
A Statistics-Based Performance Testing Methodology for Cloud
Applications

Sen He
sen.he@utsa.edu

University of Texas at San Antonio
USA

Glenna Manns
gmm6jd@virginia.edu
University of Virginia

USA

John Saunders
js8ra@virginia.edu

University of Virginia
USA

Wei Wang
wei.wang@utsa.edu

University of Texas at San Antonio
USA

Lori Pollock
pollock@udel.edu

University of Delaware
USA

Mary Lou Soffa
soffa@virginia.edu

University of Virginia
USA

ABSTRACT
The low cost of resource ownership and flexibility have led users
to increasingly port their applications to the clouds. To fully realize
the cost benefits of cloud services, users usually need to reliably
know the execution performance of their applications. However,
due to the random performance fluctuations experienced by cloud
applications, the black box nature of public clouds and the cloud
usage costs, testing on clouds to acquire accurate performance re-
sults is extremely difficult. In this paper, we present a novel cloud
performance testing methodology called PT4Cloud. By employing
non-parametric statistical approaches of likelihood theory and the
bootstrap method, PT4Cloud provides reliable stop conditions to
obtain highly accurate performance distributions with confidence
bands. These statistical approaches also allow users to specify intu-
itive accuracy goals and easily trade between accuracy and testing
cost. We evaluated PT4Cloud with 33 benchmark configurations
on Amazon Web Service and Chameleon clouds. When compared
with performance data obtained from extensive performance tests,
PT4Cloud provides testing results with 95.4% accuracy on average
while reducing the number of test runs by 62%. We also propose
two test execution reduction techniques for PT4Cloud, which can
reduce the number of test runs by 90.1% while retaining an aver-
age accuracy of 91%. We compared our technique to three other
techniques and found that our results are much more accurate.

CCS CONCEPTS
• General and reference → Performance; • Computer sys-
tems organization → Cloud computing; • Software and its
engineering → Software testing and debugging.

KEYWORDS
performance testing, cloud computing, resource contention, non-
parametric statistics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338912

ACM Reference Format:
Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary
Lou Soffa. 2019. A Statistics-Based Performance Testing Methodology for
Cloud Applications. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338912

1 INTRODUCTION
The low costs of ownership, flexibility, and resource elasticity have
prompted many organizations to shift applications to the cloud, in
particular, Infrastructure-as-a-Service (IaaS) clouds, to host their
applications [54]. For cloud deployments, it is critical that the users
have accurate knowledge of the performance of their applications
so that they can select the appropriate virtual machine (VM) config-
urations to satisfy their performance and cost objectives [47, 59, 63].
The effectiveness of cloud elasticity policies also relies on the accu-
rate knowledge of application performance [4, 23, 28, 45, 65].

The most reliable approach to determine the performance of an
application on the cloud is performance testing. To obtain accurate
results, performance testing usually has two requirements [12, 14,
48, 64]. First, the test inputs should be accurately generated based
on the desired use cases. Second, it requires that the performance
of each test input is independently and accurately determined. For
better accuracy, a common practice is to run the application-under-
test with a test input multiple times to obtain the average or certain
percentiles of its performance [3, 14, 48, 53].

However, it extremely difficult to determine when enough per-
formance test runs are executed and accurate results are obtained
on the cloud. For example, Figure 1 gives the results of two perfor-
mance tests of the same benchmark, YCSB, on the same Amazon
Web Service (AWS) VM [6, 20]. For each test, the same test input is
executed repeatedly for an extended period of 15 hours. As Figure 1
shows, the performance distributions obtained from the two tests
are drastically different, and their average throughputs are different
by 12%. It is evident that these two test results cannot be both accu-
rate. In fact, as shown in Section 5, both results are inaccurate, and
more test runs need to be conducted to get reliable performance.
This difficulty to get reliable performance is also a major obstacle
faced by system research [2].

The difficulty of getting accurate performance testing results
on the cloud is caused by cloud performance uncertainty, which

https://doi.org/10.1145/3338906.3338912
https://doi.org/10.1145/3338906.3338912

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

17000 18000 19000 20000 21000 22000 23000 24000
Throughput

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns

ity

Test 1
Test 2

Figure 1: Performance distributions of YCSB from two tests.

constitutes the considerable and unpredictable performance fluc-
tuation of cloud applications [37]. Because of this uncertainty, a
new performance testing methodology is required for the cloud
to obtain accurate performance for each test input. In particular, a
good methodology should address the following challenges posed
by cloud performance uncertainty.

The first challenge arises from the various factors that cause
performance uncertainty, including hardware resource contentions
from multi-tenancy (multiple VMs sharing hardware) and the ran-
domness in VM scheduling [26, 31, 43, 58]. To obtain accurate
results, performance testing on a cloud should cover all the uncer-
tainty factors. Even more importantly, it should cover the uneven
impacts of all these factors proportional to their frequencies expe-
rienced on the clouds.

The second challenge is that cloud services are usually provided
to the users as black boxes and do not allow users to control the
execution environments. This black-box environment makes it
nearly impossible to know what uncertainty factors are covered
by a test run. Hence, it is also impossible to know exactly when
enough runs have been conducted to cover all uncertainty factors.

The third challenge comes from the cloud usage cost incurred
by performance testing. Theoretically, executing a test input for
months can produce accurate results. However, such long tests
can incur a high cost. To minimize testing costs, a good perfor-
mance testing methodology should stop testing immediately after
it determines that the results are accurate.

In this paper, we present a novel performance testing method-
ology called PT4Cloud for IaaS clouds. Our primary goal with
PT4Cloud is to provide reliable stop conditions to terminate repeated
test runs of a test input to obtain highly accurate performance re-
sult. While ensuring high accuracy, our second goal is to reduce the
number of test runs to cut down on the cost of performance testing.
PT4Cloud is designed to obtain performance distributions, since in
many use cases, it is important to know the best-case, worst-case
and percentiles of the performance in addition to averages [14, 64].

To determine the number of performance test runs required for
accurate result for one test input in black-box clouds, PT4Cloud
leverages the observation of statistical stability, which states that
the frequencies and averages converge (i.e., become stable) given
a large number of samples [27]. Based on this observation, if a
performance distribution obtained from the test runs is stable, this
distribution may be deemed accurate. That is, performance test
runs can be stopped once the results are statistically stable with
the expectation that the results are accurate, and all uncertainty
factors are properly covered.

Moreover, as the performance distributions of cloud applications
do not always follow known distributions, common parametric sta-
tistical approaches (e.g., Student’s t-test) cannot be used for stability

Application-to-test and
a workload

Step 1 - 1:
Execute tests for the app
continuously for a time
interval I. Let the set of
perf. data acquired
from these tests be S1.

Step 1 - 2:
Calculate performance
distribution d1 from S1.

Step 2 - 2:
Combine S1 and S2 into
a new sample set S.
Calculate performance
distribution d2 from S.

Step 2 - 1:
Execute the app for an-
other time interval I. Let
the set of perf. data from
these new tests be S2.

Yes No

Report d2 as
the perf test results

Step 4 :
Let S1= S, and
let d1 = d2

Step 3:
Compare d1 and d2

to determine if
stable?

Figure 2: The workflow of PT4Cloud.

determination. Therefore, PT4Cloud employs non-parametric sta-
tistical approaches from likelihood theory [42, 57]. These statistical
approaches also allow the users to easily specify accuracy objec-
tives and trade accuracy for testing cost. Additionally, to help users
interpret the performance testing results with more confidence,
we employ the bootstrap method to generate confidence bands for
the resulting performance distributions [21]. To further reduce the
testing cost, we also explored two test reduction techniques.

We evaluated PT4Cloud on the Chameleon cloud [1] and AWS [6],
using six benchmarks representing web, database, machine learning
and scientific applications on six VM configurations. The evalua-
tion results show that the performance distributions acquired with
PT4Cloud always have an accuracy higher than 90% (with 95.4%
accuracy on average) when compared with the performance results
obtained from extensive benchmark executions while reducing test
runs by 62%. Moreover, our test reduction techniques can reduce
the test runs by 90.1% while retaining an average accuracy of 91%.
Our results also showed that PT4Cloud had significantly higher ac-
curacy than state-of-the-art testing and prediction methodologies
from software engineering and system research.

The contributions of this paper include:
1) The cloud performance testing methodology, PT4Cloud, which

employs non-parametric statistical approaches to provide reliable
stopping conditions to obtain highly accurate performance distribu-
tions. PT4Cloud also allows the users to specify intuitive accuracy
objectives and trade accuracy for testing cost.

2) Two test reduction techniques that can significantly reduce
the number of test runs while retaining a high level of accuracy.

3) A thorough evaluation of PT4Cloud with six benchmarks on
six VM configurations on AWS and Chameleon cloud to examine
the PT4Cloud’s accuracy and test reduction efficiency, and its benefit
over the state-of-the-art approaches.

2 OVERVIEW OF PT4CLOUD
2.1 The PT4Cloud Methodology
PT4Cloud conducts performance tests on cloud applications in mul-
tiple time intervals (periods) of test runs. In each time interval
(time period), the application-under-test is executed with its test
input repeatedly to acquire n performance samples. Then PT4Cloud
determines if adding these new n samples significantly changes the
performance distribution acquired from previous intervals. If the

A Statistics-Based Performance Testing Methodology for Cloud Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

change is insignificant, then the current performance distribution
is considered stable and representative of the actual performance of
the application on the cloud. Otherwise, more test runs for another
time interval are required. We conduct the test in time intervals
instead of the number of test runs due to the difficulty to control
the cloud execution environments. More discussions on this time
interval are provided in Section 2.2.

Figure 2 shows the PT4Cloud workflow. The first step (Step 1) of
PT4Cloud is to execute an application on the target cloudwith a user-
selected VM configuration (i.e., VM types and count) repeatedly for
a time interval I . Let the set of performance data collected from these
tests be S1. Based on S1, an initial performance distribution d1 can
be calculated. Particularly, d1 here represents the non-parametric
probability density function (PDF) of S1 and can be calculated using
the kernel density estimation (KDE) technique [52, 55].

In Step 2, the application is again executed for another time inter-
val I using the same VM configuration. Let the set of performance
data from these new test runs be S2. Combining S1 and S2, we ob-
tain a new set of performance data, S . That is, S = S1 ∪ S2. Using
S , it is possible to calculate another performance distribution d2.
Intuitively, d1 always represents the current distribution, whereas
d2 always represents the distribution with new data. If d1 and d2 are
the same, then adding new data does not change the distribution.

In Step 3, d1 and d2 are compared using non-parametric statisti-
cal approaches to determine if the performance distributions are
stable. More specifically, this comparison determines the probabil-
ity p that d1 and d2 are the same distribution. Users can choose
an objective probability po beforehand. If p ≥ po , then the perfor-
mance distributions are deemed stable, and d2 is reported as the
performance distribution of this application. If p < po , then more
tests need to be conducted to acquire more stable results. Note
that, a user can choose any objective probability. A higher objec-
tive probability may require more tests, but it can also produce
more accurate performance results. When reporting performance
distribution d2, PT4Cloud also computes confidence bands with a
user-selected confidence level (CL). While a confidence interval is
for a single point of estimation (e.g., mean), a confidence band is
for a series of estimations (e.g., distribution).

If the test results are deemed unstable, more test runs are re-
quired. In Step 4, the new S1 is set to be S and the new d1 to be d2.
That is, S1 ⇐ S and d1 ⇐ d2. Then PT4Cloud directs the perfor-
mance test to go back to Step 2 to test for another time interval I
and repeat the comparison for stability. This loop repeats until the
performance results are stable.

2.2 Coverage Criteria and Time Interval Length
As stated above, the coverage criteria for cloud performance testing
should include all performance uncertainty factors and their pro-
portional impacts. However, as clouds are provided to the users as
black boxes, it is impossible to directly determine what factors are
covered in one test or a series of tests. Consequently, we adopted
an indirect approach to ensure the coverage criteria are satisfied.

Previous studies observed that application performance on the
cloud roughly exhibits periodic (e.g., daily or weekly) cycles [38].
These periodic cycles reflect the fact that the main factors of per-
formance fluctuation – various resource contentions among VMs
caused by multi-tenancy – have a dependency on time. Motivated

25 50 75 100 125 150 175
Execution Time (sec.)

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Two Weeks (d2)
One Week (d1)

(a) Perf. Dist. for canneal

500 525 550 575 600 625
Execution Time (sec.)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

Two Weeks (d2)
One Week (d1)

(b) Perf. Dist. for swaptions .

Figure 3: Testing canneal and swaptions with PT4Cloud

by this observation, we choose to conduct tests in terms of multiple
time intervals to satisfy the coverage criteria. In this paper, we
choose the length of each time interval I to be a week. Based on a
prior study and our experimental results for this paper, a week is
long enough to provide good coverage of uncertainty factors for the
types of applications and cloud services studied in this paper [38].

Note that, a week is the longest time period required for cloud
performance testing based on our observations. Depending on the
application and the VM configuration, the smallest required time
interval length may be less than a week. It is also unnecessary to
continuously execute tests for each time interval. We also explored
reducing the interval length and test runs per time interval and
reported the results in Section 6.

2.3 Examples of Applying PT4Cloud
To illustrate the complete process of using PT4Cloud methodology
to conduct performance testing, we present two examples of testing
the performance of canneal and swaptions applications from the
PARSEC benchmark suite [11] on AWS.

Figure 3a gives the performance distribution d1 for canneal after
Step 1, where canneal is executed continuously on a VM instance
with VM type t2.medium for a time interval length of a week [5].
Figure 3a also gives the performance distribution d2 for canneal
after Step 2, which is calculated from two time intervals (weeks) of
test runs. Using the stability comparison in Step 3, the probability
that d1 and d2 are the same is determined to be 92.8%. As shown
in Figure 3a, d1 is very close to d2. If the user sets the objective
probability po to be 90%, then d2 is reported as the final testing
result. The shaded area in Figure 3a shows the confidence band of
d2 with 99% CL.

Figure 3b gives the performance distribution d1 for swaptions
after Step 1, which includes executing swaptions continuously on
a t2.medium instance for a week. Figure 3b also shows the per-
formance distribution d2 for swaptions after Step 2, which is cal-
culated from two intervals/weeks of test runs. Using the stability
comparison in Step 3, the probability that d1 and d2 are the same
is determined to be 80.7%. In Figure 3b, d1 and d2 are still close,
but they are clearly less similar than those of canneal . If the user’s
objective probability po is 80% or less, then d2 is reported as the
final testing result. Otherwise, the test input has to be executed
from more time intervals for more accurate results.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

3 STATISTICS-BASED STOP CONDITIONS
Section 2 states that PT4Cloud determines whether the performance
test can be stopped by determining if two distributions, d1 and d2,
are similar (stable). That is, PT4Cloud determines if adding another
interval of tests significantly changes the performance distribution.

A key issue here is to identify the proper statistical approach for
this distribution comparison. A statistical approach that is proper
for cloud performance testing should satisfy three requirements.
First, the approach should be able to handle non-typical distribu-
tions, as performance distributions of cloud applications usually
do not follow known distributions. Second, this approach should
be able to handle distributions acquired from experiments, as it is
practically impossible to make a hypothesis about the exact theoret-
ical distribution for a cloud application’s performance. Third, the
comparison result from this approach should be intuitive so that
the ordinary user can understand. The comparison result should
also provide a quantitative definition for “significant change in
distributions” to ensure testing results are accurate.

Themost common approach for distribution comparison is Good-
ness of Fit (GoF) statistical tests [49]. However, many GoF tests
are only designed for specific types of distribution (e.g., Shapiro–
Wilk test for normal distributions) or require one distribution to
be theoretical instead of experimental (e.g., Kolmogorov–Smirnov
test) [49]. The Anderson-Darling test is a generic GoF test that can
compare two distributions acquired from experiments. However,
this test requires critical values that do not yet exist for the non-
typical cloud performance distributions. The Chi-square (χ2) test
is another generic GoF test. To use χ2-test, one needs to first di-
vide the range of performance data (e.g., execution times) acquired
from tests into bins. Unfortunately, the χ2-test is sensitive to the
widths of the bins [49]. We experimented with χ2-test, but were
unable to find a bin width that worked well for the diverse types of
distributions obtained from cloud performance tests.

The distribution comparison approach thatwe eventually adopted
is Kullback-Leibler (KL) divergence, which can handle any types
of distributions [42]. More specifically, KL-divergence measures
how one distribution diverges from a second distribution. Without
loss of generality, consider two distributions P and Q over random
variable x . The equation to compute how P diverges from Q with
KL-divergence is,

DKL(P | |Q) =
∫

P(x) log P(x)
Q(x)dx . (1)

The value of KL-divergence (i.e., DKL(P | |Q)) ranges from 0 to
infinity. A value of 0 for KL-divergence indicates no divergence,
whereas infinity indicates two distributions are completely different.
However, this interpretation is not intuitive for users to understand
the amount of difference (divergence). To help a user interpret KL-
divergence, we employed multinomial likelihood L [57] from the
likelihood theory, which can be computed as,

L(P | |Q) = 2−DKL (P | |Q) (2)

Intuitively, L represents the probability that P is different from
Q . As our goal is to compare the similarity between distributions
d1 and d2, it requires considering d1 and d2 symmetrically. That is,
if d1 and d2 are similar, then d1 is not different from d2, and d2 is
not different from d1. Therefore, we define the probability p that d1

and d2 are similar as,

p = L(d1 | |d2) × L(d2 | |d1) (3)

As described in Section 2, p is the probability used in PT4Cloud
to determine whether the performance distributions obtained from
performance tests are stable. Note that, to compute the integration
in Eq (1), we employed numerical integration by partitioning each
distribution into 1000 strips. For our experiments, using 1000 strips
was sufficient, adding more strips changes the probabilities by less
than 0.1%.

Note that, KL-Divergence is commonly used as an asymmetric
metric.We used the symmetric KL-Divergence following its original
definition as we treat d1 and d2 equally in the comparison. [42]. A
potential variant of PT4Cloud may use asymmetric KL-Divergence.
While using asymmetric KL-Divergence does not affect the results
of our experiments, its exact impact requires more investigation.

4 ESTABLISHING CONFIDENCE BANDS
To help users better understand their application’s performance and
interpret the performance testing results with higher confidence,
PT4Cloud also presents each final performance distribution with
its confidence band.

Because the performance distributions of cloud applications
do not necessarily follow known distributions, we chose to com-
pute point-wise confidence bands (CB) using bootstrap [19, 34, 44].
Point-wise confidence bands are commonly used to describe non-
parametric distributions, and bootstrap is a statistical method for
treating non-parametric distributions.

Bootstrap is essentially a resampling technique. To generate a
CB, the original performance data set S is resampled. Each resample
samples a new data set with |S | data points from S with replace-
ment, and a new probability density function (PDF) is generated
based on the new data set. Repeating the resampling for R times
allows us to calculate R PDFs. Then a point-wise confidence band
with confidence level (CL) c% can be determined by calculating the
probability density region that contains c% of the R Bootstrapped
PDFs. Figure 3 also shows the confidence bands with shaded areas.

Bootstrap can produce correct results assuming re-sampling on
the data set S behaves similarly to when S is sampled from the true
population. This assumption is usually true when S is complete and
R are sufficiently large [19]. We set R to be 1000, following common
practice [19]. S is deemed complete by PT4Cloud. Therefore, as long
as PT4Cloud methodology is accurate, confidence band generated
with S is also reliable.

5 EXPERIMENTAL EVALUATION
This section presents the methodology and findings from eval-
uating PT4Cloud on two public clouds. This evaluation seeks to
answer the following research questions: 1) How accurate are the
performance distributions acquired with PT4Cloud? 2) How does
PT4Cloud compare with the state of the art?

5.1 Experimental Setup
Benchmarks We evaluated PT4Cloud with a variety of bench-
marks that represent web applications, high-performance comput-
ing (HPC) applications, database (DB) applications and machine

A Statistics-Based Performance Testing Methodology for Cloud Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Benchmarks and their application domains.
Benchmark Domain Origin
ft.C HPC NPB
ep.C HPC NPB
JPetStore (JPS) Web J2EE
YCSB DB YCSB
TPC-C DB OLTPBench
In-Memory Analytics (IMA) ML CloudSuite

Table 2: VM configurations used for evaluation.

Config. VM Cnt x VM Type Core-Cnt Mem Size
CHM-1 4 x Small (Sm) 1/VM 2GB/VM
CHM-2 2 x Medium (Md) 2/VM 4GB/VM
CHM-3 1 x Large (Lg) 4/VM 8GB/VM
AWS-1 4 x m5.large (M5Lg) 2/VM 8GB/VM
AWS-2 2 x m5.xlarge (M5XLg) 4/VM 16GB/VM
AWS-3 1 x m5.2xlarge (M52XLg) 8/VM 32GB/VM

learning (ML) applications to demonstrate that PT4Cloud can be
applied to diverse cloud applications. Table 1 gives the benchmarks
and their application domains that were used in our evaluation.
More specifically, we used JPetStore (JPS) from Java 2 Platform
Enterprise Edition (J2EE), ft and ep from NAS Parallel Benchmarks
(NBP), Yahoo! Cloud System Benchmark (YCSB) with Apache Cas-
sandra database, TPC-C from OTLPBench and In-Memory Analytics
(IMA) from CloudSuite [7, 17, 20, 22, 51]. For ft and ep, we used the
NPB’s C workloads so that the input data can fit in the memory of
a medium sized VM. For YCSB, we used its workload A which has
50% reads and 50% writes.

PublicClouds andVMConfigurationsTo show that PT4Cloud
works properly on public clouds, we evaluated it on two public
clouds, Chameleon (CHM) [1], and the Amazon Web Services EC2
(AWS) [6]. We used three VM configurations on each cloud that rep-
resent use cases with both single and multiple VMs. Table 2 details
the VM configurations used in our experiments. Note that AWS has
a large selection of VM types; in this work, we chose m5 VMs as
they are the latest general purpose VMs. Except for ft, ep and IMA,
each benchmark was tested on all configurations. Due to insuffi-
cient memory, ft, ep and IMA could not execute on Chameleon’s
small VMs. In the rest of this paper, we call an experiment with one
benchmark on one VM configuration as a benchmark configuration.
In total, 33 benchmark configurations are evaluated.

Parameters of PT4Cloud For this evaluation, we chose the
object probability (po) for distribution stability comparison to be
90% (i.e., expecting the accuracy of performance testing results to be
at least 90%). We also set the confidence level (CL) to be 99% for the
confidence bands generation. Additionally, as stated in Section 2,
we used a time interval length of one week in this evaluation.

Evaluation Methodology and Metric For each benchmark
configuration, we evaluate the accuracy of its performance distri-
bution acquired with PT4Cloud by comparing this distribution with
a ground truth performance distribution. We then report the proba-
bility (i.e., the multinomial likelihood introduced in Section 3) that
the PT4Cloud and ground truth distributions are the same. For the
rest of this paper, we simply refer to this probability as accuracy.
To obtain the ground truth distribution, we executed each bench-
mark configuration for six weeks (in addition to the performance

Table 3: The number of intervals/weeks (W) required to ob-
tain stable performance distributions, and the accuracy of
the performance distributions obtained with PT4Cloud.

“Test run Length” / “Accuracy (%)”
CHM-1 CHM-2 CHM-3 AWS-1 AWS-2 AWS-3

ft.C N/A 2W/91 2W/99 2W/98 2W/99 2W/98
ep.C N/A 2W/94 2W/92 2W/96 2W/99 2W/99
JPS 2W/98 2W/99 3W/96 2W/99 3W/96 2W/96
YCSB 3W/94 3W/93 2W/90 3W/93 2W/94 2W/93
TPC-C 2W/94 2W/92 2W/90 2W/97 2W/96 2W/95
IMA N/A 2W/95 2W/95 2W/94 2W/96 2W/95

tests conducted with PT4Cloud) and calculated the performance
distributions using the performance data from these six weeks.

Open Data Our data and source code are available at
http://doi.org/10.6084/m9.figshare.7749356.

5.2 Perf. Dist. Acquired with PT4Cloud
Figure 4 presents the performance distributions acquired with
PT4Cloud for eight benchmarks configurations. Due to space limi-
tation, only four benchmarks on two VM configurations – CHM-2
and AWS-2 – are shown in Figure 4. The rest of the benchmarks and
configurations have similar results. Figure 4 shows that the perfor-
mance distributions for these benchmarks gradually became stable
over time. That is, the changes in the distributions become smaller
after each new interval/week. It can also be seen from Figure 4 that
the distributions from the first interval/week can be dramatically
different from the final stable distributions, suggesting the necessity
of a performance testing methodology like PT4Cloud. The distribu-
tions in Figure 4 also do not always follow known distributions and
vary with benchmark configurations, proving the need for using
non-parametric statistical methods as employed by PT4Cloud.

Table 3 provides the numbers of intervals of test runs that were
conducted to obtain stable performance distributions with more
than 90% stability probability (i.e., po is 90%) for all benchmark con-
figurations. The performance distributions of the majority of the
benchmarks were stable within two weeks. On certain VM configu-
rations, the distributions of DB and web applications required three
weeks to become stable as I/O (network and disk) performance has
higher fluctuations than CPU and memory performance [43].

5.3 Accuracy of PT4Cloud
Figure 5 compares the performance distributions obtained with
PT4Cloud and the ground truth performance distributions. Due to
space limitation, only four benchmarks on two VM configurations
are shown in Figure 5. As the figure shows, the ground truth per-
formance is very close to the performance obtained from PT4Cloud.

Table 3 also gives the accuracy of PT4Cloud’s performance dis-
tributions when compared with ground truth distributions for all
benchmark configurations. As shown in Table 3, the accuracy of
PT4Cloud’s performance distributions is always higher than 90%.
The average accuracy is 95.4%. These results indicate that PT4Cloud
methodology is highly accurate for cloud performance testing.
Moreover, PT4Cloud methodology executed considerably fewer
tests than the ground truth tests. Figure 8 gives how many fewer

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

300 350 400 450
Execution Time (sec.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

Week1
Week1 + 2

(a) ft.C on 2xMd (CHM-2).

200000 300000 400000 500000 600000
Successful Requests

0.000000

0.000002

0.000004

0.000006

0.000008

De
ns

ity

Week1
Week1 + 2

(b) JPS on 2xMd (CHM-2).

0 2500 5000 7500 10000 12500
Overall Throughput

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

De
ns

ity

Week1
Week1 + 2
Week1 + 2 + 3

(c) YCSB on 2xMd (CHM-2).

1000000 1200000 1400000 1600000
Execution Time (ms.)

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

De
ns

ity

Week1
Week1 + 2

(d) IMA on 2xMd (CHM-2).

100 125 150 175 200 225 250
Execution Time (sec.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

Week1
Week1 + 2

(e) ft.C on 2xM5XLg (AWS-2).

1250000 1300000 1350000 1400000
Successful Requests

0.000000

0.000005

0.000010

0.000015

0.000020

De
ns

ity

Week1
Week1 + 2
Week1 + 2 + 3

(f) JPS on 2xM5XLg (AWS-2).

16000 18000 20000 22000 24000
Overall Throughput

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns

ity

Week1
Week1 + 2

(g) YCSB on 2xM5XLg (AWS-2).

650000 750000 850000
Execution Time (ms.)

0.000000

0.000005

0.000010

0.000015

0.000020

De
ns

ity

Week1
Week1 + 2

(h) IMA on 2xM5XLg (AWS-2).

Figure 4: Performance Distributions acquired with PT4Cloud for four benchmarks on configurations of CHM-2 and AWS-2.

300 350 400 450 500
Execution Time (sec.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity

Perf. Dist.
Grd Truth

(a) ft.C on 2xMd (CHM-2).

200000 300000 400000 500000 600000
Successful Requests

0.000000

0.000002

0.000004

0.000006

0.000008

De
ns

ity

Perf. Dist.
Grd Truth

(b) JPS on 2xMd (CHM-2).

2000 4000 6000 8000 10000 12000
Overall Throughput

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns

ity

Perf. Dist.
Grd Truth

(c) YCSB on 2xMd (CHM-2).

10000001200000140000016000001800000
Execution Time (ms.)

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

De
ns

ity

Perf. Dist.
Grd Truth

(d) IMA on 2xMd (CHM-2).

125 150 175 200 225 250
Execution Time (sec.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

Perf. Dist.
Grd Truth

(e) ft.C on 2xM5XLg (AWS-2).

1150000 1250000 1350000 1450000
Successful Requests

0.0000000

0.0000025

0.0000050

0.0000075

0.0000100

0.0000125

0.0000150

0.0000175

De
ns

ity

Perf. Dist.
Grd Truth

(f) JPS on 2xM5XLg (AWS-2).

16000 18000 20000 22000 24000
Overall Throughput

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

De
ns

ity

Perf. Dist.
Grd Truth

(g) YCSB on 2xM5XLg (AWS-2).

700000 800000 900000
Execution Time (ms.)

0.000000

0.000005

0.000010

0.000015

0.000020

De
ns

ity

Perf. Dist.
Grd Truth

(h) IMA on 2xM5XLg (AWS-2).

Figure 5: Performance distributions obtainedwith PT4Cloud and ground truth performance distributions for four benchmarks
on two VM configurations on CHM and AWS. Shaded areas are confidence bands.

test runs PT4Cloud executed compared to the ground truth tests.
On average, PT4Cloud executed 62% fewer test runs.

Figure 5 also shows the confidence bands (CB) for the final dis-
tributions with 99% CL. With po being 90%, the probability that the
true distribution falling within the CB is expected to be roughly
90%× 99% = 89%. Note the ground truth distributions do not neces-
sarily fall within the confidence bands with this same probability, as
they are still experimental (i.e., not true) distributions. Nonetheless,

the majority of the ground truth distributions (including those not
shown in Figure 5), fall within the confidence bands.

5.4 Comparison with State-of-the-Art
To demonstrate the importance of a newmethodology like PT4Cloud
for performance testing on the cloud, we compared PT4Cloud with
three performance test stopping and performance predictionmethod-
ologies from software engineering and computer system research.

A Statistics-Based Performance Testing Methodology for Cloud Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

 0

 20

 40

 60

 80

 100

ft.C
 (C

H
M

-2
)

ft.C
 (C

H
M

-3
)

ep
.C

 (C
H

M
-2

)

ep
.C

 (C
H

M
-3

)

JPS
 (C

H
M

-1
)

JPS
 (C

H
M

-2
)

JPS
 (C

H
M

-3
)

YC
S
B

 (C
H

M
-1

)

YC
S
B

 (C
H

M
-2

)

YC
S
B

 (C
H

M
-3

)

TPC
-C

 (C
H

M
-1

)

TPC
-C

 (C
H

M
-2

)

TPC
-C

 (C
H

M
-3

)

IM
A

 (C
H

M
-2

)

IM
A

 (C
H

M
-3

)

ft.C
 (A

W
S
-1

)

ft.C
 (A

W
S
-2

)

ft.C
 (A

W
S
-3

)

ep
.C

 (A
W

S
-1

)

ep
.C

 (A
W

S
-2

)

ep
.C

 (A
W

S
-3

)

JPS
 (A

W
S
-1

)

JPS
 (A

W
S
-2

)

JPS
 (A

W
S
-3

)

YC
S
B

 (A
W

S
-1

)

YC
S
B

 (A
W

S
-2

)

YC
S
B

 (A
W

S
-3

)

TPC
-C

 (A
W

S
-1

)

TPC
-C

 (A
W

S
-2

)

TPC
-C

 (A
W

S
-3

)

IM
A

 (A
W

S
-1

)

IM
A

 (A
W

S
-2

)

IM
A

 (A
W

S
-3

)

A
verag

e

A
cc

u
ra

cy
 (

%
)

PT4Cloud w. 1-week Interval SotA1 SotA2

Figure 6: Accuracy of PT4Cloud when compared with two other state-of-the-art performance testing methodologies.

The first methodology (SotA1) stops the performance test by
detecting the repetitiveness of the performance data obtained from
test runs [3]. More specifically, it picks a short period of data from
the whole performance testing results and compares this period
with other periods in the whole data set to determine if this period
of data is repeated. The methodology repeats this process for 1000
times to estimate the percentage of the performance results that
are repeated (i.e., repetitiveness). If the repetitiveness remains un-
changed for a user-defined time span, then the test can be stopped.
We reproduced this methodology using the 18 sets of parameters
given in that paper and report the accuracy of the performance
distributions obtained with this methodology in Figure 6. For each
benchmark configuration, only the best accuracy of the 18 sets of
parameters is reported. For all of the benchmark configurations,
this methodology stopped the tests relative early – always in less
than 450 minutes on AWS and 250 minutes on Chameleon. Due to
space limitation, we cannot provide detailed stop times.

As Figure 6 shows, this first methodology has an average accu-
racy of only 65.7% due to the early stop times. Many benchmark
configurations experienced lower than 50% accuracy. We observe
that this low accuracy is mainly because this methodology is only
designed to detect performance changes due to an application’s in-
ternal factors instead of external factors, such as cloud performance
uncertainty factors. For internal factors, only measuring whether
a datum is repeated or not may be enough. However, for external
factors, how frequent each datum being repeated is also important.
Additionally, we found that the accuracy of this methodology relied
heavily on its parameters, i.e., the length of the period and the
user-defined time span. Nonetheless, it is unclear how to select
these parameters to maximize accuracy.

The second methodology we compared (SotA2) is a classical tech-
nique for performance analysis [39, 46, 49]. In this methodology, the
performance test is stopped if the confidence interval (CI) for cer-
tain statistics “narrows to a desired width” [39, 46]. As we tested for
performance distribution, we extended this idea to stop running the
tests if the 99% CI for each percentile of the performance dropped
within 10% of the observed percentile performance. This 10% is
chosen to reflect ±5% margin of error, similar to our 90% accuracy
goal (i.e., po). With this extension, we applied this methodology
to our benchmarks. The CIs were generated using the bootstrap
approach. This methodology caused the performance testing to
stop at variable times, from 2 hours to even 7 weeks. The extra long
tests were caused by performance outliers, which made the CIs of

certain fringe percentiles harder to converge. The accuracy of the
performance distributions obtained with this methodology is also
reported in Figure 6. As Figure 6 shows, the average accuracy for
this methodology is only 66.2%, with the lowest accuracy being
8.73% (EP-CHM3).

This low accuracy shows that CI width is a poor stopping cri-
teria for cloud performance testing. That CIs failed to determine
required sample sizes is also observed in other science fields [29].
The main issue is that, for non-parametric distributions, CIs are
reliable only when data is complete [19]. That is, for cloud perfor-
mance testing results, the CIs are only reliable when the results
covers all uncertainty factors. A narrow CI simply means that there
are large amount of performance data obtained under the observed
uncertainty factors, not that all factors are observed by the tests.

We compared our technique with a third methodology, which
was a performance distribution prediction technique for cloud using
Monte Carlo simulation [10]. This methodology can be applied
to applications with multiple steps assuming the min and max
performance of each step are known. Two of our benchmarks,
YCSB and ft.C, have two steps. Thus, we applied this prediction
technique on the 11 benchmark configurations involving these
two benchmarks using the min and max performance obtained
from the ground truth. For ft.C, the distributions predicted by this
technique have accuracies of 10%, 11%, 16%, 21%, 8%, on the five VM
configurations from CHM-2 to AWS-3. For YCSB, the accuracies
are 42%, 22%, 20%, 39%, 29%, 16% for CHM-1 to AWS-3. The average
accuracy for the 11 configurations is 21.3%. The low prediction
accuracy is primarily because this technique assumes each step
has a uniform performance distribution, which is not true on real
public clouds. In fact, if the stable performance distribution for each
step obtained with PT4Cloud is used for this method, the average
prediction accuracy of this methodology can be increased to 53.9%
(with one configuration’s accuracy increased to 94%). This increase
in accuracy shows that not only does PT4Cloud benefit performance
testing, it can also benefit performance prediction techniques by
providing reliable training data set. Moreover, PT4Cloud can also
benefit performance prediction techniques by providing reliable
ground truth to evaluate the goodness of the prediction results.

6 REDUCING THE NUMBER OF TESTS
As performance tests on clouds incur cloud usage cost, a good
performance testing methodology should also strive to minimize
the testing costs. In this section, we explore the approaches to

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

Application-to-test and
a workload

Step 1 - 1:
Execute tests for the app
continuously for a short
interval I. Let the set of
perf. data acquired
from these tests be S1.

Step 1 - 2:
Calculate performance
distribution d1 from S1.

Step 2 - 2:
Combine S1 and S2 into
a new sample set S.
Calculate performance
distribution d2 from S.

Step 2 - 1:
Execute the app for an-
other short interval I. Let
the set of perf. data from
these new tests be S2.

No

Report d2 (and
validation, if any) as
the perf test results

Step 4-1 (optional validation):
Conduct additional tests of
size |S| and calculate perfor-
mance distribution d3.

Validation is successful

Validation fails

Yes and choose to
validate d2

Yes and choose
not to validate

Step 3:
Compare d1 and d2

to determine if
stable?

Step 4-2:
Compare d2 and d3

to validate d2.

Step 5:
Increase the length of
interval I.

Figure 7: The workflow of PT4Cloud when using intervals
shorter than one week.

reduce the length of the intervals and test runs per interval for
PT4Cloud, which in turn can reduce the test costs.

6.1 Reducing Interval Length
In Figure 4, several benchmarks’ performance distributions ob-
tained after the first week were already very similar to the final
performance distributions (e.g., ft.C and IMA), suggesting that some
cloud applications can use intervals shorter than one week. In-
deed, the proper interval length depends on the application and
the VM configuration to be tested. For instance, a CPU-intensive
application is less likely to be affected by the cloud performance
uncertainty factors from I/O contentions. Therefore, the interval
for this application can potentially be smaller than a week, as the
performance test only needs to cover a smaller number of perfor-
mance uncertainty factors. However, for applications with heavy
usage of disk and network, the intervals must be longer to cover
the fluctuations due to all uncertainty factors.

To help users conduct tests with shorter intervals, we modified
the workflow of PT4Cloud to allow users to search for proper in-
terval lengths while conducting tests. Figure 7 depicts a variant of
PT4Cloud designed for short intervals. In this new variant, the user
first conducts tests for two short intervals. Then our distribution
comparison technique is used to determine if the performance dis-
tribution is stable after these two short intervals. If the distribution
is stable, then it can be reported as the final results. Otherwise,
the interval length is increased (Step 5), and a new round of tests
starts from the beginning (Step 1) with the new longer interval. The
testing interval gradually increases if the results do not stabilize.
When the interval length reaches one week, the standard PT4Cloud
methodology is employed.

In this new variant, we choose to increase the interval length
instead of conducting tests for more intervals because our primary
goal is to provide highly accurate testing results. Therefore, we

aggressively assume that failure to stabilize is due to a short interval
rather than that insufficient intervals are tested.

A disadvantage of shorter intervals is that the resulting distri-
butions are more likely to be inaccurate than those acquired from
longer intervals, as the impacts of cloud performance uncertainty
factors are more likely to remain unchanged within a short period
than a longer period. For example, an application’s performance
may appear to be stable within two hours, although its actual per-
formance over a week may be quite different. Consequently, in
PT4Cloud for short intervals, we also included an optional valida-
tion step (Step 4 of Figure 7). More specifically, if the performance
distribution is stable with two short intervals of tests, then an addi-
tional two intervals (with same interval length) of tests are executed.
The performance distribution from the additional test runs is com-
pared with the original distribution. If both distributions are the
same with a probability higher than the objective probability (po),
then the testing result is validated and can be reported. Otherwise,
the interval length has to be increased. Based on the performance
results we obtained from the experimental evaluation, we recom-
mend the user to take the validation step if the testing result is
stable within a week (i.e., the interval length is less than 3.5 days).

6.2 Reducing Test Runs with Sampling
To further reduce the testing cost, especially for the applications
requiring 1-week intervals, we also explored an hourly sampling
technique. So far, test runs have been executing consecutively for
each interval with the goal to cover every change in the behavior
of the cloud performance uncertainty factors. Similar to other sta-
tistical practices, this consecutive execution of tests can be replaced
with sampling to reduce cost while providing similar accuracy. Here,
we employed an hour-based sampling technique. More specifically,
for each hour within an interval, tests are only executed for a por-
tion of this hour.We sampled our performance testing data obtained
for the evaluation in Section 5 with various portion sizes and found
that our benchmarks can achieve more than 90% accuracy with
portion sizes from 1/3 to 3/4. On average, a portion size of 1/2 (i.e.,
sampling one half of an hour) provides highly accurate results for
the majority of our benchmarks.

6.3 Evaluation of Test Reduction Techniques
We conducted additional evaluations to examine the effectiveness
and accuracy of our two test reduction techniques. By effectiveness
evaluation, we mean evaluating whether our test reduction tech-
niques can effectively reduce the number of test runs. We extracted
smaller intervals of performance data from the tests conducted for
the evaluation in Section 5 and performed sampling on these data.
For interval reduction, we explored intervals of 1 hour, 12 hours, 1
day, 2 days, 3 days, etc. up to 6 days. For hourly sampling, we used
a portion size of 1/2 (i.e., sampling one half of an hour).

Effectiveness Evaluation Table 4 shows the reduced interval
lengths to achieve at least 90% stable probability for all benchmark
configurations used in Section 5. As the table shows, the interval
lengths ranged from 12-hours to one week. ML and HPC bench-
marks that are CPU- and/or memory-intensive are more likely to
use intervals less than a week. However, DB and web applications
that are I/O-intensive often require an interval of a week or close

A Statistics-Based Performance Testing Methodology for Cloud Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: Reduced interval lengths and the number of intervals it takes to stabilize, for all benchmark configurations using the
two test reduction techniques (“D” stands for day).

“Reduced Interval Length” / “# of Intervals”, w/o Hourly Sampling “Reduced Interval Length” / “# of Intervals”, w. Hourly Sampling
config. CHM-1 CHM-2 CHM-3 AWS-1 AWS-2 AWS-3 CHM-1 CHM-2 CHM-3 AWS-1 AWS-2 AWS-3
ft.C N/A 3D / 2 3D / 2 12hrs / 2 12hrs / 2 12hrs / 2 N/A 3D / 2 3D / 2 12hrs / 2 12hrs / 2 12hrs / 2
ep.C N/A 4D / 2 4D / 2 4D / 2 1D / 2 12hrs / 2 N/A 4D / 2 4D / 2 4D / 2 12hrs / 2 12hrs / 2
JPS 12hrs/ 2 12hrs / 2 1W / 3 1D / 2 1W / 3 3D / 2 12hrs / 2 12hrs / 2 1W / 3 1D / 2 1W / 3 4D / 2
YCSB 4D / 2 1W / 3 5D / 2 1W / 3 2D / 2 4D / 2 4D / 2 1W / 3 5D / 2 1W / 3 2D / 2 3D / 2
TPC-C 3D / 2 1D / 2 4D / 2 12hrs / 2 12hrs / 2 12hrs / 2 3D / 2 1D / 2 4D / 2 12hrs / 2 12hrs / 2 12hrs / 2
IMA N/A 3D / 2 4D / 2 12hrs / 2 12hrs / 2 1D / 2 N/A 3D / 2 4D / 2 2D / 2 2D / 2 4D / 2

 0

 20

 40

 60

 80

 100

ft.C
 (C

H
M

-2
)

ft.C
 (C

H
M

-3
)

ep
.C

 (C
H

M
-2

)

ep
.C

 (C
H

M
-3

)

JPS
 (C

H
M

-1
)

JPS
 (C

H
M

-2
)

JPS
 (C

H
M

-3
)

YC
S
B

 (C
H

M
-1

)

YC
S
B

 (C
H

M
-2

)

YC
S
B

 (C
H

M
-3

)

TPC
C

 (C
H

M
-1

)

TPC
C

 (C
H

M
-2

)

TPC
C

 (C
H

M
-3

)

IM
A

 (C
H

M
-2

)

IM
A

 (C
H

M
-3

)

ft.C
 (A

W
S
-1

)

ft.C
 (A

W
S
-2

)

ft.C
 (A

W
S
-3

)

ep
.C

 (A
W

S
-1

)

ep
.C

 (A
W

S
-2

)

ep
.C

 (A
W

S
-3

)

JPS
 (A

W
S
-1

)

JPS
 (A

W
S
-2

)

JPS
 (A

W
S
-3

)

YC
S
B

 (A
W

S
-1

)

YC
S
B

 (A
W

S
-2

)

YC
S
B

 (A
W

S
-3

)

TPC
C

 (A
W

S
-1

)

TPC
C

 (A
W

S
-2

)

TPC
C

 (A
W

S
-3

)

IM
A

 (A
W

S
-1

)

IM
A

 (A
W

S
-2

)

IM
A

 (A
W

S
-3

)

R
ed

u
ce

d
 T

es
ts

 (
%

)

Standard PT4Cloud with 1-week Interval Reduced Interval Reduced Interval + Sampling

Figure 8: Number of tests reduced by PT4Cloud and our test reduction techniques, compared to the ground truth tests.

to a week. Prior studies also observed that the performance of I/O-
bound applications depended strongly on contention [43]. More-
over, more benchmark configurations can use short intervals on
AWS than on Chameleon, which reflects the fact that AWS provides
better resource contention management and VM placement.

Figure 8 shows the number of tests reduced by our test reduc-
tion techniques. On average, the interval reduction can reduce test
counts by 81.5% of the tests required for ground truth tests. Ap-
plying both test reduction techniques can reduce the test counts
by 90.1%. This reduction in test count can reduce both VM usage
costs and network cost proportionally for popular public clouds,
including AWS, Microsoft Azure and Google Compute Engine.

Accuracy Evaluation Figure 9 gives the accuracy of the per-
formance distributions acquired with PT4Cloud methodology after
applying the two test reduction techniques. As the figure shows,
our test reduction techniques can reduce test count without sig-
nificantly scarifying accuracy. Even with the test reduction, the
performance distributions acquired with PT4Cloud can still reach
up to 99% accuracy (JPS on AWS-1). On average, the performance
distributions acquired with PT4Cloud after applying interval reduc-
tion is 92.3%. The average accuracy after applying both interval
reduction and hourly sampling is 91%. It is also worth noting that,
when the interval length is longer than 4 days, sampling half an
hour has little negative impact on accuracy.

The lowest accuracy is 71.9%, which is for IMA on AWS-1 when
using both reduced intervals and sampling. For this benchmark
configuration, there were a few performance outliers. As the tests
were only conducted for 2 days with sampling, these outliers were
observed at a different frequency during the PT4Cloud tests than
the ground truth. As KL-divergence is sensitive to outliers, this
difference reduced the accuracy, even though the majority of the
PT4Cloud and ground truth distributions were similar.

7 THREATS TO VALIDITY
Execution environment changes. The performance results ob-
tained with PT4Cloud are only valid when the execution environ-
ment, including the underlying hardware and multi-tenancy behav-
ior, remains the same. When the execution environment is changed,
new performance tests should be conducted.

Furthermore, while our results indicate that the performance of
cloud applications has weekly or daily cycles, events that happen
only a few times a year/month may still affect overall performance
distributions. An example of such yearly events may be holiday
shopping where all websites running in the clouds exhibit high
resource demands. In general, we believe these events do not sig-
nificantly change overall performance distributions as they happen
infrequently. Additionally, cloud service providers can implement
resource management policies to limit the impact of these events.
Our experiments on AWS actually overlapped with Amazon 2018
Prime Day when Amazon’s own website experienced errors [16].
However, we observed nearly no impact on the performance of our
benchmarks. Nonetheless, the potential impact of these yearly and
monthly events should be acknowledged.

Other applications, workloads and VM configurations. Al-
though we strive to evaluate PT4Cloud with all types of cloud
applications, we can only evaluate a limited number of benchmarks
and VM configurations, due to cost. Other cloud applications, work-
loads, VM configurations and clouds may exhibit different accuracy
with PT4Cloud or require different interval lengths.

Other cloud uncertainty factors. Here, we focused on the
cloud performance uncertainty factors caused by multi-tenancy and
VM scheduling. Other factors, such as data center location, bursty
VM types and hardware variation, may also affect performance.
The VMs used for our evaluations are not affected by these factors.
However, these factors do exist for other cloud services and VM

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

 70

 75

 80

 85

 90

 95

 100

ft.C
 (C

H
M

-2
)

ft.C
 (C

H
M

-3
)

ep
.C

 (C
H

M
-2

)

ep
.C

 (C
H

M
-3

)

JPS
 (C

H
M

-1
)

JPS
 (C

H
M

-2
)

JPS
 (C

H
M

-3
)

YC
S
B

 (C
H

M
-1

)

YC
S
B

 (C
H

M
-2

)

YC
S
B

 (C
H

M
-3

)

TPC
-C

 (C
H

M
-1

)

TPC
-C

 (C
H

M
-2

)

TPC
-C

 (C
H

M
-3

)

IM
A

 (C
H

M
-2

)

IM
A

 (C
H

M
-3

)

ft.C
 (A

W
S
-1

)

ft.C
 (A

W
S
-2

)

ft.C
 (A

W
S
-3

)

ep
.C

 (A
W

S
-1

)

ep
.C

 (A
W

S
-2

)

ep
.C

 (A
W

S
-3

)

JPS
 (A

W
S
-1

)

JPS
 (A

W
S
-2

)

JPS
 (A

W
S
-3

)

YC
S
B

 (A
W

S
-1

)

YC
S
B

 (A
W

S
-2

)

YC
S
B

 (A
W

S
-3

)

TPC
-C

 (A
W

S
-1

)

TPC
-C

 (A
W

S
-2

)

TPC
-C

 (A
W

S
-3

)

IM
A

 (A
W

S
-1

)

IM
A

 (A
W

S
-2

)

IM
A

 (A
W

S
-3

)

A
verag

e

A
cc

u
ra

cy
 (

%
)

Standard PT4Cloud with 1-week Interval Reduced Interval Reduced Interval + Sampling

Figure 9: Accuracy of test reduction techniques.

types. Although PT4Cloud methodology is generic enough to handle
these factors, more tests may be required to cover these factors.

Performance results other thandistributions. In some cases,
users may only need to know the mean or a particular percentile
of the performance of their applications. Although an accurate per-
formance distribution can provide accurate mean and percentiles,
there may be a cheaper testing methodology to obtain them directly.
However, as the means and percentiles are still from the non-typical
performance distributions of cloud applications, common paramet-
ric statistical tools still cannot be applied. We are currently working
on a separate testing methodology for means and percentiles that
can further reduce test costs.

8 RELATEDWORK
A large body of work in performance testing focused on the gener-
ation and prioritization of test inputs [8, 13, 18, 60]. Burnim et al.
designed an input generator that can produce worst-performing
test inputs for any input sizes [12]. Zhang et al. proposed a method-
ology to generate test inputs given an input size and diversity based
on symbolic execution [64]. Chen et al. extended this idea to employ
probabilistic symbolic execution to generate test inputs with fre-
quencies so that a performance distribution can be constructed [14].
PerfLearner can help test input generation by finding important
parameters from bug reports [33]. Perfranker is a test input priori-
tization mechanism for performance regression testing [48]. There
is also work on detecting performance bugs by analyzing source
code, application behavior and traces [9, 15, 24, 32, 36, 40, 41, 50, 61].
These test input generation, prioritization and performance debug-
ging studies are orthogonal to our work, as our work focuses on
determining the accurate performance of a test input.

Several studies documented the importance of repeatedly exe-
cuting a test input for performance testing [48, 53]. However, these
studies did not provide means to properly determine the number of
test runs required to get reliable performance with low testing cost.
They either used extensively long test runs [48] or an arbitrary
number of runs [53]. The most related work on performance test
stopping condition is probably the study done byAlGhmadi et al. [3]
and the CI-based methodology [39, 46]. However, our comparison
experiments in Section 5.4 showed that these methodologies could
not provide accurate performance testing results on the cloud. Guo
et al. also employed bootstrap in their work for building perfor-
mance models and cross-validation, instead of testing [30].

There is also research on predicting cloud application’s perfor-
mance. The mostly related prediction work is proposed by Luke et

al. to predict the performance distributions for applications with
multiple steps [10]. Our comparison experiments in Section 5.4
showed that this work could provide accurate predictions. Hsu et al.
investigated predicting the best VM configuration using Bayesian
Optimization with low-level metrics [35]. However, this work did
not aim at predicting the actual performance of cloud applica-
tions. Wang et al. predicted the performance of CPU and memory-
intensive applications [62]. PARIS is a model that could predict
the performance of a cloud application on a VM configuration [63].
However, PARIS may have up to 50% (RMSE) error [63]. Gambi et al.
employed the Kriging method to predict the average performance
of a cloud application under different workloads and VMs [25].
It is worth noting that the existence of predictive work cannot
eliminate the necessity of measurement-based performance test-
ing approaches such as PT4Cloud. As shown in Section 5.4 and
in prior work, measurement-based performance testing is still re-
quired to provide complete training set and accurate ground truths
for predictive approaches[56].

9 CONCLUSION
Performance testing on clouds to obtain accurate testing results is
extremely challenging due to cloud performance uncertainty, the
inability to control cloud execution environments and the testing
cost. In this paper, we present a cloud performance testing method-
ology, PT4Cloud. By employing non-parametric statistical tools of
likelihood theory and bootstrapping, PT4Cloud can provide reliable
stopping conditions to obtain highly accurate performance results
as performance distributions with confidence bands. The evaluation
results show that, with two test reduction techniques, PT4Cloud’s
performance results are on average 91% similar with testing results
from extensive test runs with 90.1% fewer tests compared to these
extensive runs. This is considerably better than the state of the art
as evidenced in our empirical comparisons.

ACKNOWLEDGEMENT
This work was supported by the National Science Foundation under
grants CCF-1617390 and CCF-1618310. The views and conclusions
contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments, either expressed or implied of NSF. The authors would like
to thank the anonymous reviewers for their insightful comments.
We would also like to thank James Skripchuk, Tianyi Liu and Xin
Nie for their valuable inputs.

A Statistics-Based Performance Testing Methodology for Cloud Applications ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] [n.d.]. A Configurable Experimental Environment for Large-scale Cloud Research.

https://www.chameleoncloud.org/. [Online; accessed Aug-2018].
[2] Ali Abedi and Tim Brecht. 2017. Conducting Repeatable Experiments in Highly

Variable Cloud Computing Environments. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering.

[3] H. M. Alghmadi, M. D. Syer, W. Shang, and A. E. Hassan. 2016. An Automated
Approach for Recommending When to Stop Performance Tests. In Int’l Conf. on
Software Maintenance and Evolution.

[4] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In USENIX Symp. on Networked
Systems Design and Implementation.

[5] Amazon. [n.d.]. Amazon EC2 Instance Types.
https://aws.amazon.com/ec2/instance-types/. [Online; accessed Aug-2018].

[6] Amazon. [n.d.]. Amazon Web Services. https://aws.amazon.com. [Online;
accessed Aug-2018].

[7] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A. Fa-
toohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, et al. 1991. The NAS Parallel
Benchmarks Summary and Preliminary Results. In Int’l Conf. on Supercomputing.

[8] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. 2011. Autonomic Load-
testing Framework. In Int’l Conf. on Autonomic Computing.

[9] A. Benbachir, I. F. D. Melo, M. Dagenais, and B. Adams. 2017. Automated Perfor-
mance Deviation Detection across Software Versions Releases. In IEEE Int’l Conf.
on Software Quality, Reliability and Security.

[10] Luke Bertot, Stéphane Genaud, and Julien Gossa. 2018. Improving Cloud Simula-
tion Using the Monte-Carlo Method. In Euro-Par: Parallel Processing.

[11] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[12] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated Test
Generation for Worst-case Complexity. In Proceedings of the 31st International
Conference on Software Engineering.

[13] Sudipta Chattopadhyay, Lee Kee Chong, andAbhik Roychoudhury. 2013. Program
Performance Spectrum. In Proc. of ACM Conf. on Languages, Compilers and Tools
for Embedded Systems.

[14] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating Performance Distributions
via Probabilistic Symbolic Execution. In Proc. of Int’l Conf on Software Engineering.

[15] Jane Cleland-Huang, Carl K. Chang, and Jeffrey C. Wise. 2003. Automating
Performance-related Impact Analysis through Event based Traceability. Require-
ments Engineering 8, 3 (01 Aug 2003).

[16] CNBC. [n.d.]. Amazon suffers glitches at the start of Prime Day, its biggest
shopping day of the year. https://www.cnbc.com/2018/07/16/amazon-suffers-
glitches-in-opening-minutes-of-prime-day.html. [Online; accessed Aug-2018].

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc. of ACM
Symposium on Cloud Computing.

[18] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-sensitive Pro-
filing. In Proc. of the Conf. on Programming Language Design and Implementation.

[19] A. C. Davison and D. V. Hinkley. 2013. Bootstrap Methods and Their Application.
Cambridge University Press, New York, NY, USA.

[20] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013).

[21] Bradley Efron. 1982. The Jackknife, the bootstrap and other resampling plans.
SIAM.

[22] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging Scale-
out Workloads on Modern Hardware. In Proc. of the 17th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems.

[23] F. L. Ferraris, D. Franceschelli, M. P. Gioiosa, D. Lucia, D. Ardagna, E. Di Nitto,
and T. Sharif. 2012. Evaluating the Auto Scaling Performance of Flexiscale and
Amazon EC2 Clouds. In Int’l Symp. on Symbolic and Numeric Algorithms for
Scientific Computing.

[24] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora. 2015. An
Industrial Case Study on the Automated Detection of Performance Regressions
in Heterogeneous Environments. In IEEE Int’l Conf. on Software Engineering.

[25] A. Gambi, G. Toffetti, C. Pautasso, and M. Pezze. 2013. Kriging Controllers for
Cloud Applications. IEEE Internet Computing 17 (2013).

[26] David Gesvindr and Barbora Buhnova. 2016. Performance Challenges, Current
Bad Practices, and Hints in PaaS Cloud Application Design. SIGMETRICS Perform.
Eval. Rev. 43, 4 (Feb. 2016).

[27] I. I. Gorban. 2014. Phenomenon of Statistical Stability. Technical Physics 59, 3
(Mar 2014).

[28] Mark Grechanik, Qi Luo, Denys Poshyvanyk, and Adam Porter. 2016. Enhanc-
ing Rules For Cloud Resource Provisioning Via Learned Software Performance
Models. In ACM/SPEC on Int’l Conf. on Performance Engineering.

[29] Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How Many Interviews Are
Enough?: An Experiment with Data Saturation and Variability. Field Methods 18,
1 (2006), 59–82.

[30] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
efficient Performance Learning for Configurable Systems. Empirical Software
Engineering 23, 3 (01 Jun 2018).

[31] M. Hajjat, R. Liu, Y. Chang, T. S. E. Ng, and S. Rao. 2015. Application-specific
Configuration Selection in the Cloud: Impact of Provider Policy and Potential
of Systematic Testing. In 2015 IEEE Conference on Computer Communications
(INFOCOM).

[32] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. 2012. Performance Debugging in the
Large via Mining Millions of Stack Traces. In Int’l Conf. on Software Engineering.

[33] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from Bug
Reports to Understand and Generate Performance Test Frames. In ACM/IEEE
Int’l Conf on Automated Software Engineering.

[34] Wolfgang Karl Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz. 2012.
Nonparametric and semiparametric models. Springer Science & Business Media.

[35] C. Hsu, V. Nair, V. W. Freeh, and T. Menzies. 2018. Arrow: Low-Level Augmented
Bayesian Optimization for Finding the Best Cloud VM. In IEEE Int’l Conf on
Distributed Computing Systems.

[36] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Performance
Regression Testing Target Prioritization via Performance Risk Analysis. In Int’l
Conf. on Software Engineering.

[37] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. 2011. Performance Analysis of Cloud Computing
Services for Many-Tasks Scientific Computing. IEEE Transcations on Parallel
Distributed System 22, 6 (June 2011), 931–945.

[38] A. Iosup, N. Yigitbasi, and D. Epema. 2011. On the Performance Variability of
Production Cloud Services. In 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing.

[39] Raj Jain. 1990. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons.

[40] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. 2011. Catch Me if You
Can: Performance Bug Detection in the Wild. In Int’l Conf. on Object Oriented
Programming Systems Languages and Applications.

[41] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. An-
derson, and Ranjit Jhala. 2010. Finding Latent Performance Bugs in Systems
Implementations. In Int’l Symp. on Foundations of Software Engineering.

[42] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Math. Statistics 22, 1 (1951).

[43] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos: A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3 (April 2016), 15:1–15:23.

[44] Mark W. Lenhoff, Thomas J. Santner, James C. Otis, Margaret G.E. Peterson,
Brian J. Williams, and Sherry I. Backus. 1999. Bootstrap prediction and confidence
bands: a superior statistical method for analysis of gait data. Gait & Posture 9, 1
(1999), 10 – 17.

[45] Ming Mao and Marty Humphrey. 2011. Auto-scaling to Minimize Cost and
Meet Application Deadlines in Cloud Workflows. In Proc. of Int’l Conf. for High
Performance Computing, Networking, Storage and Analysis.

[46] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming Performance Variability. In USENIX
Symp. on Operating Systems Design and Implementation.

[47] Marissa Mayer. 2009. In Search of A better, faster, strong Web.
[48] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. PerfRanker: Prioritization of

Performance Regression Tests for Collection-intensive Software. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis.

[49] NIST. 2013. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.
itl.nist.gov/div898/handbook/. [Online; accessed Aug-2018].

[50] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access Patterns. In Int’l Conf on
Software Engineering.

[51] Oracle. [n.d.]. Java Platform, Enterprise Edition (Java EE) 7.
https://docs.oracle.com/javaee/7/index.html. [Online; accessed Aug-2018].

[52] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and
Mode. The Annals of Mathematical Statistics 33, 3 (1962), 1065–1076.

[53] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Performance
Regression Testing of Concurrent Classes. In Int’l Symp. on Software Testing and
Analysis.

[54] RightScale. 2018. State of the Cloud Report.
[55] Murray Rosenblatt. 1956. Remarks on SomeNonparametric Estimates of a Density

Function. The Annals of Mathematical Statistics 27, 3 (1956), 832–837.
[56] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-

necki. 2015. Cost-Efficient Sampling for Performance Prediction of Configurable
Systems. In IEEE/ACM Int’l Conf on Automated Software Engineering.

https://www.cnbc.com/2018/07/16/amazon-suffers-glitches-in-opening-minutes-of-prime-day.html
https://www.cnbc.com/2018/07/16/amazon-suffers-glitches-in-opening-minutes-of-prime-day.html
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock, and Mary Lou Soffa

[57] Jonathon Shlens. 2007. Notes on Kullback-Leibler Divergence and Likelihood
Theory. Systems Neurobiology Laboratory (2007).

[58] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Performance Isolation
and Fairness forMulti-tenant Cloud Storage. In Proc. of USENIX Conf. on Operating
Systems Design and Implementation.

[59] Stoyan Stefanov. 2008. YSlow 2.0. In CSDN Software Development 2.0 Conference.
[60] Mark D. Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E. Hassan, Mo-

hamed Nasser, and Parminder Flora. 2014. Continuous Validation of Load Test
Suites. In Int’l Conf. on Performance Engineering.

[61] Catia Trubiani, Antinisca Di Marco, Vittorio Cortellessa, Nariman Mani, and
Dorina Petriu. 2014. Exploring Synergies Between Bottleneck Analysis and
Performance Antipatterns. In ACM/SPEC Int’l Conf on Performance Engineering.

[62] W. Wang, N. Tian, S. Huang, S. He, A. Srivastava, M. L. Soffa, and L. Pollock. 2018.
Testing Cloud Applications under Cloud-Uncertainty Performance Effects. In
Int’l Conf. on Software Testing, Verification and Validation.

[63] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith,
and Randy H. Katz. 2017. Selecting the Best VM Across Multiple Public Clouds:
A Data-driven Performance Modeling Approach. In ACM Symposium on Cloud
Computing.

[64] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. 2011. Automatic Gen-
eration of Load Tests. In Proc. of Int’l Conf. on Automated Software Engineering.

[65] Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. 2017. WorkloadCom-
pactor: Reducing datacenter cost while providing tail latency SLO guarantees. In
ACM Symp. on Cloud Computing.

	Abstract
	1 Introduction
	2 Overview of PT4Cloud
	2.1 The PT4Cloud Methodology
	2.2 Coverage Criteria and Time Interval Length
	2.3 Examples of Applying PT4Cloud

	3 Statistics-based Stop Conditions
	4 Establishing Confidence Bands
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Perf. Dist. Acquired with PT4Cloud
	5.3 Accuracy of PT4Cloud
	5.4 Comparison with State-of-the-Art

	6 Reducing The Number of Tests
	6.1 Reducing Interval Length
	6.2 Reducing Test Runs with Sampling
	6.3 Evaluation of Test Reduction Techniques

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

