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Abstract—Public clouds become essential for many organiza-
tions to run their applications because they provide huge financial
benefits and great flexibility. However, it is very challenging to
accurately evaluate the performance and cost of applications
without actual deployment on the clouds. Existing cloud sim-
ulators are generally designed from the perspective of cloud
service providers, thus they can be under-developed for answer-
ing questions for the perspective of cloud users. To solve this
prediction and evaluation problem, we created a Public Cloud
IaaS Simulator (PICS). PICS enables the cloud user to evaluate
the cost and performance of public IaaS clouds along with such
dimensions like VM and storage service, resource scaling, job
scheduling, and diverse workload patterns. We extensively vali-
dated PICS by comparing its results with the data acquired from
real public IaaS cloud using real cloud-applications. We show
that PICS provides highly accurate simulation results (less than
5% of average errors) under a variety of use cases. Moreover, we
evaluated PICS’ sensitivity with imprecise simulation parameters.
The results show that PICS still provides very reliable simulation
results with imprecise simulation parameters and performance
uncertainty.

Index Terms—Cloud Simulator, Cloud Performance Evalua-
tion, Public IaaS Clouds, Cloud Applications, Cloud Resource
Management.

I. INTRODUCTION

For many organizations today, the issue is not whether to use
public IaaS cloud computing (e.g. Amazon Web Services [1]
or Microsoft Azure [2]) but rather how best to use public IaaS
cloud capabilities. The approach taken by many organizations
getting started is that a few “super-human” users within the
organization deploy a small-scale test cloud-application on
the public cloud of choice. This cloud-application usually has
two components: a resource manager and user-applications,
where the resource manager is responsible for the effective and
efficient execution of user-applications, such as web search,
SNS, big data analytics, and scientific applications. Then, the
next steps are to scale-up the test cloud-application in order
to better assess the capabilities and viability in the context of
the organization’s particular goals and requirements.

The key limitation these potential cloud users are facing
is that there does not appear to be a viable alternative for
evaluating the cloud other than to actually use the cloud.
This approach is problematic for a number of reasons. First,
the time-consuming and sometimes tedious learning of id-
iosyncratic cloud APIs can distract from the real issue, which
centers around specific application logic and requirements.
Second, the evaluation tends to be specific to one cloud and
not readily generalizable to other clouds. Third, to evaluate
at scale via this approach, the cloud-application typically

requires significant changes to its architecture. Fourth, the
evaluation is geared toward the present time, whereas longer-
term issues/concerns are often more important than short-term
issues of today’s cloud – there is little opportunity to ask what-
if questions of performance, reliability or cost.

There are a number of cloud simulators that exist (e.g.
CloudSim [11], iCanCloud [18], GreenCloud [15]). They have
the potential to aid in this evaluation. However, in general,
these simulators are designed to answer questions related to
datacenter management (e.g., how many concurrent users can
I support if I deploy a private cloud on my existing hardware?)
Furthermore, typical tools [1, 2, 7, 8] provided by commercial
cloud vendors only address a small part of the concerns, which
is an overall cost in the aggregate based on resource utilization
(e.g., how much does it cost to run 100 small VMs for one
month and to store 10 TB in long-term cloud storage for 1
year?) These existing cloud simulators and vendor tools do
not broader, end-to-end concerns such as:

1) What is the average/worst response time for a partic-
ular application and a particular arrival pattern, when
servicing via a specific VM type and a specific set of
auto-scaling rules?

2) Which public IaaS cloud provides the best cost effi-
ciency for a particular application, given the different
VM configurations, storage services and pricing models?

3) Which resource management and job scheduling policy
maximize the cost efficiency and minimize the response
time for a particular application?

4) Above all, if a simulator can provide answers for above
questions, another question the cloud users could have
is how reliable are the simulation results? or how
accurately can the simulator resemble actual clouds’
behavior?

To enable potential public IaaS cloud users to address these
and other challenging concerns without actually deploying
the cloud-application, we have create the PICS1, a trace-
based public IaaS cloud simulator. PICS provides following
capabilities to address the potential cloud user’s concerns:

• Assessing a wide range of properties of cloud services
and the cloud-applications, including the cloud cost, job
response time, and VM utilization.

• Allowing the simulation users to specify different work-
load types, including varying job arrival patterns and SLA
requirements (e.g. deadline).

1Source code of PICS is publicly available on the PICS project web site –
http://www.cs.virginia.edu/∼ik2sb/PICS [6]
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TABLE I: Simulation Capabilities of Existing Cloud Simulator and PICS.
Simulation Capabilities CloudSim [11] iCanCloud [18] GreenCloud [15] PICS

Datacenter Issues

VM management (allocation, provisioning, scheduling, migration) Yes Yes No No
Physical resource management and scaling Yes Yes Limited No
Network resource management Yes Yes Yes No
Power consumption management Yes Yes Yes No
Federated cloud management Yes No No No
Datacenter workload management Yes No Yes No

Cloud User Issues

Horizontal VM auto-scaling (scale-in/out) Limited No No Yes
Vertical VM auto-scaling (scale-up/down) No No No Yes
Storage service management No Limited No Yes
Job/Application scheduling Yes Yes No Yes
Billing management (cost optimization) Limited Limited No Yes
Application/Job failure management No No No Yes
IaaS performance uncertainty No No No Yes

• Simulating of a broad range of resource manage-
ment policies: i.e., horizontal/vertical2 auto-scaling, job
scheduling and job failure policies.

• Enabling the users to evaluate the performance of differ-
ent types of public IaaS cloud configurations such as a
variety of resource types (VM and storage), unique billing
models, and performance uncertainty [19–21].

We validated the correctness of PICS by focusing on follow-
ing capabilities: cloud cost, the number of created VMs, VM
utilization, horizontal and vertical scaling of cloud resources,
and job deadline satisfaction rate. We compare the simulation
results of PICS with the actual measurements from real-
world cloud-applications on Amazon Web Services (AWS).
The results show that PICS provides very accurate simulation
results (less than 5% of average errors) in every validation
cases. Furthermore, we conduct a sensitivity test of PICS
with ±10% and ±20% of imprecise simulation parameter by
considering of the performance uncertainty of IaaS clouds. The
results show that PICS with imprecise simulation parameters
still provides very reliable simulation results.

The contributions of this paper are:
1) A public IaaS cloud simulator, PICS, which is versatile

and satisfies cloud user’s various needs of cloud applica-
tion and cloud service evaluations without actual cloud
deployment. PICS is easy-to-configure and fast, allowing
large design space exploration in short amount of time.

2) A first simulator that supports both horizontal and verti-
cal cloud resource scaling, to the best of our knowledge.

3) A thorough validation of PICS against the results from
real public IaaS (AWS), demonstrating that the PICS
provides accurate results that faithfully simulates real
cloud services.

4) An analysis to examine PICS’ sensitivity to the perfor-
mance uncertainty of real cloud services. This analysis
shows that PICS can still provide reliable simulation re-
sults even when user-provided parameters are imprecise
due to the unstable real cloud performance.

The rest of this paper is organized as follows: Section II
contains the related work. Section III describes the design
and implementation of PICS. Section IV contains validation
of PICS. Section V is discussion focusing on sensitivity of
simulation parameters and Section VI provides the conclusion.

2Vertical scaling means “scale-up” or “scale-down” operations for the cloud
resources. i.e., migrating the user-applications to higher (scale-up) or lower
(scale-down) performance instances. [9]

II. RELATED WORK

CloudSim [11] is a well-known simulation framework for
cloud computing and is designed to support various simulation
tests across three major cloud service models (e.g. SaaS,
PaaS, and IaaS). CloudSim is widely used in cloud com-
puting research because of its various capabilities for cloud
simulations such as VM allocation and provisioning, energy
consumption, network management, and federated clouds. It
also has several extensions [10, 12, 14, 22] due to its extensible
simulation architecture. These extensions support simulations
for large-scale cloud applications according to the geographi-
cal distribution of users and datacenters [22], a network-based
application model [14], complex scientific workflows [12] and
homogeneity in the performance of computational resources
and resource failure model during task executions [10].

iCanCloud [18] is a holistic simulation platform for cloud
computing and offers various simulation functionalities in-
cluding resource provisioning, energy consumption, and user-
defined resource broker model. The goal of iCanCloud is to
predict tradeoffs between cost and performance of applications
executed on virtualized environments. iCanCloud offers an
unique feature to configure various storage systems and a
pre-defined IaaS model based on Amazon EC2. Moreover,
iCanCloud supports large-scale simulation on distributed en-
vironments by employing MPI/POSIX-based API.

GreenCloud [15] is a packet-level simulator for data centers
focusing on data communication and energy cost in cloud
computing. This simulator is implemented based on NS-2 [5]
and offers extensive network and communication capabilities
(e.g. full implementation of TCP/IP reference model, various
workload models) to simulate data center operations. However,
due to its narrow focus of simulation for cloud system, it
lacks many simulation capabilities in both cloud user- and
infrastructure-oriented resource management.

Cloud providers [1, 2] and third-party cloud services [7, 8]
provide a tool for calculating the overall cost in the aggregate
based on resource utilization. These services are only address-
ing a small part of the cloud user’s concern (cloud cost).
They do not support any capability to evaluate performance
such as response time and detailed VM utilizations. Moreover,
they only support resource management policies offered by
commercial cloud services (e.g. AWS auto-scaling) to handle
the cloud resources, so it is impossible to evaluate the cost and
performance of the clouds via particular resource management
policies designed for the cloud user’s applications.
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As discussed in this section, the capabilities of all existing
simulators more focus on datacenter issues such as power
consumption and physical resource management. These ca-
pabilities are suitable to answer following questions:

• How many concurrent users can I support if I deploy a
private cloud on my existing hardware?

• How can I effectively manage my existing hardware
resources if I deploy a private clouds on my hardware?

However, the cloud users have different perspective on cloud
systems. The “super-human” users (mentioned in Section I) is
responsible for build cloud applications, which schedule jobs
submitted by end users and manage cloud resources (VM,
storage, network, etc.) that execute these jobs. For these users,
they are more interested in how best to use clouds rather
than operating cloud systems. Their major concerns are cost
optimization, VM usage, resource scaling, and storage service
for their cloud-applications. Due to these disparities between
existing cloud simulators and the cloud users, the cloud users
have difficulties to have existing simulators to deal with the
problem that how to evaluate the cloud other than to actually
use the cloud by focusing on cloud user’s concerns. This
limitation motivate us to conduct this research. The purpose
of our work is to provide a viable simulation solution for the
normal cloud users.

III. SIMULATOR DESIGN

A. Simulator Design Overview

Goal: The goal of PICS is to correctly simulate the behav-
iors of public clouds from the cloud users’ perspectives as
if they deploy a particular cloud-application on public IaaS
cloud. From the potential cloud users’ perspective, the cloud
cost, the job response time and the resource usages (VM
utilization and size) are the most important criteria to evaluate
cloud service for their cloud-applications. Key challenges to
design PICS are:

• How to correctly model the behavior of public clouds.
More specifically, how to handle a variety of resources
(e.g. VM, storage, and network).

• How to properly model the behavior of the cloud-
application. More specifically, how to handle varying
workload patterns and performance uncertainty [19–21].

• How to correctly model the behavior of cloud users’
resource management policy.

For the first challenge, we designed a convenient config-
uration interface for the simulation users to define diverse
types of cloud resources as an input of the simulator. For
the second challenge, we collected data from real public
clouds, profile performance uncertainty, and leverage these
results to design the simulator. For the last challenge, we
provided abundant configuration options to let user define
various custom resource management policies.

Input: PICS requires five types of inputs: VM configura-
tions, storage and network configurations, workload informa-
tion, job scheduling policies, and cloud resource management
policies.

The VM configuration includes detailed specifications of
VMs, such as cost (including public cloud’s billing model),
machine performance (CPU, RAM), network performance,
and the range of startup delays [17] of cloud resources. This
configuration is designed to simulate various VM types of
current public clouds because public clouds have a diversity of
VM types based on performance, cost, and the VM’s purpose.

The storage and network configuration has detailed informa-
tion on storage and network service on public IaaS clouds. We
model storage services to reflect current public clouds’ actual
characteristics based on Amazon S3 and Azure Storage. To
model network service, we collect data from actual network-
I/O test by using various types of VM on real cloud services.
We then reflect the data to simulator configurations.

The workload information contains detailed configurations
on job generation such as job arrival time, job execution time,
job deadline, size of network I/O, etc. This input reflects end
users requests to a particular cloud-application.

The job scheduling policy defines various cloud user job
scheduling policy for end users’ requests. PICS includes three
types of job scheduling policies, i.e., EDF (Earliest Deadline
First), Round-Robin, and Greedy scheduling mechanisms. In
the future, PICS will support more complicated job scheduling
policies and APIs. Furthermore, the simulation users can
configure recovery policies for job failures, which enable the
users to conduct realistic tests for public cloud services.

The cloud resource management policy contains detailed
specifications for the cloud resource management. This input
supports simulation configurations for maximum number of
concurrent VMs, and horizontal and vertical scaling policies.
Moreover, the simulator users can configure various ways to
monitor and analyze an end user’s job request patterns such as
linear and time-series methods. The simulator users are able to
leverage this mechanism to design and test their own resource
management mechanisms.

Output: PICS provides three types of output: cost, resource
usage, and job processing results.

Cost results provide overall cost for total cloud usage,
cost trace at fine grained time interval, and usage cost per
cloud resource type. Overall cost means how much cost the
simulation users are expected to spend on servicing a particular
cloud-application under a particular job arrival pattern. Cost
trace provides fluctuation and accumulation of usage cost at
fine grained time interval. For example, expected usage cost
for time at t is $100 and $200 for time at t + 1. The usage
cost per cloud resource type provides a detailed cost based on
resource types such as how much cost they spent on each type
of resources (e.g. VM, storage, network).

Resource usage results provide detailed information on
resource usage such as how many VMs created, how much
storage space spent, and how many network data sent and
received. Moreover, these results offer fine-grained traces for
both horizontal and vertical scaling. These traces help users
determine the number and types of VMs running at time t and
t + 1. The users also check when (time) and how (scaling-
up/down) the vertical scaling decisions are made.
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Fig. 1: Design overview of PICS.

Job processing results provide specific information on job
processing, such as the job arrival/start/finish time, as well
as whether the job deadlines are satisfied (if specified). These
results are basic metrics to evaluate the user job scheduling and
resource management policies. Moreover, these results include
the analysis of job arrival patterns (min, max, and average of
job arrival time, as well as predictions for the next job arrivals)
using linear and time-series methods.

B. Simulator Internals

PICS is composed of three hierarchical layers: simulation
configuration layer, simulation entity layer, and simulation
core layer as shown in Fig. 1. The simulation configuration
layer is responsible for accepting the user inputs which are
passed on to the simulation entity layer. The simulation entity
layer contains the simulation logic and is driven by the events
generated from the simulation core layer. The simulation core
layer is also responsible for producing simulation reports.
Because the simulation configuration layer has already been
covered by the previous section, we focus on the two remain
layers here.

1) Simulation Core Layer: The simulation core layer con-
sists of Simulation Wall Clock, Simulation Event Processor
and Simulation Report Generator.

Simulation Wall Clock is working as a heart for PICS by
managing simulation clock. (Basic time unit is a second.) To
manage the simulation clock, Simulation Wall Clock collab-
orates with Simulation Event Processor. When the simulation
clock is updated, this component sends a clock update event
to Simulation Event Processor to notify an update of clock.

Simulation Event Processor handles every event generated
in a simulation. After receiving the clock update event from
Simulation Wall Clock, this component passes on this event

to simulation entities, which advance their simulation of the
behaviors of public cloud services and cloud-application to
the new clock cycle. This component also manages simulation
timer events. Simulation entities use these events to register
timers within Simulation Event Processor. This component is
responsible for notifying the corresponding simulation entity
when a timer expires. Moreover, this component handles
all simulation command events, all invoked events between
simulation entities, in order to validate the authentication of
the command events. Because this component can monitor all
events in the simulation, this plays a main role to generate
real-time traces for the simulation.

Simulation Report Generator is used to generate output
reports for the simulation results such as simulation trace and
overall reports. Reporting simulation results at fine-grained
time interval is an important capability for simulators. Sim-
ulation Report Generator is responsible for generating real-
time traces called simulation trace reports. These reports
contain simulation results at user-defined time interval for cost,
resource scaling, and job processing information.

2) Simulation Entity Layer: Simulation entity layer are
composed of three entities, which are Workload Generator
Entity, Cloud Application Management Entity, and IaaS Cloud
Entity. These entities reflect three main components of cloud-
applications and public clouds.

Workload Generator Entity generates jobs and sends them
to the Cloud Application Management Entity to process, based
on the workload file from the simulation user. The workload
file includes job arrival time, job execution time, job deadlines,
I/O data specification, and data transfer specification to support
various types of possible end user’s job requests.

Cloud Application Management Entity is designed to
resemble the cloud-application’s behaviors. There are sub-
components in this entity: job management module, resource
management module and workload monitoring module.

The job management module is designed to simulate job
management policies of a cloud-application. This module
conducts three operations for the simulation; job scheduling,
job response time estimation, and job failure management.
Job scheduling is used to perform job scheduling policies
of the cloud users and assign an arrived job from Workload
Generator Entity to a selected VM from IaaS Cloud Entity. Job
response time estimation predicts the job response time, which
is defined as the clock time when a particular job finishes.
The prediction of job response time is based on job execution
time and the current load of available cloud resources, and is
used for the job scheduling. Job failure management is used
for job failure simulation in the case of application failure
or cloud infrastructure problem (e.g. VM down). Job failure
management supports four types of recovery policies for job
failure simulations.

The resource management module is designed to simulate
the resource management policies of a cloud-application. It
handles three types of cloud resources of public IaaS clouds,
i.e., VM, storage and network. For the VM management, this
module enables the simulation users to examine their VM se-
lection mechanisms (e.g. cost, performance, cost/performance-
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TABLE II: Validation Workloads for PICS. Poisson pattern has 30s of average job arrival rate and 29.63 of standard deviation. Bursty pattern
has 15s of average job arrival rate and 11.50 of standard deviation. (WC: Word Count, PI: PI Calculation, TS: TeraSort)

Worloads Scaling Job Arr. Pattern Job Type # of Concurr. VMs Used VM Types # of Jobs Avg. Job DL. Std. Dev
WL #1

Horizontal Scaling

Poisson

WC

Unlimited

m3.medium

200

272s 129.55WL #2 All Types
WL #3 PI m3.large 538s 266.10WL #4 All Types
WL #5 TS m3.xlarge 1065s 531.09WL #6 All Types
WL #7

Bursty

WC m3.medium 500s 127.60WL #8 All Types
WL #9 PI m3.large 515s 263.50WL #10 All Types
WL #11 TS m3.xlarge 1102s 559.75WL #12 All Types
WL #13

Vertical Scaling
Poisson WC 3

All Types 500

510s 265.03
WL #14 PI 7 1029s 556.50
WL #15 Bursty WC 5 523s 279.38
WL #16 PI 10 1045s 563.15

balanced) and VM scaling mechanisms (e.g. horizontal, verti-
cal scaling). For storage and network resources, this module
can simulate File Read/Write operations to cloud storage and
data transmissions by collaborating with IaaS Cloud Entity.

The workload monitoring module is designed to analyze
workload arrival patterns from Workload Generator Entity.
The simulation users can leverage this module to improve
their policies for job scheduling and resource management for
variable workload patterns.

IaaS Cloud Entity is used to simulate the public cloud’s
behavior. It has sub-modules to simulate public clouds, which
include cost calculation, VM management, storage service and
network service module.

The cost calculation module calculates all cloud cost used
by Cloud Application Management Entity. It generates the cost
traces based on user-defined time interval and creates the final
results when the simulation is completed.

The VM repository module manages the configurations of all
VM types defined by the users and resembles the on-demand
VM service of IaaS clouds. This module stores VM infor-
mation to correctly measure VM usage cost and simulate job
execution on VMs. Moreover, this module generates startup-
delay for new VM creations based on user input, and simulates
all operations of the VMs. This module also handles workloads
on VM such as job execution and failure generation.

Storage service and network service module simulates file
I/O and data transmission operations based on their configu-
rations and the workload information. It generates the overall
and real-time traces of the usage of storage and network
services for the workloads.

IV. SIMULATOR VALIDATION

A. Experiment Setup

In order to validate the simulation results of PICS, we
compared PICS results with a real cloud application on AWS.
We design and implement a cloud-application that executes
user-applications with three different types of MapReduce
[13] jobs and two job arrival patterns. The workflow of
the cloud-application goes through the following five key
steps: 1) Job execution time prediction via recent execution
history, 2) EDF job scheduling, 3) Cost-based VM selection,

4) Deadline-based horizontal and vertical auto-scaling, and 5)
Job Execution.

The cloud-application starts with receiving jobs from the
end users. It conducts job execution time prediction via
recent execution history for incoming jobs. The cloud-
application schedules them by the EDF job scheduling and
sends them to the work queue in the VMs of choice. For VM
selection, this cloud-application uses cost-based VM selection
that selects the cheapest VM type that meets the deadline for
a job. For the VM scaling, the cloud-application makes the
scaling decision based on the deadline-based horizontal and
vertical auto-scaling. The cloud-application first determines
the fastest possible response time for the new job based on
the load of the job queues of active VMs. If the fastest
possible response time still misses the job deadline, horizontal
or vertical scaling is engaged. In the case of horizontal scaling,
a new VM is created for the new job. In the case of vertical
scaling, an active VM is “scaled-up” to a higher performance
VM for the new job. Note that vertical scaling happens
when there is a limit on the number of active VMs which
prevents the creation of new VMs. Additionally, after each
job finishes, the cloud-application checks active VMs. If the
active VMs provide more than enough computation power to
satisfy deadline requirements, then a “scale-down” happens
to improve the cost efficiency. Once the current VM type is
determined, the job is assigned to that VM for job execution.

For the validation of PICS, we use three types of MapRe-
duce jobs (Word count, PI calculation, and Terasort) [4].
Word count is an I/O- and memory-bound job, and it uses
S3 storage to download input dataset and upload the final
result. PI calculation is a fully-parallelized CPU-bound job.
Terasort is a standard Hadoop benchmark application. These
jobs were randomly generated based on two arrival patterns
(Poisson and Bursty). Poisson arrival pattern has an average
job arrival interval of 30 seconds with a standard deviation of
29.63. Bursty pattern has an average job arrival interval of 15
seconds with a standard deviation of 11.50.

We deployed the cloud-application on AWS. The reasons
that we use AWS for the PICS validation are as follows: 1)
AWS is widely used public IaaS cloud; 2) according to recent
works [16, 19–21], AWS EC2 performance fluctuates a lot and
AWS has less predictability (higher variance) than other public
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TABLE III: Simulation errors for horizontal scaling cases.
Workloads Cost # of VMs VM Util. Job DL.

WL #1 3.1% 3.4% 1.1% 0.6%
WL #2 2.4% 1.8% 1.4% 1.1%
WL #3 1.8% 2.3% 0.7% 0.6%
WL #4 5.2% 4.7% 2.2% 3.2%
WL #5 2.2% 7.1% 1.6% 2.1%
WL #6 0.8% 2.4% 2.4% 2.6%
WL #7 2.6% 3.6% 0.5% 2.5%
WL #8 3.6% 0.0% 1.0% 1.1%
WL #9 1.5% 1.5% 0.7% 0.6%
WL #10 0.9% 1.5% 0.9% 3.9%
WL #11 1.0% 0% 2.2% 0.5%
WL #12 6.1% 1.4% 1.3% 3.8%

Average Error 2.6% 2.4% 1.3% 1.9%

IaaS clouds, therefore AWS is better than other IaaS clouds
when evaluating the sensitivity of PICS to the performance
uncertainty of public clouds. Our cloud-application uses four
types of on-demand EC2 VM instances, which are m3.medium,
m3.large, m3.xlarge, and m3.2xlarge. These four types of EC2
on-demand instances are general purpose VMs and commonly
used by the cloud users.

Based on the above experimental configurations, we created
16 validation workloads as shown in Table II. These workloads
are categorized based on job arrival patterns (Poisson and
bursty), job types, single or multiple VM types, and scaling
policies. WL #1 – #6, #13, and #14 are for the tests under
Poisson job arrival pattern, and others are for bursty arrival
pattern. WL #1, #2, #7, #8 and #13 process word count jobs,
WL #3, #4, #9, #10 and #14 handles PI calculation jobs,
and WL #5, #6, #11 and #12 deal with Terasort jobs. WL
#1, #3, #5, #7, #9, and #11 only use a single VM type (e.g.
m3.medium, m3.large, or m3.xlarge) in order to validate a case
when a cloud-application uses a single type of VM. The others
use all four types of general purpose EC2 instances. This
is to test more complicated use cases for the VM resource
management. For scaling validation, WL #1 – #12 are for
horizontal scaling and WL #13 – #16 are for vertical scaling
use cases. We submitted these 16 workloads to PICS and the
cloud-application running on AWS, and measured the cloud
cost, the total number of created VMs, VM utilization, and
job deadline satisfaction rate. These metrics are expressed as
equation – (1), (2), and (3). We then measured the simulation
error by equation – (4)

Cost =
∑n

i=1 costVMi
(1)

VM Utilization =
∑n

i=1 TimeJobExec.,V Mi∑n
i=1 TimeTotalRun.,V Mi

(2)

Job DL Satisfaction Rate =
NDeadlineSatisfiedJobs

NAllJobs
(3)

Simulation Error =
∣∣∣Actual−Simulation

Actual

∣∣∣× 100% (4)

B. Horizonal Scaling Cases
We use 12 workloads (WL #1 – #12) for the validation

of horizontal scaling cases. The “Cost” column of Table III
shows PICS simulation error of the overall cloud cost over the
actual measurements on AWS. The average error of the cloud
cost from PICS is only 2.6% compared to the actual results.
The highest error is only 6.1% (WL #12). A more important
metric is the cost trace because it shows how accurately PICS
simulates the behavior of the cloud-application and public
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(a) Cost Trace for WL #4
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(b) Cost Trace for WL #6
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(c) Cost Trace for WL #8
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(d) Cost Trace for WL #10

Fig. 2: Cost trace for horizontal scaling cases.

IaaS cloud at fine-grained intervals. To show these traces,
we select four complicated workloads, which are WL #4,
#6, #8, #10. Fig. 2 shows these four cost traces. The other
workloads have similar results. As shown in Fig. 2, PICS is
able to accurately calculate the cloud cost at each time interval,
demonstrating that PICS correctly resembles the behavior of
the cloud-application and public IaaS cloud for each step of
execution.

The simulation error of created VM numbers over the
actual measurements are shown in the “# of VMs” column of
Table III. PICS can highly accurately calculate the number of
created VMs with an average error of 2.4%. The highest error
is only 7.1% (WL #5). For the workloads that use multiple
types of VMs, a precise simulation of the number of VMs for
each VM type is also critical to the cloud users to determine if
PICS can accurately resemble the cloud-application’s resource
management policies (VM selection and scaling) and public
cloud’s behaviors. Fig. 3 shows the result of the number of
created VMs for each VM type for four workloads (WL #4, #6,
#10, #12). The other workloads have similar results. As Fig. 3
shows, PICS can also accurately simulate the VM numbers for
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Fig. 3: The VMs numbers per VM type, normalized over the
actual measurement (M: m3.medium, L: m3.large, X: m3.xlarge, XL:
m3.xlarge)

 0

 0.2

 0.4

 0.6

 0.8

 1

WL#4 WL#6 WL#10 WL#12

N
or

m
. V

M
 U

til
.

Workloads

M
L

XL
2XL

Fig. 4: The VM utilizations per VM type, normalized over the
actual measurement (M: m3.medium, L: m3.large, X: m3.xlarge, XL:
m3.xlarge)

each type of VMs. For the horizontal scaling cases, the cloud-
applicatoin created an average of 42.5 VMs and the range of
the created number of actual VMs is from 15 (WL #5) to 70
(WL #12).

Similarly, the overall simulation error of VM utilization
are shown in the “VM Util.” column of Table III, while the
detailed per-VM type utilization results are shown in Fig. 4.
Average error of overall VM utilization results between the
actual measurements and the simulations is only 1.3%. For
the detailed results, PICS is able to accurately simulate the
utilization for each VM type with 0.5 – 2.4% of simulation
error for most cases. The worst case is m3.large instance of
WL #4 and the simulation error is only 5.8%.

In addition, we conducted a validation focusing on job
deadline satisfaction rate. Deadline satisfaction rate is an
important metric for a cloud-application to ensure the cloud-
application’s job scheduling and resource management policy
meets certain temporal requirements, such as those found
in SLA. We measured the job deadline satisfaction rates of
PICS, and compared them with the results of the actual cloud-
application on AWS. Note that the deadlines in our workload
are generated randomly. The overall results are shown in
the “Job DL.” column of Table III. The average error of
PICS is only 1.9%. The worst case error is about 4% (WL
#10, #12). More importantly, we measured the traces for job
deadline satisfaction because we want to determine if PICS
can precisely simulate whether a particular job satisfies its
deadline or not. Fig. 5 shows the job traces for two worst
workloads (WL #10, #12). Fig. 5 shows that, even for the
worst cases, PICS accurately simulates the behavior of AWS
at every phase of the execution.

We also measured the VM scaling of the actual cloud-
application on AWS and PICS, over the whole course of the
execution. Due to space limitation, Fig. 6 shows the scaling
traces for only four workloads (WL #4, #8, #10, #12). The
other workloads have similar behaviors. As shown in Fig. 6,
traces from PICS and the actual cloud-application closely
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Fig. 5: Job deadline satisfaction traces for horizontal scaling cases.
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Fig. 6: Horizontal VM scaling traces.
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TABLE IV: Simulation errors for vertical scaling cases.
Workloads Cost # of VMs VM Util. Job DL.

WL #13 6.1% 7.1% 4.3% 0.8%
WL #14 3.1% 1.9% 2.4% 4.6%
WL #15 3.2% 3.4% 1.7% 1.9%
WL #16 9.7% 1.9% 3.3% 3.2%

Average Error 5.5% 3.6% 2.9% 2.6%
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Fig. 7: Cost traces for vertical scaling cases.

match each other, which means PICS accurately simulates
horizontal scaling at every phase of the execution. For the VM
scaling traces, the average number of running VMs in parallel
(by the cloud-application) is 39 and the cloud-application runs
from 12 (WL #5) to 70 VMs (WL #12) in parallel.

C. Vertical Scaling Cases
Due to the importance of vertical scaling in the near future,

PICS also supports vertical scaling simulation. We validate the
results involving vertical scaling using four workloads (WL
#13 – #16). Note that for these experiments, both horizontal
and vertical scaling are enabled, similar to real-life usages of
cloud services. Table IV shows the overall simulation errors
for vertical scaling cases. The results show that PICS can
accurately simulate the overall results for vertical scaling
workloads: for the cloud cost, the average error is only
5.5% (“Cost” column); for the number of created VMs, the
average error is only 3.6% (“# of VMs” column); for the
VM utilization, the average error is only 2.9% (“VM Util.”
column); for deadline satisfaction, the average error is only
2.6% (“Job DL.” column).

To demonstrate the accuracy of PICS simulation at fine-
grained time intervals and resource types, we present the
detailed results for these measurements, which are the cost
traces, the number of created VMs per VM type, the VM
utilizations for each VM type, and the deadline satisfaction
traces. Fig. 7 shows the cost traces for WL #13 and #16,
which are two worst cases for the vertical scaling validations.
Even for these two worse cases, the cost trace results from
PICS closely resemble with the actual measurements. Fig. 8(a)
shows the normalized results for the number of created VM
for other two workloads (WL #14, #15). The results show
that PICS has only 8.3% simulation error in the worst case
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Fig. 8: The VM numbers (a) and utilizations (b) per VM type, nor-
malized over the actual measurement (M: m3.medium, L: m3.large,
X: m3.xlarge, XL: m3.xlarge)

(m3.medium instance of WL #15). Fig. 8(b) represents the
utilization for each VM type. In the worst cases (m3.large
of WL #14), PICS has 7.3% simulation error. Fig. 9 gives
the job deadline satisfaction rate traces for the two worse
cases workloads (WL #14 and #16). Both the PICS and real
measurement trace curves in Fig. 9 closely match each other.
Based on the results in Fig. 7 to 9, we can conclude that PICS
can also accurately simulate the detailed results of the cloud
cost, the VM creation, the VM utilization and the deadline
satisfaction rate for each VM type and at fine-grained time
intervals.

For the last validation of the vertical scaling cases, we
measured the number of vertical scaling decisions for the
four workloads. These results are used to show how PICS
accurately simulates the vertical scaling operations. The results
are shown in Fig. 10. For the total number of vertical scaling
decisions, PICS has only 3.5% average error. Average error for
scaling-up is 6.7% and average error for scaling down decision
is 6.3%. PICS also has less than 10% of simulation errors in
every scaling decision for all four workloads. These results
imply that PICS can precisely simulate the vertical scaling
operations of the cloud-application on real public cloud. For
the best of our knowledge, PICS is the first cloud simulator
that supports the vertical resource scaling simulation.

V. DISCUSSION

The previous section demonstrates that PICS accurately
simulates the behavior of cloud-application and public IaaS.
However, the accuracy of PICS depends on the accuracy of
user-provided parameters and configurations. Although users
can provide accurate values for most parameters and config-
urations with ease, one parameter – the job execution time –
may be difficult to acquire precisely. The difficulty comes from
the performance uncertainty of real public clouds [19–21]. In
our experiments, we used the average execution time from 800
samples (i.e., 800 executions on AWS) for each job type and
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Fig. 9: Job deadline satisfaction traces for vertical scaling cases
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Fig. 10: Simulation errors for the numbers of vertical scaling deci-
sions

VM type. However, in real practice, it may not be feasible
for the users to acquire such high number of samples. That
is, the users may provide inaccurate job execution time to the
simulator. In this section, we analyze the impact of imprecise
job execution time on simulation accuracy. More specifically,
we seek the answers to the following questions:

1) How much error should we expect from the use-provided
parameter of job execution time?

2) What is the accuracy of PICS if the parameter of job
execution time has certain errors?

To answer the first question, we extensively analyzed our
job execution samples on AWS. The analysis shows that the
majority of the samples have execution times within 10%
of the average execution time (for one job type running on
one VM type). On average, 88% of samples have at most
10% errors. Moreover, the maximum difference between a
sample and the average execution time is 22%. These findings
corroborate the results from previous work [16]. In short, user-
provided job execution times are expected to have less than
10% error in most cases, while maximum errors not exceeding
22%.

TABLE V: Simulation Errors when the job execution time parameter
has ±10% and ±20% errors.

Err. in Params Cost # of VMs VM Util. Job DL.
-20% 16.2% 13.5% 0.9% 5.96%
-10% 7.5% 6.3% 0.9% 4.25%
+10% 4.6% 4.7% 0.2% 3.31%
+20% 13.8% 11.7% 1.9% 2.01%
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Fig. 11: Cost traces of simulations with ±10% and ±20% of
imprecise job execution time parameter.

To answer the second question, we simulated the 16 work-
loads again using job execution times with ±10% and ±20%
errors. These errors represent the aforementioned expected
and maximum errors from user inputs. TABLE V shows
the average errors for the 16 workloads with imprecise job
execution time parameter in PICS. Fig 11 and Fig 12 show the
cost and horizontal scaling traces of selected two workloads
with imprecise parameters. (The other workloads have similar
results.) These table and figures show that the errors of PICS
are considerably smaller than the errors in the job execution
time parameter, and PICS retains high accuracy even when
user provides imprecise job execution time parameter.

We observed that PICS has lower errors than the parameter
of job execution time for two reasons: The first reason is that
the running times of low-load VMs are less susceptible to
input errors. Because of we used large workloads with varied
job arrival times, many VMs have only a small number of
jobs to execute. These VMs are usually created during periods
with low job arriving rates. The running times of these low-
load VMs have large fluctuations due to real cloud’s unstable
performance. Because of this fluctuation, the running time of
many low-load VMs is close to the simulation based on the
imprecise job execution time. Moreover, the execution time of
a low-load VM is also considerably affected by the VM start-
up time, which further reduces the impact of the imprecise
parameter. The second reason is the horizontal “scale-in”
policy of our resource manager. Our resource manager keeps
VMs alive for some time in the anticipation of new jobs.
Thus, the total running time of a VM is longer than the
total execution time of its jobs, which reduces the impact of
imprecise parameter of the job execution time.

In summary, due to the performance uncertainty in real
clouds, user-provided job execution time usually has less
than 10% errors, with a maximum error of 22%. With these
potential input errors, the PICS simulator can provide reliable
results to help users to assess their cloud application and
services.
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Fig. 12: Horizontal VM Scaling Traces of simulations with ±10%
and ±20% of imprecise job execution time parameter.

VI. CONCLUSION

In order to answer for potential cloud users’ questions about
evaluating the public clouds without actually deploying the
cloud-application, we have created PICS, a public IaaS cloud
simulator. PICS provides the capabilities for accurately evalu-
ating the cloud cost, resource usages (VM scaling, utilization,
and the number of VMs), and job deadline satisfaction rate.
In this paper, we describe the configurations and architecture
of PICS, and validate the accuracy of PICS by comparing it
with actual measurements from a real cloud-application on real
public IaaS cloud. The validation results show that PICS very
accurately simulates the behaviors of the cloud-application
and public IaaS clouds (with less than 5% of average errors).
Moreover, we show the sensitivity of PICS with an imprecise
simulation parameter (job execution time with ±10% and
±20% errors). The results show PICS still provides very
reliable simulation results with the imprecise parameter. These
results demonstrated that PICS is both versatile and reliable
for cloud user to evaluate the public clouds without actually
deploying the cloud-application.

In the near future, we will have more comprehensive valida-
tions of PICS with three different directions. The first direction
is to show the correctness of PICS with cloud-applications on
other public cloud services such as Microsoft Azure [2] and
Google Compute Engine [3]. Validating PICS on the different
cloud providers is particularly important to demonstrate the
simulation correctness and generalizability of PICS, because
these cloud providers have different performance of VMs and
cloud services (e.g. storage and network) as well as differ-
ent cost models for cloud usages (e.g. minute-based billing
model). The second direction is validating PICS with other
cloud-applications and resource management policies. We will
use n-tier web and scientific/big-data analytics applications
with various management configurations because these are
the common cloud-application deployment models for industry
and research community. Furthermore, we will validate PICS
based on the other metrics such as storage and network I/O

usage.
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