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Abstract

The rise of cloud gaming makes interactive 3D applications
an emerging type of data center workload. However, the ex-
cessive rendering in current cloud 3D systems leads to large
gaps between the cloud and client frame rates (FPS, frames
per second), thus wasting resources and power. Although FPS
regulation can remove excessive rendering, due to the highly-
varying frame processing time and the use of rendering delays,
existing cloud FPS regulation solutions have low FPS and
slow motion-to-photon (MtP) latency, causing violations of
Quality-of-Service (QoS) requirements.

In this paper, we present a novel cloud FPS regulation so-
lution, called OnDemand Rendering (ODR). ODR employs
multi-buffering, dynamic rendering delay/acceleration, and
input processing prioritization to reduce excessive rendering
and ensure QoS satisfaction. ODR was evaluated in our pri-
vate cloud and Google cloud. Evaluation results showed that
ODR effectively removed excessive rendering, thus improv-
ing DRAM performance by 19% and reducing power usage
by 16% over no FPS regulation. Better memory efficiency
also allowed ODR to increase client FPS by 5.5%. Moreover,
ODR reduced average MtP latency by more than 92% and
outperformed existing FPS regulations. More importantly,
ODR’s high FPS and low latency make it feasible to deploy
3D applications to conventional public clouds.

CCS Concepts: » Computer systems organization — Cloud
computing; Real-time system architecture; « Computing
methodologies — Graphics processors.
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1 Introduction

With cloud 3D systems, interactive real-time 3D applications,
such as computer games and Virtual-Reality (VR) applica-
tions, are becoming a major type of workload for cloud com-
puting [38, 39, 66]. In cloud 3D, 3D applications are rendered
in the cloud, and the rendered frames are encoded and sent
to the users through the network, allowing the users to enjoy
graphics-intensive 3D applications without expensive and/or
power-hungry high-end GPUs.

Similar to non-cloud 3D systems, Quality-of-Service (QoS),
including the frame rate (FPS/frames-per-second) and motion-
to-photon (MtP) latency, is the primary design metric for
cloud 3D.! Besides QoS, system efficiency, including the en-
ergy and resource efficiency, is also an important design met-
ric for cloud 3D, similar to other data center use cases [27, 80].
However, current cloud 3D systems usually emphasize QoS,
and thus, may have low system efficiency.

A main cause of the low system efficiency in cloud 3D
is excessive rendering. Figure 1 gives an example of exces-
sive rendering with the cloud rendering and client decoding
frame rates of two cloud 3D benchmarks, Red Eclipse and
InMind, from the Pictor benchmark suite [50]. Figure 1 shows
that there were large FPS gaps between the cloud render-
ing and client decoding for both benchmarks, indicating that
the cloud servers were rendering at excessive FPS. When
frames are rendered at a higher rate than they can be encoded,
transmitted, or decoded, excessive frames are discarded. En-
ergy and computing cycles are wasted on rendering these
discarded frames. Excessive rendering also increases memory
contention, further degrading resource efficiency.

'We will use FPS and frame rate interchangeably in this paper. We will also
use MtP latency and latency interchangeably.
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Figure 1. Excessive frame rendering causes large FPS gaps.

Excessive rendering also exists in non-cloud 3D and is
usually addressed by FPS regulation, where frame render-
ing is delayed to reduce the FPS gap [60, 65]. Prior research
also proposed to port existing FPS regulation solutions to
the cloud [49]. However, when ported to the cloud, existing
FPS regulation solutions usually have difficulties simultane-
ously reducing the excessive rendering while meeting the
QoS requirements, due to the following challenges,

The first challenge comes from the variations of the frame
processing time in cloud 3D. Compared to its non-cloud coun-
terpart, cloud 3D requires additional frame processing steps
than rendering, including frame copying, encoding, network
transmission, and decoding. The processing time of each step
varies from frame to frame. As shown in Section 4, this vari-
ation is one of the main causes of FPS gaps. Existing FPS
regulation solutions either overlook these variations or incur
high-overhead by collecting the varying timings as feedback.
Therefore, existing solutions usually fail to meet the FPS
requirements (e.g., 30 or 60FPS).

The second challenge comes from the extra rendering de-
lays injected by existing FPS regulation solutions [60, 65].
These delays are required to synchronize the speed of differ-
ent frame processing steps. These delays usually do not cause
MtP latency issues in non-cloud 3D, as the latency before
adding the delay is low. However, as the MtP latency is al-
ready high for cloud 3D, this extra delay can lead to violations
of the maximum allowed MtP latency.

In this paper, we address the research problem of how fo
regulate frame rates in cloud 3D to reduce excessive render-
ing for better energy and resource efficiency without sacri-
ficing the QoS (i.e., client FPS and latency). We also seek
an open-source solution for a wide audience to support those
who cannot adopt proprietary cloud 3D services.

Here, we present a novel cloud FPS regulation solution,
called OnDemand Rendering (ODR), that solves the above
research problem. ODR has three components:

The first component is multi-buffering, which quickly syn-
chronizes frame processing steps to reduce FPS gaps without
collecting timing information. Multi-buffering has been tra-
ditionally applied in synchronizing rendering for non-cloud
3D [74]. Traditional multi-buffering synchronizes in 3D ap-
plications and GPU, which do not know the timings of encod-
ing and network. Therefore, traditional multi-buffering does
not work for cloud 3D. ODR, however, synchronizes FPS
through multi-buffer swapping in the server proxy, which han-
dles frame encoding and connects to the 3D application and
network. Hence, the server proxy knows the varying frame

processing time in every step, making it a better place to
adjust frame rates to reduce FPS gaps.

The second component is the FPS regulator to ensure that
FPS targets are always met. Unlike existing FPS regulations,
ODR’s FPS regulator does not only delay but also accelerates
frame processing, so that the FPS target can be met even when
the processing time suddenly increases.

The last component is called PriorityFrame, which ad-
dresses the increased MtP latency issue with the following ob-
servation: the majority of the rendered frames are triggered by
3D application’s internal refreshes instead of user inputs. Con-
sequently, we can prioritize the rendering of input-triggered
frames to retain the benefits of FPS regulation without signifi-
cantly increasing the MtP latency.

We evaluated ODR with six cloud 3D benchmarks in our
private cloud and Google cloud, reflecting edge and public
cloud deployments. The evaluation results showed that ODR
effectively reduced excessive rendering and improved system
efficiency without scarifying QoS: 1) ODR reduced the av-
erage FPS gap from 99.1 to 2.6 frames, which leads to an
average power usage reduction of 16.0% over no FPS regula-
tion. ODR also reduced DRAM read access time by 19% and
improved Instruction-per-Cycle (IPC) by 14.4%. 2) When the
QoS goal was to maximize FPS, ODR increased the average
client FPS by 5.5% over no regulation, due to its better mem-
ory efficiency/performance. 3) When the QoS goals were 30
or 60 FPS, ODR met these FPS targets; 4) ODR reduced the
average MtP latency by more than 92% over no regulation,
due to PriorityFrame and reduced FPS gaps.

ODR also significantly outperform two state-of-the-art FPS
regulation solutions. More specifically, when compared with
interval-based regulation and Remote VSync [49], ODR in-
creased the average client FPS by 62.4% and 34.7%, and
decrease the MtP latency by 30.7% and 27.3%, respectively.

More importantly, the results on Google cloud had showed
that ODR made it feasible to deploy 3D applications to con-
ventional public clouds by satisfying the QoS requirements
of 60FPS and 100ms latency.

The contributions of this paper include,

e A performance analysis of existing FPS regulation so-
lutions that provides the insights required to design
effective cloud FPS regulation solutions.

e ODR’s multi-buffering and FPS regulator that effec-
tively reduce FPS gaps while reaching the target FPS.

e The PriorityFrame of ODR that retains the benefits of
FPS regulation without significantly increasing (and in
many cases reducing) the “Motion-to-Photon” latency.

e The experimental evaluation of ODR to show the ef-
fectiveness and benefits of FPS regulation in cloud 3D,
especially with the current public cloud and Internet.

The rest of this paper is organized as follows: Section 2
presents related work; Section 3 presents the background of
cloud 3D; Section 4 analyzes the challenges faced by FPS



regulation in the clouds; Section 5 presents the design of
ODR; Section 6 reports the experimental evaluation of ODR,;
and Section 7 concludes the paper.

2 Related Work

Frame Rate Regulation Non-cloud 3D applications also
have excessive rendering, which causes a large gap between
the frame rendering rate and the display’s refreshing rate. This
gap may lead to “screen tearing,” which hurts user experi-
ence [29]. High FPS may also be purposely reduced to save
energy, especially on mobile devices [36]. FPS regulation is
extensively used to address excessive rendering on non-cloud
3D. Software and hardware FPS regulations typically delay
frame rendering to ensure all frames are rendered at regular
intervals. The length of this interval is determined by FPS
targets or refreshing rates. For example, if the targeted FPS
is 60, then one frame should be rendered at every 16.6ms
interval (% =~ 16.6ms).

Software-based frame rate regulation solutions apply the
delay in the main loops of 3D applications [24, 36, 60] to
ensure a frame’s rendering starts at the beginning of a regular
interval. This “interval-based” FPS regulation assumes that
most frames can be rendered within the interval. However, as
shown later in Section 4.1, the processing time in cloud 3D
has large variations, making this assumption invalid in cloud
3D, resulting in low QoS.

Vertical Synchronization (VSync) is a hardware-based FPS
regulation solution to address the FPS gap between the ren-
dering rate and display refreshing rate [65]. Current displays
have vertical blanking (vblank) signals between the visibility
of two consecutively-displayed frames [61]. These vblank
signals happen regularly based on the display’s refreshing
frequency (e.g., every 16.6ms for 60Hz). With VSync, the
rendering of a 3D application is synchronized to the blank
signals. That is, the rendering is paused until the next vblank
signal, allowing the rendering to synchronize with the dis-
play’s refreshing rate [10]. For newer displays, VSync is
extended to G-Sync and FreeSync to allow reversely adjust-
ing of the display’s refreshing rate [5, 64]. These hardware
FPS regulations cannot be directly applied to cloud 3D, as the
GPU and the client display are separated by the network.

Remote-VSync (RVS) was an FPS regulation solution that
extended VSync to the cloud [49]. RVS was designed to
remove the FPS gap by estimating the time difference between
the end of a frame’s decoding and the next vblank signal.
This time difference is then sent back to the cloud to delay
rendering the next frame. However, as shown in Section 4.1,
due to the slow client-to-cloud feedback, RVS cannot quickly
respond to frame-to-frame processing time variation, causing
low client FPS and QoS violations.

Other Related Work. Several studies have proposed vir-
tual desktop infrastructure and cloud gaming systems [34, 42,
62, 84]. ODR is designed to be generic and can be applied
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Figure 2. The architecture of a typical cloud 3D system.

to these systems. Besides FPS regulation, prior research also
investigated the proper FPS target or bit rate for cloud 3D to
reduce bandwidth usage [1, 31, 32, 36, 75, 88]. These studies
are orthogonal to our work, as we studied how to regulate FPS,
whereas they provide the FPS target for the regulation. There
were also studies on the cloud 3D systems and graphics sys-
tems, such as cloud 3D system designs [19, 39, 43, 44, 72],
CPU-GPU coordination [7], GPU virtualization and shar-
ing [3, 47, 53, 58, 89, 90], server provisioning [20], multi-
GPU rendering [71, 82], network protocols [1, 25], edge com-
puting [2, 11, 12, 18, 48, 85, 87], image compression [6, 9, 22,
41, 51,55, 86], VR/360° video processing [33, 46, 56, 57, 91],
and graphics hardware [23, 26, 35, 45, 54, 70, 81, 83]. These
studies are also orthogonal to our work as they focus on other
aspects of cloud 3D than excessive rendering and FPS regula-
tion. Moreover, our work focuses on enabling a more efficient
cloud 3D on public clouds with conventional hardware.

There are also commercial cloud/remote gaming services,
such as NVIDIA GeForce Now [66], Microsoft XCloud [59],
Shadow [73], Steam Link [76], and Parsec [68]. However,
these services are proprietary, at least for their server-side
implementations. In this work, we aim to seek an open-source
solution for a wider audience and to support use cases that
cannot adopt proprietary services.

3 Background on Cloud 3D

Cloud 3D Systems. There are several open-source implemen-
tations for cloud 3D systems, such as Furion [43], Gamin-
gAnyWhere [34], Sunshine [52] with Moonlight [28], and
TurboVNC [17] with VirtualGL [16]. These systems typically
follow the architecture illustrated in Figure 2 and operate
in the following steps. In the first step (step 1 in Figure 2),
the client captures the user input (e.g., a mouse click or VR
headset motion) and sends this input to the cloud through the
network. In the cloud, the server proxy captures the input and
forwards it to the 3D application (step 2). The 3D applica-
tion processes this input and generates the corresponding 3D
rendering commands, which are sent to the GPU to render
(step 3). After the rendering finishes, the rendered frame is
copied to the server proxy (step 4). The server proxy then
encodes the frame (step 5) into a specific format (usually a
video frame) and transmits the encoded frame to the client
through the network (step 6). Finally, the frame is decoded
by the client and displayed on the screen (step 7). Note that
frame rendering can also be triggered by 3D application’s
internal refreshes instead of user inputs.



In this paper, we define the steps of frame rendering (step
3), copying (step 4), encoding (step 5), network transmission
(step 6), and decoding (step 7), as frame processing steps.
These steps are usually carried out in parallel similar to CPU
pipelines to maximize the FPS. Stepl and step2 are not in-
cluded since not all the frames are triggered by user inputs.
Figure Saillustrates a specific implementation of the key steps
of this software pipeline (more discussions in Section 4).

QoS Requirements. The QoS requirements for cloud 3D
primarily focus on frame rates (FPS) and the MtP latency.
For frame rates, there are two levels of QoS requirements:
1) recreation and education usually only demand that the
frame rate is higher than a minimal FPS target, usually 30
or 60FPS [8, 69, 88, 89], whereas 2) competitive gaming and
VR may require as high FPS as possible [4, 13, 21, 63].

MtP latency refers to the time between a user issues an
input and the responding frame displayed on the screen. MtP
latency requirements vary depending on the type of 3D ap-
plications. For example, for action-intensive VR, the latency
should be less than 25ms [40, 43]. For action games, the la-
tency should be less than 100ms, whereas other games’ max-
imum latency can be 500ms or 1 second [14]. Nonetheless,
latency is usually the lower the better [15].

In this paper, we consider the FPS requirements of maxi-
mizing FPS or 30/60 FPS. We also aim to reduce the latency
as much as possible, as lower latency is always preferable.

4 Challenges for Cloud FPS Regulation

This section presents the design challenges and system effi-
ciency benefits of FPS regulation in cloud 3D by experimen-
tally analyzing existing FPS regulation solutions.

This analysis was conducted using the benchmark InMind
(IM) from the Pictor benchmark suite [50]. The benchmark
was executed with resolution 1280 x 720 in our private cloud,
and the hardware information is provided in Section 6.1.

4.1 Impact of Processing Time Variation

As stated in the introduction, processing time variation is a
main cause of FPS gaps and makes it challenging to reduce
FPS gap while maintaining satisfying QoS. The following
paragraphs illustrate this challenge by analyzing the behav-
iors of no FPS regulation and two existing FPS regulation
solutions — Interval-based regulation and Remote VSync.

NoReg: No FPS regulation. Figure 3 gives the frame render-
ing and encoding FPS in the cloud, as well as client decoding
FPS, under NoReg. As Figure 3 shows, there was a large
gap of 96 frames between the rendering and encoding FPS,
indicating serious excessive rendering. Moreover, the client
(decoding) FPS was 93, indicating that InMind should be able
to meet the 60FPS target.

Note that, one of the main causes of FPS gap is the pro-
cessing speed differences between different steps — in this
case (i.e., InMind), the speed difference between rendering
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Figure 3. InMind’s frame rendering, encoding and decoding
FPS under different FPS regulations.
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(b) A trace of the processing time of InMind’s frame render-
ing, encoding, and network transmission.

Figure 4. Processing time variation of InMind’s frame ren-
dering, encoding, and network transmission (decoding time
is relatively lower and hence omitted).

and decoding. Indeed, current FPS regulation solutions fo-
cus primarily on reducing the FPS gaps caused by this speed
difference. However, as shown next, the FPS gap caused by
processing time variation is more difficult to mitigate.

Int60: Interval-based regulation with a QoS goal of 60FPS.
The interval-based FPS regulation solution was introduced at
the beginning of Section 2. To meet the 60FPS target, this FPS
regulation renders a frame at an interval of 16.6ms. Figure 3
gives InMind’s FPS under this Int60 regulation, which missed
the 60FPS target and still had FPS gap, i.e., its rendering FPS
was only 55, and its encoding and decoding FPS was only 53.

These results for Int60 were quite surprising, as when In-
Mind was executed under NoReg, its client FPS was well
above 60. Therefore, the below-60FPS of Int60 was not be-
cause the hardware was incapable of maintaining 60FPS.
Further analysis revealed that Inf60’s low FPS and FPS gap
were caused by the high variations of rendering, encoding,
and transmission time. Figure 4 displays the processing time
variation of InMind’s rendering, encoding, and transmission
time. The CDF of these key steps in Figure 4a shows that
about 80% - 90% of the frames’ processing time is less than
16.6 ms, and about 10% - 20% could increase to well above
that. These changes in processing time could be caused by the



changes in frame complexity (e.g., changes in the number of
objects and lighting) and the performance variation in cloud
systems [30, 79]. Figure 4b gives a snapshot of InMind’s ren-
dering, encoding, and transmission time for about 100 frames,
which shows the frame processing time varied significantly.

16.6ms 16.6ms . 16.6ms _._ 16.6ms
Render - {Fqf----------{Fp|---------- [F—s --------- 4F_4 ---------
Encode - -- SERERTEEY - TEEEEE w--{Fal------
Decode -+ ! 7 RRERERERE B [Fal -

(a) Ideal pipeline with interval-based FPS regulation
where 4 frames rendered, encoded, transmitted, and
decoded during the span of 4 intervals.
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(b) Actual pipeline with Int60 FPS regulation where
4 frames were rendered, and 3 frames were encoded,
during the span of 4 intervals, due to the slow ren-
dering and encoding of frame Fj.
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(c) To reduce FPS gap, RVS60 delays frame rendering
based on the time differences between frame decod-
ing and next vblank interval.
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(d) ODR synchronizes the frame processing with
multi-buffering and increases encoding rate if the
FPS drops below the FPS target.

Figure 5. One main cause of QoS violation and FPS gap —
the sudden increase of frame processing time, and how it is
handled by RVS and ODR. Copying and transmission are
omitted for clarity. These figures are based on real rendering
trace, but modified for better readability.

The suddenly-increased processing time leads to Int60’s
low rendering FPS and its FPS gap. Figure 5b sketches how a
frame with extremely slow rendering/encoding lowers FPS
and creates FPS gap. In Figure 5b, the rendering and encoding
of frame Fj are extremely slow. Therefore, when Fj finishes
encoding, frame F3 is already rendered, causing F> to be
dropped. The dropping of F, leads to only three frames sent
to the client during four intervals, causing low client FPS and

FPS gap. However, in an ideal pipeline with stable processing
time (shown in Figure 5a), there is no frame drop.

In short, frame processing time variation is also a main
cause of FPS gap. The interval-based regulation overlooks
this variation, which makes it unable to simultaneously reduce
FPS gaps and satisfy the FPS requirement.

IntMax: Interval-based regulation with a QoS goal of max-
imizing FPS. The interval-based regulation can be adapted to
maximize FPS while removing FPS gaps by letting the cloud
reduce its rendering FPS to match the client’s decoding FPS.
Figure 3 gives the frame rates of InMind under this IntMax
regulation. As Figure 3 shows, although the QoS goal was to
maximize FPS, the client (decoding) FPS was only 46, which
was significantly lower than the 93FPS under NoReg.

Further analysis showed that the low client FPS was also
caused by the varying frame processing time. Figure 4b shows
that InMind’s rendering and encoding time could suddenly
increase to more than 20ms. Due to these sudden increases,
there were still large FPS gaps even when the rendering FPS
was initially reduced to match the client’s FPS. Therefore,
observing the still-existing gap, IntMax regulation further
delayed the rendering to match the client FPS. Eventually,
when the FPS gap was removed, the rendering and client
FPS were too low. The fundamental issue was that IntMax
cannot re-adjust its rendering rate when a sudden increase of
processing time passes and the time returns to normal. That
is, IntMax cannot respond fast enough to the frame-to-frame
processing time variation to constantly meet FPS goals.

RVS60: Remote VSync regulation with a QoS goal of
60FPS. As described in Section 2, Remote VSync (RVS) [49]
reduces the FPS gap by having the client compute the time
difference between the end of frame decoding and the next
vblank interval. This time difference is then sent to the cloud
to delay rendering the next frame. Because vblank is gener-
ated by the display (based on its refreshing frequency), in
this analysis, RVS was configured to use a client with a 60Hz
refreshing frequency.

Figure 3 shows that InMind had only 54FPS under RVS60,
missing the 60FPS target. The low client FPS was because
RVS needs to collect time feedback. Figure 5c gives an exam-
ple of how RVS works under a 60Hz display. In Figure Sc,
RVS estimates that the difference between frame Fj’s decod-
ing and the next vblank is 10ms. This 10ms is then sent back
to the cloud as feedback to delay the rendering of F,. Upon
receiving this 10ms, RVS scales it down to 3ms using a pa-
rameter cc. Hence, in Figure Sc, F, is delayed by about 3ms.
Delaying F; ensures no frame drop and no FPS gap. However,
only 2 frames are rendered within 4 intervals.

The main issue of RVS was the long feedback path — the
sending of the time difference over the network causes the
feedback of a frame to be received long after it is rendered.
This slow feedback may unduly increase the rendering delay.
Hence, the parameter cc was added as a “low-pass filter” to
compensate for the slow feedback [49]. Nonetheless, because



RVS needs to collect timing feedback, the FPS of RVS is
always lower than the refreshing rate, which was 60 in this
case. Note that this behavior is expected, as RVS was designed
to reduce FPS gaps, not meeting a QoS target.

RVSMax: Remote VSync regulation with a QoS goal of
maximizing FPS. RVS regulates the FPS based on the dis-
play’s refreshing frequency. Therefore, to maximize the client
FPS, we configured RVS to use a client with 240Hz refreshing
frequency (current high-end display). Figure 3 shows the RVS-
Max removed FPS gaps. However, its client decoding FPS
was only 76, which was considerably lower than NoReg’s
93FPS. This low client FPS was also caused by the overhead
from RVS’s long feedback path.

Moreover, the use of cc also limits RVS” ability to quickly
respond to processing time variation. The value of cc was
empirically determined in RVS, which had to be manually
tuned for each hardware setup. However, cc is still a constant
and cannot be adjusted for each frame to fit frame-to-frame
processing time variation, which further reduces RVSMax’s
FPS when removing FPS gaps.

Summary. First, the analysis of /n#60 showed that process-
ing time variation is a main cause of FPS gap. Properly manag-
ing this variation is crucial to reduce FPS gap while ensuring
satisfying QoS. Second, the analysis of IntMax (and RVS-
Max) showed that FPS regulation needs to respond quickly to
frame-to-frame processing time variation to adjust for both
processing time increases and decreases. Third, the analyses
of RVS60/RVSMax showed that collecting timing feedback is
too slow for cloud FPS regulation, causing low FPS.

4.2 Impact of FPS Regulation on MtP Latency
Figure 6 gives the MtP

latenc.y of InMind un- ~ 80 5 NoReg

der different FPS regula- E 60| = Int60
g

. o 2 40 =3 IntMax

tions (measured.by the Pic 5 % = RVS60

tor benchmarking frame- 3 mmRVSMax

work [50]), which shows
that FPS regulations signif-
icantly increased MtP la-
tency. For instance, com-
pared to NoReg, the latency
was increased by 24.7ms
or 59% under IntMax and by 26.4ms or 63% under RVS60.

The MtP latency increase was caused by the delays injected
by the FPS regulations. As stated previously, another cause
of FPS gaps was the speed difference between different pro-
cessing steps. Therefore, to reduce FPS gap, it is necessary
to delay faster steps, which inevitably increases the overall
processing latency. This increased latency negatively impacts
user experience and makes existing FPS regulations impracti-
cal for users with slow networks or 3D applications with low
latency requirements.

Note that, this observation that RVS increases MtP latency
was different than what was reported by RVS [49]. To reduce

Figure 6. MtP latencies for
InMind under different FPS
regulations.

latency, RVS combined VR headset poses to only render for
the last pose. However, combined processing of pending in-
puts was already employed by our benchmarks by default.
Therefore, there were no extra latency benefits for RVS from
input combining.

4.3 Impact of FPS Regulation on Efficiency
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Figure 7. FPS regulation and DRAM efficiency.

Memory Efficiency. Excessive rendering can also degrade
DRAM efficiency. Using hardware performance monitoring
units (PMU), we also obtained the memory performance of
InMind, which is reported in Figure 7.2 Figure 7a shows that
FPS regulations could reduce DRAM row buffer miss rates.
For example, in Figure 7a, Int60 reduced the miss rate by 9%
over NoReg. This reduction in DRAM miss rate was mainly
because reduced excessive rendering lead to reduced DRAM
contention among application logic, frame rendering, copy-
ing, and encoding. These operations are memory-intensive,
requiring reading and writing megabytes per frame.

The reduced row buffer miss rates, in turn, reduce the
DRAM read access time and improve the instructions per
cycle (IPC). For example, in Figure 7b, Int60 reduced DRAM
read time from NoReg’s 68ms to 47ms, which lead to a 10%
increase in IPC for Int60 in Figure 7c.

In summary, FPS regulation can improve DRAM efficiency
as cloud 3D tends to have intensive DRAM operations. It is
also worth noting that, we did not observe a major impact of
FPS regulations on last-level cache, which is likely because
of the streaming nature of frame processing and large frames
do not always fit in caches. These results also illustrate the
need for additional architecture optimizations for memory
operations involved in cloud 3D.

Power and Resource Efficiency. By reducing the FPS
gaps, FPS regulations can release CPU/GPU computing cy-
cles, and thus, reduce CPU/GPU utilization and power con-
sumption. However, due to space limitation, power usage
results are reported in Section 6.

2The row buffer miss rates include the percentage of misses caused by both
empty or conflict row buffers [78]. The DRAM read access time measures
the time between a request was issued to the memory controller and the result
returned to the controller, using PMU UNC_M_RPQ_OCCUPANCY and
UNC_M_RPQ_INSERTS [37].



5 The Design of OnDemand Rendering

Figure 8 illustrates the architecture of ODR. ODR has three
main components: 1) multi-buffering, reduces FPS gaps; 2)
FPS regulator, ensures an FPS QoS target is always met; 3)
PriorityFrame, ensures the delays injected from the other two
components do not increase MtP latency. Moreover, ODR is
designed to work with any 3D applications without accessing
their source code. The rest of this section provides the detailed
design of each component.

5.1 ODR Multi-Buffering

ODR’s Multi-buffering reduces FPS gaps by synchronizing
frame processing steps and quickly responding to frame-to-
frame processing time variation. Unlike existing FPS regula-
tions, which synchronize the FPS inside the 3D application,
ODR’s multi-buffering synchronizes FPS through the server
proxy’s management (swapping). The server proxy handles
frame copying and encoding and connects to the 3D applica-
tion and network. Hence, the server proxy knows the time of
most frame processing steps and is a better place to synchro-
nize FPS across different steps to remove FPS gaps.

ODR has two multi-buffers: one between the 3D applica-
tion and the server proxy (“Mul-Bufl” in Figure 8), and one
between the server proxy and network (“Mul-Buf2”). The
first multi-buffer (“Mul-Buf1”) synchronizes the rendering
(in 3D application) and encoding (in the server proxy) frame
rates through the following procedure. Mul-Bufl has two
buffers — a front and a back buffer. The front buffer stores
the current frame, which will be encoded by the server proxy.
The back buffer is used to store the next (newer) frame that is
being rendered by the 3D application. When the server proxy
finishes encoding the frame from the front buffer, it swaps
the front and back buffers. In other words, the server proxy
treats the old back buffer as the new front buffer to encode the
newer frame. The synchronization between the rendering and
encoding happens at the buffer swapping. The server proxy
only swaps the buffers after it finishes encoding, and after the
back buffer has a new frame. If the back buffer is empty, the
server proxy pauses swapping to wait for it to be populated.
Similarly, the 3D application pauses its rendering until the
buffers are swapped (i.e., an empty back buffer is available).
By pausing themselves based on the buffer swapping event,
the server proxy and 3D application naturally synchronize
their frame rates — the faster one will pause itself to wait for
the slower one to clear or populate the buffers.

Figure 5d gives an example of how ODR’s multi-buffer
synchronizes the rendering and encoding. In Figure 5d, after
frames F; and F; are rendered, F occupies the front buffer,
and F, occupies the back buffer. The buffer swap does not
happen until F; is encoded. Therefore, the 3D application de-
lays rendering F3 until F] is encoded and no obsolete frames
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Figure 8. Overview of ODR. ODR’s components are shaded.

are generated and dropped. Hence, the 3D application natu-
rally delays or accelerates the rendering in synchronous with
the server proxy through the multi-buffer.

The second multi-buffer (“Mul-Buf2”) works similarly
to sync under varying encoding/network time. The server
proxy stores the encoded frame in the back buffers, while the
network sends the encoded frame in the front buffer to the
client. Both the server proxy and network pause themselves
to wait for the slower one to clear or populate the buffers.

5.2 ODR FPS Regulator

Design. ODR’s FPS regulator is designed to ensure that the
encoding FPS in the server proxy matches an FPS target.
With the help of multi-buffering, once the encoding FPS
matches the target, the rendering FPS and transmission FPS
are naturally regulated to match the FPS target as well.

To meet the FPS target under suddenly-increased process-
ing time, ODR’s FPS regulator accelerates the frame process-
ing if it detects a processing time increase. This design is
different from existing FPS regulation solutions that only de-
lay the rendering. When ODR’s FPS regulator detects that the
frame encoding rate is below the FPS target, it increases the
encoding FPS to ensure that the FPS target is still met. The
increased encoding FPS also increases the FPS of rendering
and network transmission with the help of multi-buffering,
allowing the whole 3D system to accelerate to meet the FPS
target. For example, in Figure 5d, when ODR detects that
only one frame (F7) is encoded within the first two intervals,
it accelerates the encoding to output two more frames (F>
and F3) back to back. The faster encoding also accelerates
the rendering through the multi-buffer. Hence, three frames
are rendered/encoded throughout three intervals, meeting the
FPS target. For frame Fy, as the FPS target has been met, its
encoding is delayed to the beginning of the fourth interval to
avoid the FPS exceeding the target.

Algorithm 1 gives the algorithm of ODR’s FPS regulator
that delays or accelerates encoding to meet an FPS target. At
the beginning of execution, ODR computes the expected en-
coding interval length based on the FPS target (line2), similar
to the interval-based FPS regulation. The variable, acc_delay,
declared on line 3 is the key to aid ODR to delay or accel-
erate encoding. acc_delay stores the time that needs to be
delayed to match the FPS target. The value of acc_delay
is accumulated based on past frames’ encoding time. More
specifically, during execution, ODR encodes a frame from
the front buffer of Mul-Bufl1 (line6) and stores the encoded



Algorithm 1: ODR FPS Regulator

Input: target F PS;

1 Function main(target FPS):
1000msec .

// the FPS target

2 interval < fargetFPS S // in msec
3 acc_delay < 0; // accumulated delay length
4 while app is running do

// encode frame from Mul-Buf1
start_time < getCurrentTime();

n

6 f < encode_frame_in_Mul-Buf1();
// saved encoded frame to Mul-Buf2
7 wait_to_swap_Mul-Buf2();
8 store_frame_to_Mul-Buf2(f);
9 end_time < getCurrentTime();

// compute the accumulated delay

10 encode_time < end_time — start_time;
11 time_dif f < interval — encode_time;
12 acc_delay < acc_delay + time_dif f;

// sleep only if acc_delay >0, otherwise
immediately move on to encode next frame to

meet QoS
13 if acc_delay > 0 then
14 sleep(acc_delay);
15 acc_delay < 0;
16 end

// swap Mul-Buf1

17 wait_for_Mul-Bufl_back_buf_full();
18 swap_Mul-Buf1();

19 end

20 return

frame in the back buffer of Mul-Buf2 (line8). The encoding
time for this frame is computed at line 10. Then the difference
(time_dif f) between this encoding time and the expected
encoding interval is computed (linel1), which accumulates to
acc_delay (linel2). If time_dif f is positive, then the encod-
ing time is shorter than the expected interval. If time_dif f is
negative, then the encoding time is longer than the expected
interval. Similarly, if acc_delay is positive, then the encod-
ing rate of the past frames is higher than FPS target, and
the encoding should slow down (line 13 to 16). However, if
acc_delay is negative, then the current encoding FPS is lower
than the target. In that case, the encoding should continue
without delay until the FPS target is met and the acc_delay
returns to positive. At last, ODR swaps Mul-Buf1 to process
the next frame (linel7-18).

Notes on FPS Regulation Goal. ODR’s FPS regulator
does not aim at guaranteeing frames arriving at the client at
regular intervals. Indeed, the varying rendering, encoding,
and network time make this guarantee impossible in cloud
3D. Instead, ODR aims at ensuring the FPS target is met for
each small period (e.g., 200ms).

This design choice is based on three reasons. First, as cor-
roborated by user study in Section 6.7, accelerating rendering
to generate enough frames at targeted rates improves user
experience and reduces stutters/lags in cloud 3D. The sudden
delays in encoding/network may affect several consecutive

frames. Accelerating rendering prevents these delays from
further degrading FPS, and thus, reduces stutters/lags. Sec-
ond, as also corroborated by our user study, as long as the
client FPS meets the target for every small period, it can still
provide a satisfying user experience. In our evaluation, ODR
could ensure 30 or 60FPS for every 200ms interval at least.
Third, generating enough frames at targeted rates in the cloud
may further improve user experience by allowing more client-
side optimizations. For example, high frequency (90-240hz)
displays with FreeSync/GSync are designed to reduce lag by
allowing frames to arrive at high but varying rates [5, 64]. We
will explore client optimizations in the future.

5.3 ODR PriorityFrame

Design. PriorityFrame is used to reduce the MtP latency of
ODR by prioritizing the processing of the frames that are gen-
erated based on user inputs. PriorityFrame is designed based
on the observation that the majority of the frames rendered
by an interactive 3D application are due to the application’s
internal updates/refreshes instead of user inputs. A normal
user typically only produces fewer than 250 actions/inputs
per minute (APM) [77]. Even professional game players usu-
ally have an APM of only 300. That is, on average, there are
usually fewer than 5 inputs per second, and thus, no more
than 5 input-generated frames per second. As there are only
a small number of input-generated frames, it is possible to
prioritize these frames to reduce the MtP latency.
PriorityFrame has two parts (Figure 8). One part is located
inside the 3D application which detects if there is user input.
Once detected, the rendering delay (i.e., the buffer swapping
wait) in the 3D application is canceled, allowing the input-
generated frame to be rendered immediately. After rendering,
the frame is sent to the PriorityFrame inside the server proxy
for encoding and network transmission without any delay. To
ensure a correct frame sequence, any unsent frames rendered
before the input-generated frame become obsolete frames
and are dropped. This frame dropping will not significantly
increase the FPS gaps (as shown in Section 6.2), because
there are usually fewer than 5 priority frames per second,
and not every priority frame causes frame drop. Note that,
PriorityFrame is only engaged for frames generated based on
user inputs, as MtP latency is only applicable to those frames.
Impact of Position/Posture Polling. Mouse and VR head-
sets can poll cursor position or user posture at high frequency,
e.g., VR headsets may poll at 1000hz [67]. A large number of
polling events (i.e., user inputs) may be generated due to this
frequent polling. However, when rendering, multiple pending
polling events are typically combined so that only the most
recent position/posture is used. This combination is employed
by all our open-source benchmarks at least. With this combi-
nation, users always see the frame with the last position and
perceive low latency [49]. That is, this combination already
ensures low latency for polling events and also eliminates the
need to render for every polling event. Therefore, ODR does



[ Benchmark [ Desicription |
SuperTuxKart (STK) | Racing Game
0 A.D. (OAD) Real-time Strategy Game
Red Eclipse (RE) First-person Shoot Game
DoTA2 (D2) Battele Arena Game
InMind (IM) VR Game
IMHOTEP (ITP) Health Training VR

Table 1. Cloud 3D benchmarks used in this evaluation.

not prioritize polling event inputs. After excluding the polling
events, there were 2 to 5 (average 3.6) priority frames per
second observed in our evaluation.

5.4 ODR Implementation

We implemented ODR on Linux for 3D applications built with
OpenGL and X Window. The main implementation difficulty
is to handle proprietary and closed-source computer games
and VR applications, as the FPS regulator and PriorityFrame
require adding delays to the rendering operations and reading
user inputs inside 3D applications.

To meet these two requirements without using 3D appli-
cation’s source code, we employed API hooks. More specif-
ically, ODR intercepts the g/iXSwapBuffers [74] API from
OpenGL to allow delaying the rendering when the Mul-Buf1
is yet-swapped. gIXSwapBuffers is called at the end of every
frame rendering to allow the GPU to finish processing 3D
commands. Therefore, the delay of rendering can be inserted
directly after gIXSwapBuffers. The PriorityFrame inside the
application requires detecting user inputs, which is achieved
by intercepting the XNextEvent [74] API from X Window. If
the intercepted XNextEvent returns a user input, then Priori-
tyFrame cancels the rendering delay.

Additionally, our system and all comparison experiments
are implemented on a state-of-the-art open-source cloud 3D
system, TurboVNC with VirtualGL [16, 17]. Following the
common practice, we modified the TurboVNC to use video
streaming to transmit rendered frames [31, 75]. We also tuned
the "low-pass filter" parameters for RVS for each benchamrk
and configuration to optimize RVS” performance.

6 Experimental Evaluation
6.1 Evaluation Setup

Benchmarks. We used all six benchmarks from the Pictor
benchmark suite [50], which is designed to evaluate cloud
3D systems. As listed in Table 1, these benchmarks include
gaming and VR applications from different genres. Each
benchmark was executed with two resolutions at 1280x 720
(720p) and 1920 1080 (1080p).

Platforms. We evaluated ODR using two platforms, our
private cloud and Google cloud with Compute Engine (GCE),
which represent edge and public cloud deployments. In the
private cloud, the benchmarks were executed on a server with
an Intel i7-7820x CPU and NVIDIA GTX 1080Ti GPU. The
server and client were connected using 1Gbps network. In

[ [ 720p Priv Cloud [ 720p GCE [ 1080p GCE ]
NoReg 60.7/218.8 (ITP) | 154.7/671.0 (ITP) | 140.6/465.6 (ITP)
IntMax 0.4/0.9 (IM) 0.4/0.8 (IM) 0.3/0.7 (D2)
RVSMax 0.1/0.3 (IM) 0.7/1.1 (IM) 0.1/0.13 (D2)
ODRMax-noPri 0.1/0.4 (IM) 0.6/1.1 (IM) 0.5/1.1 (OAD)
ODRMax 1.3/3.2 (IM) 1.8/3.3 (IM) 2.7/3.7 (RE)
Int60 or Int30 0.0/0.07 (IM) 0.0/0.01 (IM) 0.1/0.5 (IM)
RVS60 or RVS30 0.0/0.04 (OAD) 0.0/0.05 (IM) 0.0/0.02 (ITP)
ODRG60 or ODR30 2.6/3.9 (IM) 2.8/3.7(IM) 2.9/4.2 (RE)

Table 2. The Average/Max FPS gaps for each configuration.
The benchmark in the parentheses was the one having the
largest gap for this each configuration.

GCE, a VM of type nl-highcpu-16 was used, which had a
16-core Intel Xeon CPU and NVIDIA Tesla P4 GPU. The
GCE VM was allocated in region us-centrall, which was
well beyond 500 miles from our lab. The server-to-client
ping latency for our private cloud is about 2ms and for GCE
is about 25ms. No specialized network devices/links were
used. We did not alter or control network connections in our
experiments.

The client for all our experiments was a desktop computer
with an Intel i5-7400 CPU. The servers (in private cloud and
GCE) and client had Ubuntu 16.04 as the OS.

Configurations. We considered two QoS goals, including
maximizing FPS and maintaining stable 60FPS (for 720p) or
30FPS (for 1080p). We evaluated no regulation and three FPS
regulations, including ODR, interval-based regulation (Inf)
and Remote VSync (RVS). As there are 2 resolutions, 2 cloud
platforms, 2 QoS goals, 3 regulations, and no regulation, each
benchmark was executed with 28 configurations.

When reporting results, no regulation configuration is la-
beled as NoReg. ODR, Int, and RVS configuration results are
labeled as ODRMax, IntMax, RVSMax, when the QoS goal
was maximizing FPS. They are labeled as ODR30, Int30,
and RVS30 when the QoS goal was 30FPS. They are labeled
as ODR60, Int60, and RVS60, when the goal was 60FPS.
Due to space limitation, detailed results for the 1080p private
cloud were omitted. These results were consistent with other
configurations, and their averages are reported.

6.2 Effectiveness of FPS Gap Reduction

FPS Gaps of ODR. Table 2 reports the average and maxi-
mum FPS gaps for ODR under each configuration. As Table 2
shows, ODR could effectively reduce the FPS gap. For ex-
ample, for the 1080p GCE evaluation, ODRMax reduced the
average FPS gap from NoReg’s 140.6 frames to only 2.7
frames. The same large reductions of FPS gaps by ODR can
be observed in every configuration in Table 2. Even the largest
FPS gap for ODR was only 4.2 frames.

Furthermore, to evaluate the impact of PriorityFrame, we
also measured ODR’s FPS gaps without PriorityFrame, which
are reported in the ODRMax-noPri row in Table 2. Table 2
shows that the difference between the average FPS gaps of
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Figure 9. Average QoS results over six benchmarks for all 28
configurations, as well as overall averages.

ODRMax-noPri and ODRMax was only 1.2 frames, indicat-
ing that PriorityFrame does not significantly increase FPS
gaps. Table 2 also shows that ODRMax-noPri’s average FPS
gap was always below one frame, suggesting ODR’s multi-
buffering nearly eliminates FPS gap.

Comparison with Int/RVS. Table 2 also shows that both
Int and RVS regulations could effectively reduce FPS gaps.
However, as shown later with the FPS and latency results,
their reduction came with a price of low QoS.

6.3 QoS Evaluation Results — Client FPS

Average Client FPS of ODR. Figure 9a gives the average
client FPS under each configuration. As Figure 9a shows,
when the QoS goal was to maximize the client FPS, ODR-
Max’s average client FPS was consistently higher than NoReg.
For example, in 720p private cloud evaluation (i.e, “Priv720p”
in Figure 9a), ODRMax’s average client FPS was 110, which
was 6% higher than NoReg’s 104FPS. We observed that this
increase in FPS is due to the reduced memory contention,
as discussed in Section 4. Along with the FPS gaps reported
previously, these results suggested ODRMax could simultane-
ously reduce FPS gap and meet the goal of maximizing FPS
(by increasing client FPS over NoReg).

When the QoS goal was 30 or 60FPS, Figure 9a also shows
that ODR30 or ODR60 had an average client FPS slightly
higher than 30 and 60, meeting the QoS goal. For example, in
720p private cloud evaluation (i.e, “Priv720p” in Figure 9a),
ODRO60’s average client FPS was 61.6, meeting the 60FPS
target. The slightly higher FPS was mainly because of the
occasional priority frames.

Comparison with Int/RVS. Figure 9a shows that both
IntMax and RVSMax usually had lower client FPS than ODR-
Max. For example, in the 720p private cloud evaluation (i.e,
“Priv720p” in Figure 9a), the average FPS of IntMax and RVS-
Max was 66.3 and 82.2, which were both significantly lower
than ODRMax’s 110.
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Figure 10. Detailed client FPS results. Box plots shows the
1%ile, 25%ile, mean, 75%ile, and 99%ile.

Moreover, when the QoS goal was meeting 30/60FPS
targets, both Int and RVS usually could not meet these tar-
gets. For example, in the 720p private cloud evaluation (i.e,
“Priv720p” in Figure 9a), Int60’s average client FPS was only
58, and RVS60’s average client FPS was only 56, which were
both lower than 60. These results suggested that neither Int
nor RVS regulations could meet the QoS goals of maximizing
FPS or 30/60FPS (as analyzed in Section 4).

Individual benchmark results and tail (1%ile) FPS. Fig-
ure 10 gives the detailed client FPS results for each bench-
mark with the tail FPS. These detailed results are consistent
with the averages reported in Figure 9a. That is, Figure 10
show that, when the QoS goal was to maximize FPS, ODR-
Max had the same or higher client FPS than NoReg for nearly
all benchmarks. For example, for InMind in the 720p pri-
vate cloud evaluation (i.e., “IM” in Figure 10a), ODRMax
increased the average FPS from NoReg’s 93 to 107.

Figure 10 also shows that ODRMax had similar or better
tail (1%ile) FPS than NoReg in most cases. It is also inter-
esting that the FPS of both NoReg and ODRMax had similar
fluctuation ranges in Figure 10a, suggesting that a main cause
of the fluctuations of ODRMax ’s FPS was the fluctuation
inside the 3D benchmarks (i.e., rendering time).
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Figure 11. Detailed MtP Latency results. Box plots shows
the 1%ile, 25%ile, mean, 75%ile, and 99%ile.

Figure 10 also shows that, in most cases, ODR30 or ODR60
could ensure their average FPS was consistently above 30 or
60, satisfying the QoS goal of 30/60FPS. The only two excep-
tions were “D2” and “ITP” in Figure 10b, where ODR60’s
average client FPS was 59, only 1 frame fewer than the
60FPS target. Figure 10 also shows that the tail (1%ile)
FPS of ODR30 or ODR60 was also usually very close to
the 30/60FPS targets.

For IntMax and RVSMax, Figure 10 also shows that their
client FPS was lower than ODRMax for all benchmarks. For
Int30/60 and RVS30/60, Figure 10 also shows that their client
FPS usually missed the 30/60FPS targets. Moreover, Int and
RVS regulations also usually had much lower tail FPS than
ODR. These results are consistent with the averages from
Figure 9a, showing that Int and RVS regulation had difficulties
meeting the QoS goals.

6.4 QoS Evaluation Results — MtP Latency

Average MtP latency of ODR. Figure 9b gives the average
MtP latency of each configuration. As Figure 9b shows, when
the QoS goal was to maximize FPS, ODRMax always had
lower average latency than NoReg. For example, for the 720p

private cloud evaluation (“Priv720p”) in Figure 9b, ODR-
Max’s average latency was 39.1ms, which was 6% lower than
NoReg’s 41.6ms. Similarly, ODRMax’s average latency was
9% lower than NoReg for “Priv1080p” in Figure 9b. ODR’s
lower latency was because of PriorityFrame. In NoReg, input-
generated frames must wait for the previous frames to be
processed, which introduces queuing delay. However, with
ODR’s PriorityFrame, input-generated frames are prioritized
over other frames, removing this queuing delay and causing
ODR to have lower latency than NoReg.

For 720p and 1080p GCE evaluations, Figure 9b surpris-
ingly shows that the average MtP latency for NoReg was
extremely high (up to 3.2 seconds). Further analysis showed
that this high latency was due to the combined impact of
FPS gap and slow network. The large FPS gap under NoReg
caused network congestion, which significantly increased net-
work latency, leading to high latency. By removing the FPS
gap, ODRMax did not have this network congestion issue.
Therefore, ODRMax’s average latency was more than 95%
faster than no-regulation. Moreover, when the QoS goal was
30/60FPS, Figure 9b shows that ODR30 or ODR60 also had
lower average latency than NoReg.

More important, Figure 9b shows that the average latency
of ODRMax and ODR30 was less than 77ms in the 720p
GCE evaluation, which met the most stringent 100ms latency
requirement for computer games [14]. The average latency of
ODRMax and ODR30 was also less than 120ms in the 1080p
GCE evaluation. This low latency is important as it shows that
ODR makes it feasible for 3D applications to be deployed
to conventional public clouds without specialized hardware.
The user study in Section 6.7 also corroborates the feasibility
of public cloud deployments using ODR.

Comparison with Int/RVS. Figure 9b shows that the av-
erage MtP latency of Int and RVS regulations were always
higher than ODR. For example, in the 720p private cloud
evaluation (i.e, “Priv720p” in Figure 9b), the average latency
of IntMax and RVSMax was 56.7ms and 47.9ms, higher than
ODRMax’s 39.1ms. And the average latency of Int60 and
RVS60 was 53.5ms and 57.3ms, higher than ODR60’s 42.1ms.
As discussed in Section 4, the delays injected by the Int and
RVS regulations increase the latency, whereas ODR’s Priori-
tyFrame avoids the penalty of these delays.

Individual benchmark results and tail (99 %ile) Latency.
Figure 11 gives the detailed MtP latency results for each
benchmark with tail latency. These detailed results are consis-
tent with the averages in Figure 9b. That is, ODR’s average
and tail latency were better than NoReg, Int, and RVS for
most configurations. Moreover, for all benchmarks, ODR’s
latency was lower than 92ms in the 720p GCE evaluation
and lower than 150ms in the 1080p GCE evaluation. Particu-
larly, ODRMax’s and ODR30’s latency was only 77.1ms and
74.2ms for IMHOTEP in the 1080p GCE evaluation (“ITP”
in Figure 11c¢). This low latency in GCE further shows that
ODR enables cloud 3D with conventional public clouds.
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Figure 12. Memory efficiency (720p private cloud).

—1 NoReg = IntMax mmm RVSMax —= ODRMax

280 = Int60 == RVS60 == ODRG0 i
210 |

140
70

Power (Watts)

STK
Figure 13. Power usages (720p private cloud).

0AD RE D2 M ITP AVG

6.5 System Efficiency Evaluation Results

Figure 12 provides the memory efficiency results, and Fig-
ure 13 provides the power usage results, for the 720p private
cloud evaluation. Power usages were measured using a Klein
Tools CL110 meter. This meter has a current sensor that reads
current in ampere from wall outlets. The current readings
were then converted to wattage by multiplying the household
voltage. Note that, due to the lack of physical access to GCE
cloud servers, memory, and energy efficiency results were not
available for GCE evaluations.

Memory Efficiency of ODR. When the QoS goal was
maximizing FPS, Figure 12a shows that ODRMax improved
the IPC for each benchmark over NoReg. On average, ODR-
Max improved the IPC from NoReg’s 0.66 to 0.71 (by 7.6%).
The improved IPC was mainly due to the improved DRAM
performance. Figure 12b shows that ODRMax improved the
average DRAM row buffer miss rates by 10.7% over NoReg.
Figure 12c also shows that ODRMax reduced the average
DRAM access time by 13% over NoReg. The reason is that

the frame rendering, copying, and encoding operations are all
pipelined (for better performance) and executed in their own
threads/processes. Hence, frequent rendering will increase
the probability that these tasks execute simultaneously. Si-
multaneous execution leads to simultaneous DRAM access
and thus DRAM row buffer contention, and in turn, leads to
slower memory operations and lower IPC.

Similarly, when the QoS goal was 60FPS, Figure 12 shows
that, on average, ODR60 improved IPC by 21.2%, reduced
DRAM row buffer miss rates by 10.5%, and reduced DRAM
access time by 25%, over NoReg. With higher QoS, These
results illustrate ODR’s improvement on DRAM efficiency
and the need for additional architecture optimizations for
memory operations involved in cloud 3D.

Power Consumption of ODR. When the QoS goal was
maximizing FPS, Figure 13 shows that ODRMax reduced the
average power usage from NoReg’s 198.7 watts to 183.1 watts
or by 7.9%. The highest power reduction of ODRMax was
observed with IMHOTEP, where the power usage from 264.1
watts to 206.3 watts, or by 22%. This power usage reduction
was because of the reduced excessive rendering.

It is also worth noting that ODRMax’s power usage reduc-
tion was achieved with an increase in client FPS (as shown
in Figure 9a), indicating that the power reduction was not
only from the reduced FPS gap, but also from the improved
resource efficiency — ODRMax’s higher memory resource
efficiency allows better QoS with lower power usages.

When the QoS goal was 60FPS, Figure 13 shows that
ODRG60 reduced average power usage by 22% (from 198.7
watts to 155.1 watts), with a maximum reduction of 45% for
IMHOTEP (from 264.1 watts to 145.2 watts), over NoReg.

Comparison with Int/RVS. Figure 12 and Figure 13 show
that the Int and RVS regulations had similar or lower memory
contention and power usages than ODR. However, the lower
resource and energy results do not mean that these two regu-
lations were more efficient. Rather, it was the direct result of
their lower client FPS and QoS.

6.6 Evaluation Summary for ODR

To facilitate the understanding of the large amount of data in
our evaluation, Figure 12, and Figure 13 also provide overall
average performance results for all configurations, which are
summarized in the following paragraphs.

Overall Average - FPS Gap. As Table 2 shows, for all
benchmarks and all 28 configurations, the overall average
FPS gap of ODR was only 2.6 frames with a maximum gap
of 4.2 frames. For NoReg, the average FPS gap was at least
60.7 frames, which was significantly worse than ODR. Int
and RVS could also reduce the FPS gap, however, they had a
lower QoS than ODR.

Overall Average - Client FPS. Figure 9a gives the over-
all average FPS of all benchmarks and configurations. Fig-
ure 9a shows that when the QoS goal was maximizing FPS,
ODRMax’s overall average client FPS was 77.4, which was



5.5% higher than NoReg, 62.5% higher than IntMax, and
32.8% higher than RVSMax. When the QoS goal was 30 or
60FPS, ODR’s average FPS was 31.9 or 61.2, meeting the
30/60FPS targets. When considering all Max/60/30 configu-
rations, ODR increased the average client FPS by 62.4% and
34.7% over Int and RVS, respectively.

Overall Average - MtP Latency. Figure 9b gives the over-
all average MtP latency for all benchmarks and configurations.
Figure 9b shows that the overall average latency of ODRMax
was 76.1ms, which was 93.6% faster than NoReg, 30.2%
faster than IntMax, and 34.4% faster than RVSMax. The aver-
age latency of ODR60 was 57.4ms, which was 95.2%, 21.5%,
and 24.3% faster than NoReg, Int60, and RVS60, respectively.
The average latency of ODR30 was 89.7ms, which was 92.4%,
26.8%, and 26.3% faster than NoReg, Int30, and RVS30, re-
spectively. When considering all Max/60/30 configurations,
ODR reduced the MtP latency by 30.7% and 27.3% over Int
and RVS, respectively.

Overall Average - Resource Efficiency. Figure 12 shows
that for all 720p evaluations in our private cloud, ODR im-
proved the overall average IPC by 14.4% over NoReg. ODR
also reduced DRAM row buffer miss rate by 11% and reduced
DRAM access time by 19%. Figure 13 shows that ODR re-
duced the overall average power usage by 16.0% over NoReg.
Moreover, Int and RVS had slightly lower resource usage than
ODR. However, this lower usage does not mean that /nf and
RVS were more efficient. Rather, it was the direct result of
their lower client FPS and QoS.

Moreover, although network bandwidth was not a perfor-
mance limiting factor in our evaluation, we also measured the
network bandwidth usages of ODR, which ranged from 15
Mbps to 60Mbps depending on the benchmarks and configu-
rations. This low bandwidth usage is primarily because the
frames were encoded as video streams.

6.7 User Experience Study

Setup. Besides FPS and latency,
other factors may also affect user
experience, such as frame stutter-
ing and screen tearing. Therefore,
we also conducted a user study
(IRB-approved) with 30 partici-
pants to evaluate user experience.
Each participant played with a
randomly-picked benchmark with
same amount of time with no other
restrictions, under NoReg and all
three regulations in GCE, along
with a local execution (i.e., NonCloud). All benchmarks were
executed with a resolution of 1920x 1080. The client had an
ordinary 60hz display.

Results. Figure 14 gives overall user ratings of each con-
figuration. Here, the participants were asked to rate each
configuration using a scale of 1 to 10, with 10 being the best.

Figure 14. Average
user ratings.
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Figure 15. The number of participants responding to lagging,
stuttering, and screen tearing in each setting.

Figure 14 shows that ODRMax had a rating of 8.0, which was
comparable to the 8.03 of the local (NonCloud) execution. In-
terestingly, when asked which configuration was better, exact
half (i.e., 15) of the participants thought ODRMax was better
than the local execution. Figure 14 also shows that NoReg,
IntMax, and RVSMax had lower ratings than ODRMax, sug-
gesting ODR provided better user experience. Most users
also rated NoReg with a score of only 3.1, showing no FPS
regulation is unacceptable for cloud 3D.

Figure 15 reported the numbers of participants who had
experienced lags, stutters, and tearing in each setting. For
ODRMazx, 24 and 26 participants reported no stutters and
no tearing, which were similar to NonCloud. However, 18
participants reported no lags under ODRMax, fewer than the
22 of NonCloud. These results also showed that ODRMax
had a comparable (or slightly worse) user experience than
NonCloud. Furthermore, fewer participants reported no lags,
stutters and tearing in IntMax and RVSMax than ODRMax,
indicating ODR had better user experience. Particularly, con-
siderably more participants reported no lags in ODRMax than
IntMax and RVSMax, suggesting PriorityFrame does reduce
the MtP latency.

Figure 14 and Figure 15 also provide the user study results
when the QoS goal was 30FPS. As expected, the user expe-
rience was lower under 30FPS than the case of maximizing
FPS. Nonetheless, compared to Int30 and RVS30, ODR30
still achieved higher user ratings in Figure 14 and had fewer
participants reporting lags/stutters/tearing in Figure 15.

This user study also corroborates the notes on FPS regula-
tion goals in Section 5.2. The fact that more users reporting
no stutters/lags in ODR30 (than Int30 and RVS30), along with
ODR30’s better user rating, shows that accelerating to render
at the targeted rate can improve user experience even if the
frames do not arrive at the client at regular intervals. These
results also suggest that ensuring FPS target is met for each
small period can provide a good user experience in ODR.

7 Conclusion

To reduce excessive rendering, regulation of frame rates (FPS)
is crucial for cloud 3D system’s energy and resource ef-
ficiency. Here, we presented a novel FPS regulation solu-
tion, ODR, to reduce excessive rendering. Evaluation results
showed that ODR significantly reduced FPS gaps, improved



memory/energy efficiency, and ensured QoS, enabling deploy-
ing 3D applications to conventional public clouds.
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