTRODUCTION

Cloud computing has been adopted by many organizations

as their main computing infrastructure due to its low cost of

ownership and elasticity [32]. However, applications running

on the clouds usually share hardware resources with other

virtual machines (VMs) and applications from different cloud

users/tenants. Such hardware resource sharing among multiple

tenants causes resource contention, which in turn degrades the

performance of applications running on clouds [23]. Moreover,

the resource contention can vary due to changes in co-located

VMs and their applications, which makes a target cloud ap-

plication experience uncontrolled performance variations and

fluctuations at runtime [22, 31].

However, to maximize the cost benefits of cloud deploy-

ments with optimal resource allocation [25, 26], or to satisfy

the timeliness requirements of time-sensitive applications [7],

cloud users may need to have an accurate knowledge of

the performance of their applications. For such a purpose,

cloud users need the capability to accurately predict the

performance of their applications under various levels of

resource contention at runtime. While there have been many

studies proposed to predict an application’s performance under

hardware resource contention [11, 27, 28, 30, 33, 43], these

studies usually relied on the access to and control over the

underlying execution environment, which makes them not

applicable for cloud users.

Cloud services are typically offered to users as black boxes,

where a user cannot control the cloud execution environment

to specify the set of VMs/applications that should be executed

together to share hardware resources. As a result, it is difficult

for a cloud user to obtain an isolated execution environment

to profile an application’s contention sensitivity on the cloud

service’s hardware as did in prior work [11, 27, 33]. More-

over, as cloud users cannot select the co-runners of their

applications, they have to measure or estimate the severity of

resource contention and the associated impacts on their appli-

cations’ performance during execution. Given that cloud users

generally have no direct access to the underlying hardware

components and virtual machine hypervisors, they usually

cannot utilize common execution inspection tools used by

prior studies, such as hardware performance monitoring units

(PMU), to obtain accurate estimations on the impact of the

contention [28, 30, 43].

Therefore, it is imperative to design and develop perfor-

mance prediction schemes for ordinary cloud users. Although

some recent studies have addressed this problem, there are still

some limitations. In [46], Yadwadkar et al. developed PARIS,

which exploits resource profiling information to predict the

performance of an application in a VM when it is deployed

on different public cloud services. Similarly, Scheuner and

Leitner employed micro-benchmarks to test and predict the

performance of different types of VMs across public cloud

services [36], where a large number of micro-benchmarks

have been deployed. Although these studies can predict an

application’s average performance on various VMs and/or

different cloud services, they cannot be utilized to predict

the in-situ performance of an application while taking the

runtime resource contention into consideration. An in-situ per-

formance prediction model enables the users to schedule their

tasks/requests to the VMs that provide the best performance

during execution and thus to improve their quality of services

(as illustrated with the case study in Section V-E).

In this paper, focusing on single-VM applications, we

propose uPredict, a user-level predictive framework for multi-

tenant Infrastructure-as-a-Service (IaaS) clouds. To profile

and assess the resource contention of a VM, three micro-

benchmarks are devised to probe its CPUs, memory and disks.

To establish the application-specific relationship between its
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performance and the profiled resource contention, the micro-

benchmarks are executed right before the target application

in a given VM to collect the profiling and performance data

while the colocated unknown VMs/applications on the same

host may change over time.

With the profiled resource contention of a VM by the

micro-benchmarks and the measured performance of an ap-

plication, the application/VM-specific performance predictive

models can be built to learn the application’s sensitivity to

the contention of different resources. In this work, we consid-

ered both regression and machine learning based techniques,

including 2-degree polynomial regression [19, 44, 49, 50],

Support Vector Regression (SVR) [17] and Neural Networks

(NN) models [18]. Once an application/VM specific predictive

model is derived, the micro-benchmarks can be executed in

the current execution environment and the in-situ profiled

resource contentiousness can be fed into the model to predict

the application’s execution times at runtime.

We have evaluated uPredict extensively using the repre-

sentative benchmark applications from PARSEC [5], NAS

Parallel Benchmarks (NPB) [6] and CloudSuite [13] in three

different clouds, including a private cloud with OpenStack,

Amazon Web Services (AWS) [4] and Google Compute En-

gine (GCE) [16]. The prediction errors (i.e., accuracy) of

the considered predictive models were evaluated. The results

show that, for the considered applications and VMs, the NN-

based models are generally more accurate with the average

prediction errors being 10.4%, 2.11% and 3.09% for the

private cloud, AWS and GCE, respectively. In comparison,

the polynomial regression and SVR models perform slightly

worse in the private cloud that has high resource contention

with the average prediction errors being 17% and 13%, re-

spectively. However, on AWS and GCE where the level of

contention is lower than our private cloud, the polynomial

regression models and SVR models have almost the same

prediction errors on average compared to those of NN-based

models. Moreover, we would like to point out that, the NN-

based models require hyperparameter optimizations, which can

introduce larger training overheads.

As an application of uPredict, a case study on load-

balancing for two VM servers on two different host machines

was presented. For comparison, we considered a simple queue-

based load-balancing scheme that makes load distribution

based on the queue length (i.e., the number of requests) on

each VM server without considering their resource contention.

The results show that the uPredict based load-balancing can

achieve about a 19% reduction in average application execu-

tion times and a 10% reduction in their turnaround times.

The rest of the paper is organized as follows. Section II

reviews closely related work. Section III discusses the micro-

benchmarks that are devised to profile the resource contention

of a VM in a multi-tenant environment. Section IV presents the

proposed uPredict framework and several predictive models.

The experimental setups and evaluation results are discussed

in Section V. Section VI points out the limitations of this study

and our future works. Section VII concludes the paper.

II. CLOSELY RELATED WORK

Contention-aware Performance Prediction from Cloud
Service Provider’s Perspective. There have been research

works on predicting application performance under resource

contention from the perspective of cloud service providers

and data center operators. Paragon is heterogeneity and

interference-aware data center scheduler [11]. Quasar esti-

mated the resources that a data center application required

to meet its QoS goals by profiling its performance on spe-

cific hardware running with specific micro-benchmarks [12].

Bubble-up characterized the sensitivity of a data center ap-

plication and predicted the application’s performance under

contention by injecting pressure into the memory system [27].

Bubble-flux dynamically injected pressure into the memory

system to measure the application’s instantaneous sensitivity

to contentions using readings from PMUs [47]. ESP predicted

the performance impact of contentions for a known set of

applications using regularization [28]. These cloud-provider

prediction methodologies typically required controlling the

execution environment in their profiling phases, including

directly specifying the co-running tasks used in the profil-

ing. Many of these studies also assumed a known set of

applications that might be executed and/or required accesses

to low-level hardware PMUs. Our work, however, aims at

performance prediction for ordinary cloud users who have no

control of the execution environments, no knowledge of the

co-running applications and no access to hardware PMUs.

Performance Prediction from the User’s Perspective.

There were also studies on cloud performance prediction tech-

niques for cloud users. Scheuner and Leitner employed micro-

benchmarks to predict the average performance of different

types of VM instances across public cloud services [36]. They

considered 23 different micro-benchmarks and validated the

methodology against only two applications. PARIS predicts

the performance of an application when it is deployed on

different types of cloud instances [46]. PARIS did not consider

the impact of resource contention and experienced up to 50%

RSME (Root Mean Squared Error). Ernest built performance

models based on the behavior of job on small inputs and then

predicted the performance on larger data sets [45]. Friese et al.

presented a novel hierarchical critical path analysis methodol-

ogy to predict the performance of irregular applications [15].

Unlike uPredict, these studies did not intend to predict the

performance of cloud applications under currently observed

level of resource contention in multi-tenant clouds.

III. VM PERFORMANCE PROFILING

In a multi-tenant cloud, a VM normally shares and contends

for the underlying hardware resources with other colocated

VMs and applications. The deliverable performance to user

applications by a VM depends heavily on resource contention

in CPUs, memory and disks, Given that ordinary cloud users

do not have access to PMUs and control over co-running VMs,

we focus on user-level profiling techniques to obtain the in-

situ resource contention of a VM. Note that, although cloud
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users can retrieve the utilization of various (virtual) resources

from a VM, such information normally does not reflect the

impact of resource contention.

Therefore, to infer the perceivable performance from the

perspective of cloud user applications regarding the resource

contention of a VM, we employ several micro-benchmarks to

assess its resource contention due to interference from other

collocated VMs and applications on the same host machine.

Intuitively, the slowed progress of a micro-benchmark reflects

the increased contention for the corresponding resource.

Although there have been many micro-benchmarks, they are

usually designed for other use cases and cannot be directly

applied to evaluate resource contention. Therefore, based on

the open-source benchmark suite lmBench3 [24], we designed

our micro-benchmarks to profile resource contention through

stressing the particular resource. Prior work has shown that

resource contention mainly happens in CPUs, memory, storage

and network resources [11]. Note that, for single-VM applica-

tions, the impact of network contention is negligible. Hence,

we designed three micro-benchmarks for uPredict to probe

the contention of CPUs, memory and disks, respectively. In

the following paragraphs, we explain the detailed design of

our micro-benchmarks.

A. Micro-benchmarks

CPUs: For contention in CPUs, a multi-threaded micro-

benchmark is designed to stress the performance of the virtual

CPUs of a given VM. Here, each thread maintains an in-
register counter that is initiated with zero. During execution,

the thread repeatedly increments the counter for a fixed amount

of profiling execution time specified by the user. Such in-

register operations ensure that the micro-benchmark’s perfor-

mance is not affected by memory at runtime and thus examine

the contention in CPUs to the maximum extent. The number

of threads deployed in this micro-benchmark will be equal

to the number of virtual CPUs of the target VM. The total

number of increment operations carried out by all threads for

the in-register counter will be recorded as the progress of this

micro-benchmark. In the end, this number (ccpu) will be used

as the indicator of the progress of this benchmark and the

contention level for the virtual CPUs in the target VM.

Memory: Similarly, the memory micro-benchmark will try

to stress the memory bandwidth of the target VM to the

maximum extent. This micro-benchmark accesses a 2GB array

with a stride of 128 byes. The objective of such a memory

access pattern is to ensure that each data access is issued to

off-core memory rather than the caches. Again, the number

of threads in the micro-benchmark equals the number of

virtual CPUs in the VM and each thread will access an equal

portion of the array and increases the local counter by one

for each access. The total number of memory accesses by all

threads in a specific amount of profiling time for this micro-

benchmark (cmem) will provide us the insight into the memory

contention and its impacts on performance experienced by user

applications in the target VM.

Disk I/Os: For the I/O performance of the target VM, we

design the disk micro-benchmark that reads 256MB data from

the VM’s disk with the page size of 4KB, and by each disk

access, the local counter value will be incremented. During the

execution of this micro-benchmark, the OS file cache should

be disabled so all file operations need to access the disk. Four

threads are used for this micro-benchmark to fully exercise

the disk without causing too much internal I/O contention.

Again, the total number of disk access operations within a

specific profiling time (cdisk) is used as the progress of this

disk micro-benchmark to assess the contention level of the

VM’s disk operations.

These micro-benchmarks will be invoked sequentially right

before the execution of a user’s application to get the in-situ

resource contention for the respective resources.

B. The Length of Profiling Executions

Although it is desirable to reduce profiling overhead, short

executions of the micro-benchmarks may not be able to

completely capture the actual severity of resource contention.

For the experiments in this paper, we executed each micro-

benchmarks for 3 seconds to ensure that the actual severity of

contention was properly captured. We have also conducted a

sensitivity test on the effects of profiling length on the accuracy

of uPredict and the details can be found in [29]. The test shows

that 3 seconds indeed can provide accurate profiling results,

while shorter profiling length may also suffice.

IV. UPREDICT AND PREDICTIVE MODELS

A. Overview of uPredict

Figure 1 gives an overview of uPredict and illustrates the

workflow of performance modeling and prediction for an

application running on a VM in a multi-tenant cloud. There

are two major phases in uPredict: the training and prediction
phases. The first step in the training phase is to collect the

training performance data. Here, in each iteration, our three

micro-benchmarks are executed first for a fixed amount of

time and their progress being denoted as {ccpu, cmem, cdisk}
to assess the in-situ contentiousness of CPUs, memory and

disks of a VM. Then, the target application is executed

right after the micro-benchmarks with its execution time

being denoted as tapp. The progress of the micro-benchmarks

and the execution time of the application will form a data

tuple {ccpu, cmem, cdisk, tapp}, which represents the implicit

relationship between the application’s performance and the

resource contention profiled by the micro-benchmarks.

A set of training data tuples needs to be collected first

by repeating the above process for the target application and

VM, where the resource contention from other VMs and

applications on the same host machine can vary. Then, the

data tuples can be used to train various applications and

VM specific performance predictive models based on different

regression and neural network techniques, as discussed next.

The number of data tuples in the training set can affect

the accuracy of the derived models and the trade-offs are

evaluated in Section V. The second phase of performance
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Fig. 1: Overview of uPredict and its workflow for performance modeling and prediction.

prediction utilizing the derived predictive models is detailed

in Section IV-C.

B. Predictive Models in uPredict

The key step in the training phase is to learn the relationship

between the application execution time and the resource con-

tention represented by the micro-benchmarks’ access counter

values from the set of collected data tuples and derive a

predictive model. That is, the parameters of the function f
in Equation (1) need to be learned.

tapp = f(ccpu, cmem, cdisk) (1)

where the exact form of the function f and its parameters de-

pend on the specific regression or machine-learning technique

being used.

In other words, we use the micro-benchmark’s progress

as the features to predict the execution time of the target

application. Intuitively, the progress of the micro-benchmarks

is the indicator of contention severity of different resources,

which are in turn used to predict the execution time of the

application as shown in Section IV-C. Note that, the execution

time of an application may also depend on its input data. In

this work, we assume that an application’s execution time is

affected only by the resource contention from other collocated

VMs and their applications on the same host machine, where

the input data for the application in each execution has the

same or similar size. It has been shown that many recurring

cloud applications are indeed repeatedly executed with sim-

ilar workloads [2, 3, 14]. Moreover, the predictive models

developed in this work can be easily extended to consider

an application’s input data, especially when its data size has

a known (e.g., linear) relation with its execution time.

Moreover, as applications have different behaviors and sen-

sitivities to resource contention when running in a given VM,

application and VM specific predictive models will be derived

for each application and its underlying VM. In what follows,

the details of several regression and neural network based

modeling techniques employed by uPredict are presented.

1) Polynomial-Regression based Models: We first consid-

ered polynomial-regression based predictive models, which

usually take a short amount of time to train and predict. Con-

sequently, if polynomial models can provide good prediction

accuracy for an application running in a VM, there is no need

to employ other more complex and heavy-headed machine-

learning models. To ensure that polynomial-regression mod-

els are thoroughly evaluated, we explored four regression

(model training) techniques, which are Elastic Net Regular-

ization [50], Lasso Regression [44], Ridge Regression [19],

and Stochastic Gradient Descent (SGD) [49]. The exact pa-

rameters for training these models can be found in Section V.

Additionally, we have conducted experiments with both linear

regression and 3-degree polynomial regression. However, for

the considered benchmark applications, their resulting models

perform inferior comparing to 2-degree polynomial models.

Therefore, we only report the results of 2-degree polynomial

predictive models in this paper.
2) Support Vector Regression (SVR) based Models: We

also considered Support Vector Regression (SVR) based mod-

els [17], which may potentially provide higher accuracy than

polynomial models but with larger training and prediction

cost. SVR is based on the popular machine-learning classifier,

Support Vector Machine (SVM), with the introduction of an

alternative loss function (in our case, the popular epsilon

insensitive function) [39]. The main benefit of SVR is that it

allows us to build more complex and non-linear models within

reasonable amount time, as an application’s behaviors running

in the clouds may not always be expressible with polynomial

or linear equations of resource contention [17].
3) Neural Network (NN) based Predictive Models: In ad-

dition to SVR, we also considered the Neural Network (NN)

based models [18, 42]. In uPredict, NN models are config-

ured to conduct regression analysis. These models are more

generic than SVM and can approximate nearly any function,

potentially allowing uPredict to model any behaviors of an

application running in a VM with higher training costs [9, 20].
However, we have observed that the accuracy of NN models

can be significantly affected by their structures, that is, the

number of layers and the number of neurons in each layer.

Even for the same set of training data, the worst NN structure

can have the prediction error to be more than 10 times higher

than the best one. Therefore, training NN models with good

accuracy is not simply just training a NN model with a fixed
structure, it also involves optimizing the structures of the NN

models. Moreover, the best NN model structure also varies for

different applications and VMs, implying that uPredict needs

to individually optimize the model structure for each pair of

application and VM.
This optimization process should be automated so that

ordinary cloud users, who do not have expertise in machine

learning, can apply uPredict to a new application and/or VM.
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To automatically optimize NN structures, we employed hyper-

parameter optimization techniques, including Tree-structured

Parzen Estimator (TPE) approach and Bayesian Optimization

(BO) [8, 40]. Hyperparameters refer to the NN parameters

defining the number of layers and the number of neurons

in each layer of a NN model. Both optimization techniques

conduct a search in the search space of the NN models to find

a structure with good accuracy.

This search space defines the maximum number of layers

and neurons per layer that can be used when training NN

models. The TPE technique explores the search space using

a tree structure following the accuracy distribution obtained

from previously sampled points in the search space. The

BO searches for the high-accuracy NN structures through

the Gaussian Process (GP), which is a non-linear regression

technique. BO uses GP to build a regression model with

the already-explored NN structures and their accuracies. The

regression model is then used to predict a potentially better NN

structure until a fixed number of NN structures are searched.

To conduct the hyperparameter search, both TPE or BO require

knowing the accuracy of the models trained with the already-

explored NN structures. Therefore, besides the training data

that are used to train the NN models, a separate set of cross-

validation data also need to be collected to assess the accuracy

of the trained models.

It is also worth noting that the effectiveness of the hy-

perparameter optimization depends on the definition of the

search space. It is commonly recommended that the number

of neurons per layer is typically “no more than 1/30 of

the number of training cases” [35]. As our training sets

only contain up to 1,000 data samples for each benchmark

application in the given VMs, we set the maximum neurons per

layer to be 35 in uPredict. As neural networks with two hidden

layers (four total layers) can be fully general, we define the

maximum number of layers of uPredict’s NN models to be 5

[41]. The extra layer is added to accommodate the cases where

the maximum number of neurons defined above is not large

enough. In summary, uPredict employs a NN structure search

space of maximum 5 fully-connected layers and maximum 35

neurons per layer. The final optimized NN models for different

applications may not have the same number of layers and

neurons at each layer.

C. Performance Prediction in uPredict

In the prediction phase, the micro-benchmarks are first

executed sequentially to profile the in-situ contentiousness of

a VM’s CPUs, memory and disks in the current execution

environment, respectively. Such profiled resource contention

by the micro-benchmarks is used to estimate the contention to

be experienced by the application. The access counter values,

ccpu, cmem and cdisk, are then fed into a trained model f for

the application to predict its execution time at runtime.

For the benchmark applications used in our evaluations, they

typically take less than one hour to execute and our observation

shows that the resource contention is less likely to change

significantly within such a short period time, especially on the

public clouds. However, when an application does experience

a change in resource contention during its execution, the

prediction accuracy of the derived models can be negatively

affected with much higher prediction errors as shown in the

evaluation results (see Section V).

For long-running applications, they will be more likely

to experience changes in resource contention during their

executions and a periodically re-profiling technique may be

deployed to catch such changes. However, exploring such a

periodic re-profiling option would require significant modifica-

tions to the model building and prediction process (to consider,

for instance, re-profiling intervals), which is well beyond the

scope of this paper and will be investigated in our future work.

V. EXPERIMENTAL EVALUATIONS

This section provides the experimental evaluation results of

uPredict, including the prediction accuracy of uPredict on both

private and public clouds, as well as the performance benefits

brought by uPredict when it was applied to a case study of

cloud resource management on load balancing.

A. Experiment Setups

Representative Benchmark Applications: We have con-

sidered a total of 17 benchmarks from PARSEC [5], NAS

Parallel Benchmarks (NPB) [6] and CloudSuite [13] in our

evaluations. Eight are from PARSEC, including streamcluster,

blackscholes, bodytrack, canneal, facesim, ferret, swaptions
and dedup. For these PARSEC benchmarks, their native inputs

were used in the experiments. Five are chosen from NPB,

which are ua, lu, sp, ep and bt, and they used the class C

data inputs. The other four are from CloudSuite, including

In-Memory Analytic, Graph Analytic, Web Search and Data
Serving. Here, the large data inputs were used for In-Memory
Analytic, while Graph analytics, Web Search and Data Serving
benchmarks used the default data inputs.

These 17 benchmarks are representative and cover a wide

range of applications running in various clouds. In each

benchmark suite, the selection of these benchmarks is a com-

bination of technical difficulties (e.g., compilation problems),

benchmarks’ resource requirements (needs of more memory)

and budget limitation to run the costly experiments on AWS

and GCE clouds. For all the 17 selected benchmarks, sixteen

worker threads were created in their executions.

Clouds and VM Configurations: First, for the private cloud,

we utilize an Ubuntu 16.04 server with two Intel Xeon E5-

2630 processors (for a total of 16 cores) and 128GB memory

that has OpenStack Ocata installed. Given that the selected

benchmarks include parallel and data/graph analytic applica-

tions, we created a VM of 16 VCPUs and 16GB memory

on OpenStack to execute these benchmarks. Moreover, to

introduce resource contention into the private cloud, up to

seven (7) background VMs (with the same VCPU and memory

configuration as the target VM) were randomly created at

runtime, which executed either CPU- or memory-intensive

synthetic applications from iBench [10]. The background VMs

and their applications changed every 2 hours.
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For public clouds, we evaluated uPredict on AWS EC2

and Google Cloud Engine (GCE). In AWS EC2, a single

m5d.4xlarge VM was used to execute the selected benchmarks.

m5d.4xlarge is the latest general purpose VM instance with 16

CPUs and 64GB memory [4]. The VM is configured to use an

80GB standard EBS SSD drive. Non-dedicated VM instances

were used to ensure the existence of resource contention. For

GCE, we used a single n1-standard-16 VM to execute the

selected benchmarks, where n1-standard-16 is the standard

VM instance with 16 VCPUs and 60GB of memory [16].

The VM is also configured with an 80GB SSD drive. Again,

the background VMs and their applications were managed by

GCE and were unknown to us. Both the selected VM types

in the public clouds closely match CPUs and memory of the

VM in our private cloud to make the evaluation results from

the private and public clouds more comparable. For all the

experiments on the three clouds, we used Ubuntu Server 16.04

as the OS for the created VMs.

Data Collection: As illustrated in Figure 1, a key step in

the training phase of uPredict is to collect experimental data

regarding the execution times of the benchmark applications

and those for the micro-benchmarks. From Section III, the

three micro-benchmarks are invoked sequentially right before

the execution of a user’s application to get the in-situ resource

contention, which has the total profiling overhead of roughly

9 seconds in each iteration. For the private cloud, with up to

seven (7) background VMs and associated applications, we

have run the 17 benchmark applications individually with the

micro-benchmarks for a total of roughly 70 days. For each

benchmark application, more than 1,000 data points have been

collected and the first 1,000 were used in the evaluations.

For the PARSEC benchmarks that have relatively short

execution times, we have executed them for about 10 days

on both AWS and GCE to collect more than 1,000 data points

in each cloud setting. Again, the first 1,000 were used in the

evaluations. For the benchmarks in NPB and CloudSuite that

take more time for executions, we run them for about 20 days

on both AWS and GCE, where 777 and 688 data points have

been collected for each of these benchmark applications on

the two clouds, respectively, and all these data points were

used in the evaluations.

For each benchmark application, 80% of the collected

data points are randomly selected to train and optimize the

regression and neural network models. Within these 80% data

points, 80% (i.e, 64% of the total data) were used as the

training data set, and 20% (i.e., 16% of the total data) were

used as the cross-validation data set to aid hyperparameter

optimizations. The remaining 20% of the total data points were

used as testing data to evaluate the prediction accuracies (i.e.,

errors) of the derived predictive models.

Implementation and Training of the Predictive Models: We

used the scikit-learn version 0.19.2 library [37] to implement

the four different 2-degree polynomial regression models and

the SVR model. In particular, for the ElasticNet and Lasso
algorithms, we used an alpha of 1 as a constant and a tolerance

value of 0.001 for optimization. For the Ridge algorithm,

we used the same tolerance value and an alpha value of 1

as regulation strength. For the SGD algorithm, we used the

following settings: squared loss, penalty L2, alpha value of

0.0001, L1 ratio of 0.15, epsilon as 0.1 and eta as 0.01. For

the SVR model, we used RBF (Gaussian) kernel with a C
value of 1000. For all the aforementioned algorithms, we set

the maximum number of iterations to 10,000. These models

are denoted as 2-D poly: ElasticNet, 2-D poly: Lasso, 2-D
poly: Ridge, SGD and SVR in the result figures, respectively.

The NN-based models are implemented using TensorFlow

version 1.12 [1]. We evaluated both a fixed NN structure and

the automatically optimized NN structures for each benchmark

application as described in Section IV-B3, to demonstrate the

importance of hyperparameter optimization for NN models.

Here, the fixed structure had 5 fully-connected layers and

35 neurons per layer, which is the same as the largest NN

structure of the hyperparameter optimization search space as

defined in Section IV-B3. This largest NN structure is chosen

with the assumption that a more complex NN model would

be expected to provide better prediction accuracy.

For hyperparameter optimization, we employed two li-

braries, HyperOpt version 0.1.1 [21] (for TPE optimization)

and Scikit-optimize version 0.5.2 [38] (for Bayesian Opti-

mization). Both of the hyperparameter optimization libraries

have been set to 200 iterations for finding the high-accuracy

parameters. Our evaluations show that increasing the number

of iterations up to 1,000 will not significantly improve the

prediction accuracy (less than 2 percent) for the resulting NN

models. However, with the optimization time having a linear

relation with the number of iterations, the training time can

increase by up to 5 times for 1,000 iterations. The resulting

NN models are denoted as NN:HyperOpt and NN: SkOpt,
respectively.

B. Validation of uPredict

We first validated the effectiveness of uPredict with the

execution of two PARSEC benchmarks, Streamcluster and

Cannel, which have higher prediction errors as shown later, on

our private cloud. Here, Figure 2 shows the measured (actual)

execution times (the blue star points in the top figures) for

the two benchmarks as well as the corresponding number of

background VMs and their applications (in the bottom figures)

for the duration of 24 hours. Clearly, the execution times of

the benchmarks can vary drastically (more than 10 times) due

to variations in the severity of resource contention caused by

the background VMs and their applications on the same host

machine. Therefore, it is imperative to develop a user-level

framework and tools for ordinary cloud users to get reasonably

accurate performance prediction for their applications and to

support their cost-effective planning and operations.

We can see from the figures that the execution times for

Streamcluster and Cannel can be as low as around 90 and 30

seconds, respectively, at the beginning of each 2-hour interval.

This is due to the fact that, when the number of background

VMs changes at each 2-hour interval, the executions of the
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Fig. 2: Measured and predicted execution times for Streamcluster and Canneal with the background VMs on the private cloud.

interfering applications in all background VMs stop for the

first 5 minutes, during which the level of resource contention

is rather low. Moreover, if the resource contention is low

for a given 2-hour interval (e.g., from 18 to 20 hours for

Streamcluster), the application took less time to execute and

more data points were collected compared to the intervals with

higher levels of contentions.

The predicted execution times (the red x points) utilizing the

derived SVR models for the two benchmarks are also shown

in the top two figures, respectively. Although the predicted

execution times have several outliers for both benchmarks

due to the limitations of the predictive model, especially

during the transition period of changing background VMs and

applications, it can be clearly seen that the pattern (or trend)

of the predicted execution times closely follows that of the

measured ones. Such patterns match the severity of resource

contention due to the background VMs and their applications

as shown in the bottom figures. Therefore, we can also say that

this experiment validates our hypothesis on the devised micro-

benchmarks, which can properly assess the resource contention

in the target VM at runtime.

C. Evaluation of uPredict in a Private Cloud

For the private cloud where the resource contention is rather

high with the controlled background VMs and applications,

Figure 3 shows the prediction errors of the considered seven

predictive models in uPredict for all the 17 benchmark ap-

plications. Here, the solid bars indicate the average and the

associated vertical lines show the 95-percentile of the predic-

tion errors. As explained earlier, for each benchmark, 80% of

the data points were utilized to train/derive its application/VM-

specific predictive models while the remaining 20% were used

to test their prediction accuracy.

First, for average prediction errors, the two NN-based

predictive models with hyper-parameters optimizations (i.e.,

NN:HyperOpt and NN:SkOpt) perform the best for almost all

benchmark applications with lower than 20% errors (except

streamcluster has 28% error). Moreover, the overall average

prediction errors by considering all 17 benchmark applications

were only 10.4% for the NN-based models. This indicates that

the proposed uPredict with NN-based models can indeed pro-

vide quite accurate performance predictions for applications in

multi-tenant clouds even with high resource contention (where

our private cloud has up to 7 background VMs). However,

without hyperparameter optimizations, the fixed structure (i.e.,

5 layers and 35 neurons per layer) NN models can perform

rather worse with the overall average prediction errors being

60% (and up to 154% prediction errors for some benchmark

applications), which is not shown in the figure.

For comparison, all four polynomial-regression based pre-

dictive models perform relatively worse with the overall pre-

diction errors for all benchmarks being around 17%, which

is about 8% higher than those of the NN-based models. One

possible reason for the worse performance of the polynomial

regression models compared to that of the NN-based models

is that, for certain applications, the relationships between the

profiling results from the micro-benchmarks and the actual

execution times of the applications are not necessarily poly-

nomial. Neural networks, on the other hand, have shown

great potential in finding relationships that are neither linear

nor polynomial [48]. For SVR models, while they performed

relatively better than the polynomial regression models for

most benchmark applications, their overall prediction accuracy

is still behind the NN-based models. The results indicated

that SVR models might be able to find non-polynomial rela-

tionships, however, they are not as powerful as the NN-based

models for predicting the performance of cloud applications

in clouds with high resource contention.

On the other hand, the prediction errors of the predictive

models are application-dependent and vary with large fluctua-

tions. For several applications (such as web, data, ep, blacksc-
holes and swaptions), their 95-percentile prediction errors can

be lower than 20% for all the considered predictive models.

However, for other memory-intensive applications (such as

lu, streamcluster and canneal), their 95-percentile prediction

errors can be more than 90% for the polynomial regression

predictive models. In particular, for canneal, its 95-percentile

prediction error for the SVR model can be as high as 178%.

Such high prediction errors for the outliers may be the result

of several causes. First, it can come from the limitations of
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Fig. 3: Prediction errors of the predictive models in uPredict for the benchmark applications on the private cloud.
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Fig. 4: Prediction errors of the predictive models in uPredict for the benchmark applications on the public clouds.

the predictive models and the micro-benchmarks that can only

profile a subset of factors that affect the performance of cloud

applications. We suspect that the relatively-high errors were

caused by the mismatch between the memory access patterns

of the micro-benchmarks and the aforementioned benchmarks.

They may also be caused by the fact that the memory micro-

benchmark is mainly profiling off-chip memory contention,

which does not include cache access patterns.
Moreover, a detailed analysis of the results shows that most

of the large errors were from predicted points when the back-

ground VMs and applications change. During these changes,

the micro-benchmark can profile the resource contentious-

ness of the startup or shutdown of background VMs. The

benchmarks, however, were later executed along with iBench

applications, which have different resource contentiousness.

Consequently, the predicted results using the profiled resource

contention during VMs startups and shutdowns were relatively

inaccurate. Third, benchmark applications can have different

sensitivities to the contention of various underlying hardware

resources, which make some to be more difficult to predict

their performance accurately than the others.

D. Evaluation of uPredict in Public Clouds

Figure 4 shows the average and 95-percentile prediction

errors of the studied predictive models for the benchmarks on

Amazon AWS and Google GCE, respectively. Here, Figure 4a

gives the results on AWS, where all predictive models have the

average prediction errors less than 7% and 95-percentile less

than 14% for all benchmarks. Moreover, the average prediction

errors of all the predictive models for all the benchmarks differ

by at most 3%, which suggests that the predictive models have

almost equivalent accuracy on AWS. The lower prediction

errors in AWS than the private cloud are mainly due to the

relatively low resource contention. The execution times of the

benchmarks on AWS can fluctuate up to 25%, compared to

up to 10 times fluctuation in the private cloud.

These results show that the proposed profiler-based frame-

work with any considered predictive model can predict most
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balancers turnaround time (s) execution time (s)

dummy-alternate 3563 312
queue-based 987 276
uPredict-based 1066 256

balancers turnaround time (s) execution time (s)

dummy-alternate 360 339
queue-based 318 300
uPredict-based 287 242

(a) High-load; (b) Low-load;

TABLE I: The average turnaround and execution times (seconds) of Graphic Analytic under different load-balancers.

single-VM benchmarks quite accurately on AWS. Hence,

uPredict is feasible for ordinary AWS users to obtain accurate

performance prediction without the need for the exact knowl-

edge or control of the underlying execution environments.

Although the NN-based models can provide slightly higher

prediction accuracy, it takes much more time to train compared

to that of polynomial regression-based models, especially with

the hyperparameter optimizations.

Figure 4b further shows the results on GCE. Here, the

average and 95-percentile prediction errors from all predictive

models for all benchmark applications are less than 11% and

32%. In fact, except for dedup, the 95-percentile prediction

errors for all other benchmarks are less than 20%. The overall

average prediction errors for all the benchmarks are less than

4% for all the studied predictive models. These results show

that the proposed predictive framework is highly accurate

on GCE for the considered benchmark applications as well.

Combining with the findings from AWS, these results further

confirm that it is feasible for ordinary cloud users to utilize

uPredict to get accurate performance prediction on public

clouds without the need for the exact knowledge or control

of the underlying execution environments.

Moreover, similar to the results on AWS, the average pre-

diction errors from all predictive models for the benchmarks

differ by at most 2%, suggesting that these predictive models

have almost equivalent performance in terms of prediction

accuracy on GCE. Also, the same as in AWS results, the figure

shows that the polynomial regression and SVR models are

comparable to neural network models in terms of prediction

accuracy, although the NN models perform slightly better.

E. Case Study: Load-Balancing with uPredict

To illustrate the usage of uPredict, we have conducted a

case study of load-balancing for two cloud servers. Here, each

cloud server is a VM with the same configuration as the one

in previous experiments (i.e., 16 VCPUs and 64 GB memory)

and both run under OpenStack on two separate host machines.

Each machine has two Intel Xeon E5-2630 processors (for a

total of 16 cores) and 128GB memory. In addition to the VM

acting as one cloud server, up to three (3) background VMs

may be created randomly to run applications from iBench on

each host machine, which changes at different fixed intervals.

Three different user-level load-balancing schemes were in-

vestigated in this study, which directs the requests of cloud

users to run the benchmark Graphics Analytic of CloudSuite to

one of the two cloud servers at runtime. First, the dummy load-

balancer just distributes the received user requests alternatively
to the two cloud servers. Second, a simple queue-based load-

balancer considers the number of requests in the waiting

queues of both cloud servers and distributes a new user request

to the server with fewer requests. Finally, the uPredict-based
load-balancer considers the predicted execution times for the

requests in the waiting queues based on the current profiled

resource contention from the micro-benchmarks on both cloud

servers. A new user request would be distributed to the server

where the request is expected to complete earlier.

In the first 3-day experiment, user requests were periodically

sent to the load-balancer starting with 12 requests per hour.

The rate gradually increases to 24 and then decreases to 12

again in the end with changes in every 4 hours. With the

resource contention from the background VMs/applications,

the execution times for Graphics Analytic vary from 45

seconds to about 7 minutes. The request rate (especially at

24 requests per hour) is rather high and denoted as high-load.

Table I(a) shows the average turnaround and execution times

for the generated requests of running Graphic Analytic under

different load-balancers. Clearly, without considering resource

contention and workload (i.e., queue length) on the cloud

servers, the dummy-alternate scheme can result in a very

high turnaround time, which is more than 3 times those for

the queue-based and uPredict-based schemes. Although the

queue-based scheme does not consider the resource contention,

the queue length actually implies the delivered performance

on each server. Hence, the average turnaround times for the

queue-based and uPredict-based schemes are quite close.

For the average execution time of the requests, by avoiding

the cloud server with high resource contention (implied by

its queue length), the queue-based scheme can improve it for

about 11.5% over dummy-alternate. Given that the uPredict-

based scheme tries to execute most requests on the server with

less resource contention, its average execution time can be

improved by 18% compared to that of dummy-alternate.

In the second 3-day experiment, we reduced the request

rate by half through the duration (denoted as low-load), and

the results are shown in Table I(b). In this case, as the waiting

queues on both cloud servers are empty for most of the time,

the queue-based scheme performs relatively worse, where both

of its average turnaround and execution times of the requests

are around 12% better than those of the dummy-alternate.

However, by exploiting the resource contention on the cloud

servers, the uPredict-based scheme can further improve 19%

and 10% over the queue-based scheme for the average execu-

tion and turnaround times of the requests, respectively. Note

that, the profiling overheads of running the micro-benchmarks

in the uPredict-based scheme were already included in the

resulting turnaround times of the generated requests.

VI. DISCUSSIONS AND FUTURE WORK

Data-Input: The goal of this research is to investigate the

feasibility of predicting the cloud running application’s per-
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formance under resource contention from the ordinary cloud

users’ perspective. Hence, we intentionally used the same data

inputs for the considered benchmarks to eliminate the impact

from input variations, so that the main cause of performance

fluctuation is resource contention. The evaluation can thus

focus on the accuracy of the proposed methodology to predict

the impacts of resource contention only. In our future work,

we will extend the work to include predictions under input

data variations.

Long Running Applications: The evaluation results show

that the predictive models do not work well for long execution

times (outliers) that were not seen in the training data. We plan

to incorporate extreme value theory with Neural Network to

improve the prediction accuracy for these unusual cases [34].

Moreover, for long-running applications, they are more likely

to experience changes in resource contention during their

executions. We will consider adaptive predictive models by

exploiting periodic profiling techniques in our future work.

VII. CONCLUSIONS

In this paper, we proposed uPredict, a user-level profiler-

based performance predictive framework for single-VM appli-

cations running in multi-tenant clouds. First, uPredict adopts

three specially devised micro-benchmarks to assess the con-

tention of CPUs, memory and disks, respectively, in a VM.

Then, predictive models based on regression and neural net-

work (NN) techniques are developed. uPredict and the consid-

ered predictive models have been evaluated extensively. The

results show that, even on the private cloud that has a quite

high resource contention, the average prediction errors are

between 10.4% to 17% for different predictive models. For

public clouds that normally have much less contention, the

average prediction errors of the considered benchmarks are

below 4%. A use case of uPredict in load-balancing shows

that the execution and turnaround times of the considered ap-

plication can be reduced by up to 19% and 10%, respectively,

compared to the simple queue-based load-balancer.
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