
Predicting the Memory Bandwidth and Optimal Core
Allocations for Multi-threaded Applications on Large-scale

NUMA Machines

Wei Wang, Jack W. Davidson, and Mary Lou Soffa
Department of Computer Science

University of Virginia
{wwang, jwd, soffa}@virginia.edu

ABSTRACT

Modern NUMA platforms offer large numbers of cores to
boost performance through parallelism and multi-threading.
However, because performance scalability is limited by avail-
able memory bandwidth, the strategy of allocating all cores
can result in degraded performance. Consequently, accu-
rately predicting optimal (best performing) core allocations,
and executing applications with these allocations are crucial
for achieving the best performance.

Previous research focused on the prediction of optimal
numbers of cores. However, in this paper, we show that, be-
cause of the asymmetric NUMA memory configuration and
the asymmetric application memory behavior, optimal core
allocations are not merely optimal numbers of cores. Addi-
tionally, previous studies do not adequately consider NUMA
memory resources, which further limits their ability to accu-
rately predict optimal core allocations.

In this paper, we present a model, NuCore, which pre-
dicts both memory bandwidth usage and optimal core allo-
cations. NuCore considers various memory resources and
NUMA asymmetry, and employs Integer Programming to
achieve high accuracy and low overhead. Experimental re-
sults from real NUMA machines show that the core alloca-
tions predicted by NuCore provide 1.27x average speedup
over using all cores with only 75.6% cores allocated. Nu-
Core also provides 1.18x and 1.21x average speedups over
two state-of-the-art techniques. Our results also show that
NuCore faithfully models NUMA memory systems and pre-
dicts memory bandwidth usages with only 10% average er-
ror.

1. INTRODUCTION

Non-uniform memory access (NUMA) platforms are widely
used in data centers and high performance computing cen-
ters, because they offer large numbers of cores and high
memory bandwidth, allowing the simultaneous execution of
massive numbers of threads to achieve high performance.
However, the performances of multi-threaded applications

U.S. Government work not protected by U.S. copyright

do not always scale linearly with the increasing numbers of
cores on NUMA machines [1, 2]. In fact, for certain multi-
threaded applications, the scalability is so limited that allo-
cating all available cores of a NUMA machine hurts perfor-
mance. For example, we observed that on a 48-core NUMA
machine, the PARSEC benchmark streamcluster achieves
the best performance using only six cores – the execution
time when using six cores is 3.34 times faster than using all
48 cores [3]. The observation that allocating all cores may
degrade performance is also reported on many other NUMA
platforms [4, 5, 6, 7, 8, 9].

Because the potential performance penalty of allocating
too many cores on a NUMA machine is significant, it is im-
portant that we execute multi-threaded applications with the
minimum core allocation that provides the best performance.
We call such a core allocation the optimal core allocation.1

Although previous studies investigated this core alloca-
tion problem, these studies did not accurately determine the
optimal core allocations for two reasons:

1) Previous work only focused on determining the opti-
mal numbers of cores [4, 5, 6, 7, 8, 9]. However, because of
the asymmetric memory configuration and asymmetric ap-
plication memory behavior, optimal core allocations are not
simply optimal numbers of cores. A NUMA machine con-
sists of several memory nodes, where each node has its own
DRAM connection. The nodes are connected using inter-
node links to allow inter-node communications. However,
the inter-node links within a NUMA machine can have dif-
ferent bit-widths and maximum bandwidths. The connection
topology of these links may also be non-uniform. More-
over, a multi-threaded application’s memory behavior is also
asymmetric in that it typically does not use every memory
link similarly. This hardware and software asymmetry de-
mands each node to be treated differently when determining
optimal core allocations.

2) Furthermore, prior work did not adequately consider
NUMA memory resources and factors. We observed that on
large-scale NUMA platforms, memory bandwidth is the pri-
mary scalability limitation that impacts optimal core alloca-

1Note that, in this paper, we assume one thread per core. Therefore,
we use core and thread inter-changeably.

419

tions. The maximum memory bandwidth usage of an appli-
cation is affected by many memory system factors, such as
inter-node connections and memory contention. Currently,
many of these factors cannot be accurately and quantitatively
evaluated, which further limits the ability to accurately de-
termine the optimal core allocations.

In this paper, we present a novel model, NuCore, which
predicts both optimal core allocations and memory band-
width usages with high accuracy and low overhead for memory-
intensive multi-threaded applications on large-scale NUMA
machines. NuCore predicts optimal core allocations by mod-
eling various NUMA memory factors and considering the
asymmetry. We first analyzed optimal core allocations of
different multi-threaded applications on real NUMA machines
to determine the memory system factors that impact optimal
core allocation. These factors include local DRAM accesses,
the maximum bandwidth of inter-node links, and the con-
tention among local and inter-node memory accesses. We
then developed methods to quantitatively evaluate the im-
pacts of these factors with constraint functions.

To handle the asymmetry and achieve fast prediction, we
employed Integer Programming (IP). We express the mem-
ory system factors for each link and node with its own con-
straint functions so that they can be considered differently.
We also developed a technique to express non-linear mem-
ory contention factors with linear functions. Additionally,
we express the prediction of optimal core allocations with
a linear objective function. Our model, NuCore, combines
the linear constraints and objective function, and predicts
optimal core allocations using an IP solver. Additionally,
because NuCore extensively models memory resources, it
can also predict the memory bandwidth usage of a multi-
threaded application when it is executing with an arbitrary
core allocation.

We evaluated our model on two NUMA platforms. Ex-
perimental results show that NuCore can correctly predict
the optimal core allocations of 22 out of 25 benchmarks
from various benchmark suites. For the other three bench-
marks, NuCore’s predictions differed by at most one core
per node from the experimentally determined optimal core
allocations. The predicted optimal core allocations perform
within 1.0% of real optimal allocations on average. The av-
erage speedup of predicted core allocations is 1.27x, with
only 75.6% of all cores allocated on average. Moreover,
the core allocations predicted by NuCore perform 1.18x and
1.21x faster than two state-of-the-art techniques on average.
The results also show that NuCore can be solved with a IP
solver in 0.02 seconds, indicating that NuCore can be ap-
plied at run-time. Our results also show that NuCore can
predict bandwidth usages with only 10% average error for
memory-intensive benchmarks.

The contributions of this paper include:

1. A detailed analysis of the optimal core allocations on
real large-scale NUMA machines. The analysis reveals
the memory factors that impact optimal core alloca-
tions and illustrates the necessity of considering the
asymmetry of NUMA systems.

2. An IP-based model that predicts both memory band-
width usage and optimal core allocation with high ac-

curacy and low overhead.

3. Comprehensive experimental evaluations using two large
real NUMA machines, 25 benchmarks, and Extreme
Value Theory to validate NuCore’s accuracy and bene-
fit.

This paper is organized as follows: Section 2 provides the
motivation for this research; section 3 discusses the asym-
metric property of NUMA platforms; section 4 analyzes var-
ious optimal core allocations; section 5 provides an overview
of NuCore model; section 6 describes NuCore in detail; sec-
tion 7 evaluates NuCore experimentally; section 8 discusses
limitations and future work; section 9 discusses related work;
and section 10 summarizes the work.

2. MOTIVATION

We first provide the motivation for this work with an ex-
ample.

Figure 1: Performance and memory bandwidth usage of
streamcluster on an AMD NUMA machine.

Figure 1 shows the performance of the PARSEC bench-
mark streamcluster using different core allocations on a NUMA
machine [3]. This machine has four AMD 12-core proces-
sors, and each processor has two memory nodes. As Fig-
ure 1 shows, streamcluster achieves its best performance us-
ing only six cores.

Using performance counters, we discovered that the in-
creased CPU time is primarily from increased memory la-
tency. Because the cache miss rate (misses per instruction)
of streamcluster remains constant, the increased memory la-
tency is caused by saturated memory bandwidth. Figure 1
also gives the bandwidth usages of each core allocation, which
also peaks using six cores.

Figure 2: Performance of streamcluster with two 6-core al-
locations. “6c_1n”: all six cores allocated from on node;
“6c_6n”: six cores each from a node.

However, not every six-core allocation is the optimal. Fig-
ure 2 gives the performance of streamcluster using two dif-
ferent six-core allocations. The first core allocation allocates

420

all six cores from one memory node, whereas the second
core allocation allocates a core from six memory nodes. As
Figure 2 shows, only the first allocation is the optimal. The
first allocation is 1.34 times faster than the second one. This
result indicates that the optimal core allocation is not only
about the number of cores, but also about the core allocation
of each individual memory node. In fact, without knowing
per-node core allocation, it is not possible to determine the
optimal number of cores currently.

This example illustrates the significant benefit of optimal
core allocations. It also shows that memory bandwidth is
a major scalability limitation, and that optimal core alloca-
tion is not simply the optimal number of cores. In the next
two sections, we further explore NUMA memory system and
analyze optimal core allocations to study how to accurately
predict them while considering the core allocation of each
node differently.

3. THE ASYMMETRIC NUMA ARCHITEC-

TURE

Figure 3: A NUMA machine with four 12-core AMD
Opteron 6174 processors. The numbers on the inter-node
links represents their maximum bandwidth (GB/s).

Contemporary large-scale NUMA platforms consist of sev-
eral multi-core processors. A multi-core processor is usually
composed of one or more groups of cores, which are called
nodes. Each node is connected to its own set of DRAMs.
The nodes are also connected using inter-node connections,
allowing inter-node communication [10, 11]. Figure 3 gives
the sketch of a NUMA machine with four AMD Opteron
6174 processors (a total of 48 cores) [12]. Each processor
has two six-core nodes.

The connections between nodes in Figure 3 are the inter-
node connections (HyperTransport links [11]). As Figure 3
shows, the inter-node connections on this NUMA platform
is not symmetric. More specifically, the asymmetry exists in
two aspects:

1) the inter-node connection topology is asymmetric in
that not all nodes are directly connected. Some nodes are
directly connected (e.g., node 1 and 2), whereas some are
connected through two physical links (e.g., node 0 and 7);

2), the maximum bandwidth of inter-node connections is
asymmetric in that different connections have different max-
imum bandwidth. Figure 3 also gives the maximum band-
width (GB/s) of each inter-node connection (measured using
the bandwidth measurement tool bw_mem from lmBench [13]),
which ranges from 8.5GB/s to 4.1GB/s.

The fundamental cause of this asymmetry is that each
node has a limited number of physical inter-node links. On

this AMD platform, each node has only four physical links [11].
Consequently, there are not enough physical links to en-
sure fully connected topology. Additionally, to accommo-
date more direct connections, a physical link may be parti-
tioned into two inter-node connections. Depending on the
partition, the bit-widths of inter-node connections vary from
32 bits to 16 bits, which causes the different bandwidths.

Figure 4: A NUMA machine with four 8-core Intel Xeon
X7550 processors. The numbers on the inter-node links rep-
resents their maximum bandwidth (GB/s).

Figure 4 gives another example of a NUMA machine with
four Intel Xeon X7550 processors, where each processor has
one eight-core node (32 cores in total). Figure 4 shows the
connection topology and maximum bandwidth of the inter-
node connections. On this Intel platform, the nodes are con-
nected with QuickPath Interconnect (QPI) [10]. Because this
Intel NUMA machine has only four nodes, there are enough
physical QPI links so that all nodes are directly connected,
and all links have the same maximum bandwidth. Note that,
because the asymmetry also exists in application memory
behavior, even NUMA machines with symmetric connec-
tions have to treat each node differently as shown later in
Section 4.3.1.

4. ANALYSIS OF OPTIMAL CORE ALLO-

CATIONS

We first analyzed the optimal core allocations to reveal the
NUMA memory resources and factors that impacts optimal
core allocations. Our experiments show that there are three
limitations in NUMA memory systems that impact scalabil-
ity and core allocations.

A core allocation is described using a vector
{a0,a1,a2, · · · ,ai, · · · ,an}, where ai represents the number
of cores allocated on node i.

Figure 5: Benchmark md.D-resid is limited by local mem-
ory bandwidth. Values “X/Y” give the optimal allocation
(X) and maximum core count (Y) for each node. A “cross”
indicates a saturated memory link.

4.1 Limitation 1: Local Memory BW

Local memory bandwidth usage refers to the bandwidth
consumed by processor cores (and their executing threads)

421

when they access their directly connected DRAM modules.
If the local memory bandwidth demand is high, the local
DRAM bandwidth can impact optimal core allocations.

For example, the core allocation for the NPB benchmark
mg.D on the 32-core Intel NUMA machine is limited by lo-
cal memory bandwidth when executing the function resid
[14]. The optimal core allocation for mg.D-resid and the
saturated memory connections are illustrated in Figure 5. As
the figure shows, the optimal core allocation for md.D-resid
is {7,7,7,7}, i.e., 7 cores for each node. This allocation
is 10% faster than using all 32 cores. Mg.D has only local
memory accesses when executing the function resid. How-
ever, the DRAMs cannot provide enough bandwidth. That
is, the DRAM bandwidth is only enough to support seven
cores on each node.

4.2 Limitation 2: Inter-node Memory BW

Inter-node memory bandwidth usage refers to the data us-
age for inter-node communications. Inter-node connections
have limited maximum memory bandwidth. Consequently,
if the inter-node communication has high bandwidth demand,
than the inter-node connections may limit scalability.

Figure 6: NPB benchmark mg.D-rprj3 is limited by inter-
node memory bandwidth. Values “X/Y” give the optimal
allocation (X) and maximum core count (Y) for each node.
A “cross” indicates a saturated memory connection.

For example, the NPB benchmark mg.D has intensive inter-
node communications when it is in the phase of executing
the function rprj3 [14]. During this phase, mg.D’s threads
communicate in a ring fashion as illustrated in Figure 6,
i.e., the threads on node0 send data to node1, the threads
on node1 send data to node2, and so on.

The optimal core allocation of mg.D-rprj3 is significantly
impacted by inter-node connections and their asymmetry (dif-
ferences in maximum bandwidth as shown in Figure 3). The
cores (and their threads) on node0, node2, node3, node4, and
node6 send data through high-bandwidth inter-node links.
Therefore, all cores on these nodes can be allocated. How-
ever, the connection between node1 and node2 has lower bit-
width and smaller bandwidth. Therefore, only five cores can
be allocated on node1. Node5 and node7 have to send data
using two-hop connections, which have even smaller max-
imum bandwidth. Consequently, only four cores on each
of node5 and node7 can be allocated. In summary, the opti-
mal core allocation for this case is {6,5,6,6,6,4,6,4} on the
AMD platform, which is 9% faster than using all 48 cores.

4.3 Limitation 3: Interference of Local and
Inter-node Memory Accesses

Local memory accesses and inter-node memory accesses

usually exist in a NUMA machine at the same time and in-
terfere with each other. This interference can also impact
optimal core allocations. Because this interference varies
with data locations, there are two cases to consider.

4.3.1 Case 1: Fully Shared Data

For some multi-threaded applications, all of their data are
shared by their threads. The data are usually held in the
DRAMs of a few nodes. Without loss of generality, consider
the case where all shared-data are in nodei. Because all data
are in nodei, nodei’s DRAM has two tasks: 1) sending data
to nodei’s cores; 2) sending data to other nodes. However, if
the data demand is high, the maximum output bandwidth of
nodei’s DRAM may not be large enough to satisfy the needs
of all cores, i.e., not all cores can be allocated. Because all
data are located on nodei, it is best to satisfy the data de-
mand of nodei’s cores first. After nodei’s cores’ demand is
met, we can use the remaining bandwidth to satisfy the needs
of some cores on the other nodes.

Figure 7: Benchmark streamcluster is limited by local and
inter-node access interference. Values “X/Y” give the op-
timal allocation (X) and maximum core count (Y) for each
node. A “cross” indicates a saturated memory connection.

For example, the PARSEC benchmark streamcluster has
this all-data-shared behavior [3]. Figure 7 gives the optimal
core allocation for streamcluster and the saturated memory
connections when it executes on the 32-core Intel NUMA
machine. As Figure 7 shows, the maximum output mem-
ory bandwidth of node0, which contains shared data, can-
not satisfy the needs of all cores. After meeting the demand
of all eight cores on node0, the remaining bandwidth can
only support the execution of 10 cores on the other nodes.
Therefore, the optimal core allocation for streamcluster is
{8,8,2,0}, which is 79% faster than the use-all-cores allo-
cation. This example also shows that even for NUMA ma-
chines with symmetric connections, each node still has to be
treated differently due to software asymmetry.

4.3.2 Case 2: Partially Shared Data

For some applications, the majority of their data are pri-
vate to their threads, while only a small portion of the data
is shared. That is, most data are distributed across the nodes,
whereas the shared data are usually located on a few nodes.
Without loss of generality, let the node with shared-data be
nodei. Similar to case 1, nodei has to send data to nodei’s
cores, as well as the cores on the other nodes. If the data
demand is high, the maximum output bandwidth of nodei’s
DRAM may not be large enough to satisfy the needs of all
cores. Unlike case 1, in this case, as most data are located
outside nodei, it is best to satisfy the needs of the cores on
the other nodes first. After the needs of the other nodes are

422

met, then the remaining bandwidth can be used to satisfy the
needs of some cores on nodei.

Figure 8: BLAS routine dgemm is limited by local and inter-
node access interference. Values “X/Y” give the optimal al-
location (X) and maximum core count (Y) for each node. A
“cross” indicates a saturated memory connection.

For example, the BLAS matrix multiplication routine dgemm
implemented by AMD Core Math Library (ACML) has this
partial data-sharing behavior [15]. Figure 8 gives the op-
timal core allocation for dgemm and the saturated memory
connections on the AMD NUMA machine. As Figure 8
shows, most of dgemm’s data are distributed, while shared
data are located on node0. Because of the high data demand,
node0’s memory cannot provide enough bandwidth for both
local and inter-node accesses. Because the majority of the
data are located on node1 to node7, it is best to ensure the
data needs of the cores on node1 to node7 are met. There-
fore, the optimal core allocation for dgemm only allocates
three cores on node0, leaving enough of node0’s memory
bandwidth to satisfy the needs of other nodes. That is, for
dgemm, the optimal core allocation is {3,6,6,6,6,6,6,6},
which is 12% faster than using all 48 cores.

4.4 Summary of Insights

The above examples illustrate that there are four factors
from NUMA memory system that may impact optimal core
allocations for memory-intensive applications. These factors
are: 2

1. Hardware configuration, application memory behav-
ior, and their asymmetry.

2. Local memory bandwidth and DRAM contention;

3. Maximum inter-node memory bandwidth;

4. Interference of local and inter-node accesses.

The first factor (asymmetry) dictates that each node to be
treated differently when predicting optimal core allocations.
It is also the fundamental reason why optimal core alloca-
tions are not optimal numbers of cores. The last three factors
are memory system factors that directly limit maximum BW
usage.

2We believe this list of factors is exhaustive as it covers all memory
resources below shared-cache. They also include all factors identi-
fied by previous research on NUMA memory system [16, 17, 18].

5. OVERVIEW OF THE NuCore MODEL

Because the four memory factors in Section 4.4 determine
memory bandwidth usages and optimal core allocations, we
predict the bandwidth usage and optimal allocation by mod-
eling these factors. This section gives an overview for our
prediction model, NuCore.

5.1 Handling the Four Memory Factors

5.1.1 Handling the Asymmetry

The asymmetry requires treating each node differently,
which greatly increases the solution space of optimal core
allocations. For instance, the 48-core/8-node AMD NUMA
machine has about 78 = 5,764,801 possible core allocations.
This huge solution space makes it very challenging to gen-
erate predictions within reasonable amount of time.

In this paper, we argue that Integer Programming (IP) can
be used to address this challenge. First, IP naturally consid-
ers each node and memory link differently as long as they are
represented with individual variables. Second, with recent
advancement, IP solvers can determine the optimal solutions
for most problems in polynomial time [19, 20]. Because of
these properties, we built the NuCore model based on IP.

5.1.2 Handling Other Factors

IP requires that all factors and limitations be expressed
with linear constraint functions. To satisfy these require-
ments, we developed techniques to quantitatively describe
the local and inter-node memory factors with linear func-
tions. For the non-linear local DRAM contention, we em-
ployed a technique to express this contention with linear
functions. Section 6 gives the details of these techniques.

5.2 Applying NuCore

Figure 9: Overview of the NuCore model.

Figure 9 provides an overview of NuCore. The input pa-
rameters to NuCore are:

1. The configuration of the NUMA machine, denoted by
M, such as the node connection topology, and the max-
imum bandwidth of the inter-node links.

2. Profiling data, denoted by P, describes the memory be-
havior of the application. To collect profiling data,
at the beginning of each program phase, we execute
the application briefly with a core allocation of one
core per node, while hardware performance monitor-
ing units (PMU) are used to collect its local and inter-
node bandwidth usages. This profiling can be performed
online during application execution. For this work,

423

we used a phase detection technique similar to prior
work [4].

3. The predictions of per-node local DRAM bandwidth
demands of the application when it runs with different
number of cores on each node, denoted by LD. A lo-
cal bandwidth model, DraMon, is used to obtain this
prediction [21].

The actual values of M, P, and LD (i.e., m, p, and �ld) are
passed to NuCore to predict the optimal core allocation with
an IP solver for a specific application and machine. Note
that, in this paper, we only focus on the prediction of the
optimal core allocations. The run-time adaptation to the op-
timal core allocations has been addressed by previous work,
and is beyond the scope of this paper [7, 9, 22, 23].

6. NuCore DETAILS

This section discusses the NuCore model in detail. We
explain how NuCore expresses each memory system factor
as linear constraints, and how it expresses the prediction of
optimal core allocations as a linear objective function.

6.1 Constraint1: HW Config. – Max. Core Count
per Node

The number of cores allocated on a node cannot exceed
that node’s maximum core count. Let ai be the number of
cores allocated on nodei. Let ni be the maximum core count
of nodei. The core allocation ai must be smaller than ni, i.e.,

0 ≤ ai ≤ ni. (1)

6.2 Constraint2: App. Mem. Behavior – Max.
Data Rate

The bandwidth usage of an application is limited by the
maximum rates that it can issue memory requests. The inter-
node bandwidth usage from node j to nodei, I ji, includes the
usages of the responses to the read requests from nodei, and
the write requests from node j. Let Ir, ji,solo be the bandwidth
usage of an application running on nodei and read-accessing
node j when it uses one (solo) core on nodei. The Ir, ji,solo is
acquired from profiling. Intuitively, if an application with
one core is using Ir, ji,solo bandwidth, its bandwidth usage
(Ir, ji) with ai cores is no larger than ai times Ir, ji,solo:

Ir, ji ≤ ai × Ir, ji,solo. (2)

Similarly, if the threads on node j are also writing to nodei,
then the write-bandwidth usage Iw, ji is limited by

Iw, ji ≤ a j × Iw, ji,solo. (3)

The total inter-node bandwidth usage from node j to nodei

is the sum of the read and write bandwidth:

I ji = Ir, ji + Iw, ji. (4)

Additionally, let LD,i be the local bandwidth demand of
ai cores on nodei. LD,i is acquired using the DRAM model
DraMon [21]. The actual local bandwidth usage of nodei,
denoted by Li, is limited by its local bandwidth demand:

Li ≤ LD,i, (5)

6.3 Constraint3: Local DRAM BW and Contention

The local bandwidth demand LD,i of nodei is a function
of the numbers of cores allocated on nodei (i.e., ai). Un-
fortunately, this function is not linear due to DRAM row
buffer contention [21]. Consequently, we describe the lo-
cal bandwidth demand LD,i with a discrete function given
in Equation (6), where bc,i represents the value of the local
bandwidth demand when c cores are used on nodei (c is an
auxiliary variable).

LD,i = f (ai) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b0,i, if ai = 0

b1,i, if ai = 1

. . .

bc,i, if ai = c

. . .

bni,i, if ai = ni

(6)

Discrete functions cannot be used as IP constraints. We
employed a technique which converts discrete functions to
linear functions. First, we convert Equation (6) into a linear
function by introducing auxiliary variables yc,i.

LD,i = y0,i ·b0,i + y1,i · (b1,i −b0,i)+ · · ·+ yni,i · (bni,i −bni−1,i),

yc,i is an integer, 0 ≤ yc,i ≤ 1; 0 ≤ c ≤ ni

yc,i = 1 if ai ≥ c; else yc,i = 0

(7)

When ai = c, Equation (7) is LD,i = b0,i+b1,i−b0,i+ · · ·+
bc,i−bc−1,i = bc,i, equivalent to Equation (6). Next, we use a
common method to convert the i f − else condition in Equa-
tion (7) to linear constraints with Equation (8), where B and
ε are arbitrary constants, 0 < ε < 1, B � ni [24].

B · yc,i ≥ ai − c+ ε,

c · yc,i ≤ ai.
(8)

In short, with Equations (7) and (8), we can convert the
discrete local bandwidth demands of Equation (6) into linear
constraints.

6.4 Constraint4: Max. Inter-node Connection
BW

Unidirectional Max The bandwidth usage from node j to
nodei, I ji, is also limited by the frequency and the number of
bits of the inter-node link that connects node j to nodei. Let
UniMax ji denote this physical limit. This constraint is

I ji ≤UniMax ji, (9)

where UniMax ji is an input parameter as machine configu-
ration. Although, its value can be determined theoretically
based on the frequency and bit-width of the link, the real
maximum bandwidth is usually smaller than the theoreti-
cal value for two reasons. First, there are overheads from
the packet header and CRC code for each data packet [10,
11]. Second, the link is also used to send snooping mes-
sages. Therefore, we used the bandwidth measurement tool
bw_mem from lmBench benchmark suite to determine the
value of UniMax ji experimentally [13, 25].

Bidirectional Max In a NUMA machine, nodei and node j

can access each other simultaneously over the same inter-
node link (to send requests and responses). These accesses
contend for the shared link. That is, the sum of the band-
width usages of I ji and Ii j is limited by this contention. Let

424

BiMaxi j denote the maximum bi-directional bandwidth of
the physical link between nodei and node j. This constraint
is then

I ji + Ii j ≤ BiMaxi j. (10)

BiMaxi j is is also determined experimentally using the lm-
Bench.

6.5 Constraint5: Local/Inter-node Access Con-
tention

For memory-intensive applications, because both the re-
mote requests and local requests to a node access that node’s
local DRAM, their bandwidth is limited by the maximum
available bandwidth of that node’s DRAM. Our experimen-
tal results reveal that the maximum of the sum of the outgo-
ing inter-node bandwidth of a node has a linear relationship
with its local bandwidth demand. Figure 10 depicts this lin-
ear relationship for a node on the 32-core Intel NUMA ma-
chine. The y-intercept and the slope of the linear equation,
αi and βi, are 20.26 and 0.24 for this machine (determined
with bw_mem). The correlation coefficient is 0.96 indicating
a strong linear relationship.

 14
 15
 16
 17
 18
 19
 20

 0 5 10 15 20 25

T
ot

al
 O

ut
-g

oi
ng

 In

te
r-

no
de

 B
W

 (
G

B
/s

)

Local BW Demand (GB/s)

Linear fit

Figure 10: Linear relationship of the total outgoing band-
width and the local bandwidth demand of the 32-core Intel
NUMA platform.

Let N denote the number of nodes. Recall that LD,i de-
note the local bandwidth demand on nodei predicted with
the DraMon model [21]. Based on this linear relationship,
the constraint of the local and remote access contention can
be expressed as

N

∑
j=1

Ii j +βi ×LD,i ≤ αi, (11)

where the values of αi and βi are determined using linear
regression with bw_mem.

We deduce that this linear relationship is a reflection of
the processor’s attempt to ensure every requesting source,
including the inter-node links and the local cores, gets a fair
share of its memory bandwidth. Intuitively, αi represents
the maximum bandwidth of nodei’s memory, and βi repre-
sents the lowest share of nodei’s bandwidth reserved for lo-
cal cores. This insight leads to another constraint that binds
the local bandwidth usage on any nodei, shown in Equa-
tion (12). Intuitively, the sum of the total out-going band-
width and the local bandwidth of nodei, cannot exceed its
maximum bandwidth αi.

N

∑
j=1

Ii j +Li ≤ αi. (12)

6.6 Handling Multi-hop Links

As shown in Section 3, two nodes may be connected us-
ing multiple physical inter-node links. Without loss of gen-
erality, assume two nodes nodel and nodek are connected
using a virtual link through d nodes l, l + 1, ..., l + d,k. The
bandwidth usage Ilk is also subject to the physical limit and
bi-directional contention as described in Equation (9) and
(10). UniMaxlk and BiMaxlk are also determined experi-
mentally using bw_mem. Additionally, because the virtual
link sends data through its physical links, its bandwidth us-
age Ilk should also be added to its physical links:

I ji = I ji,r + I ji,w +∑
l,k

Ilk,∀ nodel and nodek

connected through link j → i.

(13)

6.7 Optimization Objective Function

By definition, the optimal core allocations for memory-
intensive applications are the minimum core allocations with
the best performance and highest bandwidth usage. There-
fore, predicting the optimal core allocation requires satisfy-
ing two goals: maximizing the total bandwidth usage and
minimizing core allocation. The objective function for max-
imizing the sum of local and inter-node bandwidth is

maximize: ∑
i

Li +∑
i, j

Ii j. (14)

The second goal of minimizing core allocation is

minimize: ∑
i

ai. (15)

Because minimizing a function is similar to maximizing
the negative of it, we combine Equation (14) and (15) into
one objective function. To emphasize that our priority is
maximizing bandwidth, we multiply the bandwidth goal by
a constant C.

maximize: C · (∑
i

Li +∑
i, j

Ii j)−∑
i

ai. (16)

6.8 NuCore Summary

Equation (17) summarizes the linear constraints and ob-
jective function of NuCore.

maximize: C · (∑
i

Li +∑
i, j

Ii j)−∑
i

ai

subject to: ∀i, j:

constraint1: 0 ≤ ai ≤ ni,

constraint2: Ir, ji ≤ ai × Ir, ji,solo, Iw, ji ≤ n j × Iw, ji,single,

I ji = Ii j,r + Ii j,w +∑
l,k

Ilk,∀ nodel and nodek

connected through link j → i.,

constraint3: LD,i =
ni

∑
c=0

yc,i · (bc,i −bc−1,i),

∀c,0 ≤ c ≤ ni:

B · yc,i ≥ ai − c+ ε,

c · yc,i ≤ ai, yc,i is integer,0 ≤ yc,i ≤ 1

constraint4: I ji ≤UniMax ji, I ji + Ii j ≤ BiMaxi j,

constraint5:
M

∑
j=1

Ii j +βi ×LD,i ≤ αi,
M

∑
j=1

Ii j +Li ≤ αi,

(17)

425

6.9 Predicting Bandwidth Usage

The solution provided by an IP solver includes predictions
for memory bandwidth usages as well. Therefore, if we
specify a core allocation in NuCore (i.e., specify the value
of ai), NuCore can also predict the memory bandwidth us-
age for a multi-threaded application under that specific core
allocation.

7. EXPERIMENTAL EVALUATION

This section gives the experimental evaluation of the ac-
curacy and performance benefits of our model.

7.1 Experimental Setup

Platforms We evaluated our model on the two NUMA
platforms discussed in Section 3. The 48-core AMD plat-
form has four Opteron 6174 processors with Linux 2.6.23
(Figure 3). Each processor has two six-core nodes sharing
6MB L3 cache and 12GB memory. Each core has a 128KB
L1 Cache and 256KB L2 cache. The 32-core Intel platform
has four Xeon X7550 processors with Linux 3.8.0. (Fig-
ure 4). Each processor has one eight-core node with 18MB
L3 cache and 64GB memory. Each core also has 64KB L1
cache and 256KB L2 cache.

Benchmarks We used PARSEC 2.1 benchmarks and NPB-
OMP 3.3.1 benchmarks in our evaluation [3, 14]. We also
used the BLAS matrix multiplication routine dgemm from
Intel Math Kernel Library (MKL) 11.1 and AMD Core Math
Library (ACML) 5.3.1, because its wide application and high
bandwidth usage [15, 26, 27]. The evaluation included 25
benchmarks, among which 7 are memory-intensive (listed
in Table 1a). Three PARSEC bodytrack, dedup, and x264
are I/O bound. The remaining 15 benchmarks are CPU-
intensive. For PARSEC, the “native” input sets are used, and
we predicted optimal core allocations for its parallel regions
(ROI). For NPB, the largest executable input sets, “C” or
“D”, are used. For dgemm, two 1.6K × 1.6K matrices with
random values are multiplied to fully exercise the memory
system [28].

Core Allocation Performance Metric We compared the
performance of NuCore predicted core allocation with the
use-all-cores allocation and report the speedup of NuCore’s
predictions. Additionally, we compare NuCore’s predictions
with two state-of-the-art predictive techniques [4, 9]. The
speedup is defined as

SpeedU p =
ExecTimeuse−all−cores

ExecTimepredicted

. (18)

Bandwidth Prediction Accuracy Metric For each bench-
mark, we predicted its bandwidth usages using NuCore for
ten randomly selected core allocations (we will show later
that this sample selection is statistically sound). We com-
pare the predicted values and the actual values obtained from
PMUs, and report the mean absolute percentage error (MAPE)
for each benchmark, which is defined as [29],

MAPE =
1

10

10

∑
alloc=1

∣∣∣∣
BWalloc,actual −BWalloc,predicted

BWalloc,actual

∣∣∣∣ . (19)

7.2 Determining the Real Optimal Allocation

To determine the accuracy of NuCore, we compare Nu-
Core’s core allocations predictions with real optimal core al-

locations. We use two methods to determine the read opti-
mal.

Experimental Approach We determined the real opti-
mal core allocation experimentally by evaluating the perfor-
mance of adjacent core allocations of NuCore’s predicted
optimal allocation. Two core allocations A and A′ are con-
sidered adjacent if they differ by only one core:

A = {a0,a1, . . . ,ai, . . . ,aN} and A′ = {a′0,a
′
1, . . . ,a

′
i, . . . ,a

′
N}

are adjacent ⇐⇒{∃!i, |ai −a′i|= 1}
∧
{∀ j, j �= i,a j = a′j}

(20)

A core allocation is considered optimal if it performs bet-
ter than all of its adjacent core allocations. We started with
a “seed” allocation (NuCore predicted core allocation), and
compared it with its adjacent allocations. If the “seed” allo-
cation performs better than its adjacent allocations, then the
“seed” is optimal. Otherwise, we selected the best perform-
ing adjacent core allocation as the new “seed,” and repeat
this procedure until we find the optimal one. Note that the
optimal allocation determined by this method may be only
local optimal. We call the optimal allocation determined by
this approach as experimental optimal or exp optimal.

Extreme Value Theory (EVT) Finding the global opti-
mal from millions of core allocations experimentally is im-
practical. Instead, we determine the speedup upper bound
of all core allocations. If this upper bound has a tight confi-
dence interval with high confidence, it can be viewed as the
real optimal performance. We determined this upper bound
with EVT [30, 31, 32]. We sampled the performance of
more than 2000 randomly selected core allocations to en-
sure a 3% confident interval [30]. Based on the distribution
of the samples, the maximum value of the sample space, i.e.,
the speedup upper bound, can be estimated with EVT. For
the rest of the paper, we call this upper bound the real opti-
mal. Note that EVT only gives the speedup upper-bound, it
does not give which core allocation has the speedup of this
upper-bound.

7.3 Optimal Core Allocation Prediction

Accuracy of NuCore Table 1 gives the optimal core al-
locations determined by NuCore and the experimental ap-
proach for memory-intensive benchmarks. NPB benchmarks
have several phases and the predictions are made for each
phase. The function name of each phase is supplied for NPB
benchmarks in Table 1. Table 1 also gives the major scala-
bility limitation for each benchmark. These constraints cor-
respond to the three limitations in Section 4, which are local
BW limited, inter-node BW limited, and local/inter-node in-
terference limited due to all or partial data sharing.

Table 1 shows that NuCore’s predictions are very close
to the experimental optimal. Only one PARSEC benchmark
and four phases of two NPB benchmarks, streamcluster, mg.D-
psinv, mg.D-rprj3, mg.D-interp and sp.C-rhs are mispredicted.
However, these mispredicted core allocations differ with the
experimental optimal by only one core per node.

For the rest CPU- or IO-bound (not bandwidth limited)
benchmarks, they all perform best using all cores, which are
also accurately predicted by NuCore. These results indicate
that NuCore can predict the optimal core allocations for var-
ious types of applications with high accuracy.

426

Benchmark NuCore (%) Exp. Optimal (%) Varuna (%) CRUST (%) Scale Limit

streamcluster {6,0,0,0,0,0,0,0} (12.5%) {6,0,0,0,0,0,0,0} (12.5%) {2,2,1,1,1,1,1,1} (20.8%) {1,1,1,1,1,1,1,1} (16.7%) All-shared

canneal {6,6,6,3,0,0,0,0} (43.8%) {6,6,6,3,0,0,0,0} (43.8%) {6,6,6,6,6,6,6,6} (100%) {5,5,5,5,5,5,5,5} (83.3%) All-shared

facesim {6,6,4,0,0,0,0,0} (33.3%) {6,6,4,0,0,0,0,0} (33.3%) {2,2,2,2,2,2,2,2} (33.3%) {4,4,4,4,4,4,4,4} (66.7%) All-shared

mg.D-resid {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) {3,3,3,3,3,3,3,2} (47.9%) {6,6,6,6,6,6,6,6} (100%) None

mg.D-psinv {5,5,5,5,5,5,5,5} (83.3%) {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) None

mg.D-rprj3 {6,5,6,6,6,4,6,4} (89.6%) {6,5,6,6,6,4,6,5} (91.7%) {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) Inter BW

mg.D-interp {6,5,6,6,6,4,6,4} (89.6%) {6,5,6,6,6,4,6,5} (91.7%) {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) Inter BW

sp.C-x/y/zsovle {1,1,1,1,1,1,1,1} (16.7%) {1,1,1,1,1,1,1,1} (16.7%) {2,2,2,1,1,1,1,1} (22.9%) {1,1,1,1,1,1,1,1} (16.7%) Partial Shared

sp.C-rhs {6,5,6,4,5,4,5,4} (81.3%) {6,5,6,5,5,4,4,4} (81.3%) {4,4,4,3,3,3,3,3} (56.3%) {2,2,2,2,2,2,2,2} (33.3%) Local BW

dgemm (MKL) {2,6,6,6,6,6,6,6} (91.7%) {2,6,6,6,6,6,6,6} (91.7%) {6,6,6,6,6,6,6,6} (100%) {2,2,2,2,2,2,2,2} (33.3%) Partial-shared

dgemm (ACML) {3,6,6,6,6,6,6,6} (93.8%) {3,6,6,6,6,6,6,6} (93.8%) {6,6,6,6,6,6,6,6} (100%) {6,6,6,6,6,6,6,6} (100%) Partial-shared

(a) Optimal Core Allocations on the AMD Platform

Benchmark NuCore (%) Exp. Search. (%) Varuna (%) CRUST (%) Constraint

streamcluster {8,8,3,0} (59.4%) {8,8,2,0} (56.3%) {8,8,8,8} (100%) {7,7,7,7} (87.5%) All-shared

canneal {8,8,8,4} (87.5%) {8,8,8,4} (87.5%) {8,8,8,8} (100%) {7,7,7,7} (87.5%) All-shared

facesim {8,8,0,0} (50.0%) {8,8,0,0} (50.0%) {3,3,3,3} (37.5%) {4,4,4,4} (50.0%) All-shared

mg.D-resid {7,7,7,7} (87.5%) {7,7,7,7} (87.5%) {8,8,8,8} (100%) {8,8,8,8} (100%) Local BW

mg.D-psinv {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) None

mg.D-rprj3 {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) None

mg.D-interp {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) None

sp.C-x/y/zsovle {3,3,3,3} (37.5%) {3,3,3,3} (37.5%) {5,5,4,4} (56.3%) {2,2,2,2} (25.0%) Partial-shared

sp.C-rhs {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {4,4,4,4} (50.0%) None

dgemm (MKL) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) None

dgemm (ACML) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) {8,8,8,8} (100%) None

(b) Optimal Core Allocations on the Intel Platform

Table 1: Optimal core allocations determined by NuCore, experimental search, and two state-of-the-art predictive methods on
the AMD and Intel platforms.

Performance of NuCore Predictions Figure 11 gives the
performance of the optimal core allocations determined by
NuCore. Figure 11 shows that NuCore’s predictions can
significantly improve performance over using-all-cores. Nu-
Core’s predictions have a maximum speedup of 3.34x when
executing streamcluster. This speedup is achieved with only
12.5% cores allocated (Table 1). The average speedup for
memory-intensive benchmarks on the two platforms is 1.27x.

Figure 11 also gives the performance of the optimal core
allocations determined experimentally, and the real optimal
performance (speedup upper bound) determined by EVT.
The average performance difference between NuCore pre-
dictions and experimental optimal allocations is only 0.5%.
The average performance difference between real optimal
and NuCore predictions is only 1.0%. These small differ-
ences further demonstrate that NuCore can predict the opti-
mal core allocation with high accuracy.

Comparing to State-of-the-Art Techniques Table 1 also
gives the optimal core allocations determined by two state-
of-the-art techniques, Varuna and CRUST [4, 9]. As Table 1
shows, the accuracy of both Varuna and CRUST is lower
than NuCore. The performance of these core allocations are
given in Figure 11. Figure 11 shows that NuCore’s predicted
allocations perform 1.18x times better than those predicted
by Varuna, and 1.21x times better than those predicted by
CRUST on average.

We observe that there are two factors that impact the ac-
curacy of Varuna and CRUST. First, both models do not con-
sider NUMA asymmetry. Therefore, they cannot accurately
predict the optimal core allocations when an optimal alloca-
tion allocates different number of cores on different nodes.

Second, both models do not consider memory resources ad-
equately. CRUST only considers shared cache and cache
miss rates. Varuna is resource-agnostic. Because neither of
the models consider DRAM links and inter-node memory
links, they cannot accurately determine when (i.e., the core
allocation) a memory link is saturated.

7.4 Bandwidth Usage Prediction

Benchmark
MAPE

Intel Platform AMD Platform
Local Inter Total Local Inter Total

streamcluster 8.8% 5.8% 4.0% 16.1% 6.4% 8.0%

canneal 10.2% 2.4% 3.3% 12.9% 6.9% 6.4%

facesim 8.3% 6.8% 9.7% 3.3% 4.8% 2.1%

mg.D-resid 8.2% 0.0% 8.2% 7.8% 0.0% 7.8%

mg.D-psinv 6.9% 0.0% 6.9% 7.6% 0.0% 7.6%

mg.D-rprj3 1.9% 4.3% 2.0% 10.9% 4.9% 8.2%

mg.D-interp 10.5% 6.7% 7.5% 9.8% 6.9% 8.4%

sp.C-x/y/zsovle 10.1% 8.3% 5.1% 10.4% 5.4% 8.7%

sp.C-rhs 7.1% 4.8% 6.7% 6.5% 3.9% 5.3%

dgemm (MKL) 9.1% 2.1% 3.2% 5.2% 2.8% 4.3%

dgemm (ACML) 6.0% 6.5% 4.8% 5.7% 8.7% 5.6%

Average 7.9% 4.3% 5.6% 8.7% 4.7% 6.7%

Table 2: Average MAPE of bandwidth usage prediction for
memory-intensive benchmarks.

Table 2 gives the average bandwidth prediction errors for
the seven memory-intensive benchmarks (and their phases).
Note that there are several cases where the benchmarks have

427

(a) Speedups on AMD Platform

(b) Speedups on Intel Platform

Figure 11: Performance of the optimal core allocations determined by NuCore, experimental approach, and two state-of-the-art
predictive methods, over use all cores allocation on the AMD and Intel platforms.

no inter-node bandwidth usage, where NuCore has 0% inter-
node bandwidth prediction error. Table 2 shows that Nu-
Core is highly accurate for memory bandwidth prediction
for memory-intensive benchmarks.

The highest error is 30.0% when predicting the local band-
width usage of streamcluster with core allocation
{2,2,2,2,2,2,1,1}. This high error is partially caused by
the fluctuation of the PMU readings, which in turn is caused
by streamcluster’s short memory bursts. These bursts are too
short to be stably caught by the PMUs [33].

Because it is impossible to evaluate NuCore for every core
allocation, we predicted ten randomly-picked allocations for
each benchmark. With Student’s test, we find that this exper-
iment design is statistically sound: these results show that,
for memory-intensive applications, NuCore’s average error
is lower than 10% for bandwidth predictions with 99% con-
fidence.

7.5 Prediction Time of NuCore

We used a state-of-the-art IP solver, SCIP, to solve Nu-
Core instances [34]. The maximum time to solve a NuCore
instance on both platforms is 0.02 seconds. The profiling
phase requires running a program with one thread/core per
node for 0.05 seconds to sample PMU readings. Therefore,
the total prediction time is 0.07 seconds. This low overhead
makes NuCore suitable for run-time optimization.

8. DISCUSSION

Impact of Program Parallelism, Cache Contention and
Synchronization on Core Allocation Prediction We ob-
server that the major scalability limitation on our systems
is memory bandwidth. Because we used large input sets de-
signed for evaluating large systems, our benchmarks have
abundant parallelism. We did observe that synchronization
and cache contention affect scalability. However, because of

fast inter-node links and large input sets (i.e., working sets
do not fit in cache), synchronization and cache contention
has less impact on core allocation decisions than memory
bandwidth on our systems. For systems with smaller caches,
slower inter-node links or smaller workloads, the impact of
limited-parallelism, synchronization and cache contention may
be significant. As these factors have been studied before, we
plan to combine existing models for these factors with Nu-
Core in the future [4, 5, 6, 7, 8, 35].

Cache Impact on Bandwidth Prediction Most memory-
intensive benchmarks already have high cache miss rates,
and their memory behaviors are not significantly affected by
cache contention [36, 37]. Therefore, NuCore can predict
their bandwidth usage with high accuracy without a cache
model.

Most of the CPU-intensive (not bandwidth limited) bench-
marks have very low cache miss rates, and are also not sig-
nificantly affected by the cache contention [36, 37]. Conse-
quently, NuCore can also predict the bandwidth usages for
most CPU-intensive benchmarks with high accuracy. How-
ever, some applications, such as the benchmarks of freqmine
and ep.D, are more sensitive to the contention and data shar-
ing in the cache than other benchmarks. Including a cache
model can improve the accuracy of the bandwidth usage pre-
diction for them [4, 38, 39, 40].

Prefetcher Impact The prefetchers of the AMD platform
were enabled in our experiments. AMD prefetchers are less-
aggressive and can reduce prefetching requests in case of
contention [12]. Therefore, these prefetchers do not affect
our model’s accuracy. The prefetchers on the Intel platform
were disabled in our experiments. However, preliminary re-
sults with synthetic benchmarks show that Intel prefetchers
do not significantly reduce NuCore’s accuracy. Nonetheless,
it must be noted that an aggressive prefetcher may change
application memory behavior and may require its own model.

428

9. RELATED WORK

There are several studies investigated the core allocation
problem. Li et al. proposed a dynamic core allocation algo-
rithm to reduce power consumption [41]. Suleman et al. ad-
dressed the scalability limitations of memory bandwidth and
critical sections with core allocation [6]. Lee et al. proposed
a run-time system to dynamically change thread count [7].
Chadha et al. proposed a run-time system to determine the
optimal thread count, processor voltage and frequency [8].
Kayiran et al. investigated the thread management on GPG-
PUS [5]. CRUST is a novel system designed to improve core
allocations on many-core chips [4]. CRUST focused on the
data sharing in cache, as well as cache-bandwidth interac-
tion. Pusukuri et al. studied the optimal thread count prob-
lem using OS observations [35]. Sirdharan et al. proposed a
model called Varuna based on Amdahl’s law to predict op-
timal thread count [9]. Varuna is designed to be resource-
agnostic and generic so that it can be applied to architectures
with unknown properties. Similarly, Sasaki et al. investi-
gated node allocations on NUMA machines using Amdahl’s
law [42]. These studies focused on the prediction of optimal
core/thread count, not the optimal core allocation. More-
over, they did not consider DRAM contention, inter-node
connections, as well as hardware and software asymmetry.
However, as we showed in this paper, without considering
these factors, it is impossible to accurately predict optimal
core allocations.

Kim et al. and Wang et al. modeled local memory band-
width for multi-core processors [21, 43]. Eklov et al. charac-
terized the performance impact of memory contention [44].
Wang et al. modeled the performance impact of bandwidth
partitioning [45]. These techniques do not consider remote
memory accesses, and thus they cannot be directly used to
predict the memory bandwidth usages on NUMA machines.

Blagodurov et al. and Majo et al. analyzed the bandwidth
constraints on NUMA machines [17, 46]. These studies
provided valuable insights on NUMA bandwidth constraints
that helped us develop our models.

Integer Programming has long been used to solve schedul-
ing problems on computer system[47, 48]. Nowatzki et al.
proposed a generic IP framework for scheduling programs
on spatial architectures [49]. However, they pointed out that
existing IP-based solutions are limited to problems with “di-
rectly expressible” and linear-only constraints. However, the
core of the memory bandwidth problem, i.e., the memory
contention, is neither linear nor directly expressible. Our in-
sights regarding NUMA characteristics in Section 6 and our
technique of converting non-linear constraints to linear make
it possible to apply IP to memory-related problems.

Some studies investigated memory page migration to co-
locate the data and computation on the same memory node [50,
51]. In particular, Lepers et al. improved memory page
migration algorithms to consider memory asymmetry [18].
There is also research that investigated data placement on
NUMA machines [28, 52, 53, 54]. These techniques aim
to reduce memory latency rather than reducing bandwidth
usage. In fact, the reduced memory latency improves per-
formance and potentially increases bandwidth usage. There-
fore, NuCore is complementary to these techniques. Novel
hardware is also proposed to improve memory system [55,

56, 57, 58, 59, 60]. Because these techniques do not elim-
inate the bandwidth over-saturation problem, NuCore can
be used with them to address bandwidth issues comprehen-
sively.

10. SUMMARY

NUMA machines offer large numbers of cores to boost
performance. However, because of memory bandwidth lim-
itation, allocating all cores to a multi-threaded program may
significantly degrade performance. This paper presented a
detailed analysis of optimal (best performing) core alloca-
tions on real NUMA machines. This analysis revealed that
accurately predicting optimal core allocations must consider
NUMA memory resources, memory contention and HW/SW
asymmetry. This analysis also showed that optimal core al-
locations are not simply optimal numbers of cores. Based
on this analysis, we designed a novel model, NuCore, to
predict optimal core allocations for multi-threaded applica-
tions. NuCore achieves high accuracy by extensively mod-
eling various NUMA memory resources and factors. Nu-
Core also employed novel techniques to convert the pre-
diction problem into an Integer Programming problem, al-
lowing low overhead predictions. When evaluated on a real
NUMA machine, the optimal core allocations predicted by
NuCore provides 1.27x speedup over use-all-cores alloca-
tions on average, and 1.18x and 1.21x speedup over two
state-of-the-art prediction techniques. Additionally, NuCore
can also predict memory bandwidth usages of memory-intensive
applications with only 10% errors on average.

Acknowledgments This work was supported by the Na-
tional Science Foundation under grants CCF-0811689 and
CNS-0964627, and by the Air Force Research Laboratories
(AFRL) Contract No. FA8750-15-C-0118. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied of
NSF, AFRL, the DoD, or the U.S. Government. We appre-
ciate the insightful comments and constructive suggestions
from the anonymous reviewers. We would also like to thank
Tanima Dey for her valuable input.

References

[1] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and N. Zel-
dovich, “An Analysis of Linux Scalability to Many
Cores,” in USENIX Conference on Operating Systems
Design and Implementation, 2010.

[2] X. Liu and J. Mellor-Crummey, “A Tool to Analyze
the Performance of Multithreaded Programs on NUMA
Architectures,” in Int’l Symp. on Principles and Prac-
tice of Parallel Programming, 2014.

[3] C. Bienia, Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, 2011.

[4] W. Heirman, T. Carlson, K. Van Craeynest, I. Hur,
A. Jaleel, and L. Eeckhout, “Undersubscribed Thread-
ing on Clustered Cache Architectures,” in Int’l Symp.
on High Performance Computer Architecture, 2014.

429

[5] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das,
“Neither More nor Less: Optimizing Thread-level Par-
allelism for GPGPUs,” in Proc. of Int’l Conf. on Paral-
lel Architectures and Compilation Techniques, 2013.

[6] M. A. Suleman, M. K. Qureshi, and Y. N. Patt,
“Feedback-driven Threading: Power-efficient and
High-performance Execution of Multi-threaded Work-
loads on CMPs,” in Proc. of Architectural Support for
Programming Languages and Operating Sys., 2008.

[7] J. Lee, H. Wu, M. Ravichandran, and N. Clark, “Thread
Tailor: Dynamically Weaving Threads Together for Ef-
ficient, Adaptive Parallel Applications,” in Int’l Symp.
on Computer Architecture, 2010.

[8] G. Chadha, S. Mahlke, and S. Narayanasamy, “When
Less Is MOre (LIMO): Controlled Parallelism for Im-
proved Efficiency,” in Int’l Conf. on Compilers, Archi-
tectures and Synthesis for Embedded Systems, 2012.

[9] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, Effi-
cient, Parallel Execution of Parallel Programs,” in Int’l
Conf. on Programming Language Design and Imple-
mentation, 2014.

[10] Intel, “An Introduction to the Intel QuickPath Intercon-
nect,” 2009.

[11] T. H. Consortium, “HyperTransport I/O Technology
Overview,” 2004.

[12] AMD, “BIOS and Kernel Developer’s Guide (BKDG)
For AMD Family 10h Processors,” 2013.

[13] L. W. McVoy and C. Staelin, “lmbench: Portable Tools
for Performance Analysis,” in USENIX Annual Techni-
cal Conference, 1996.

[14] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Im-
plementation of NAS Parallel Benchmarks and its Per-
formance,” tech. rep., NASA Ames Research Center,
1999.

[15] AMD, “AMD Core Math Library (ACML),” 2013.

[16] Z. Majo, Modeling Memory System Performance of
NUMA Multicore-Multiprocessors. PhD thesis, ETH
Zurich, 2014.

[17] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fe-
dorova, “A Case for NUMA-aware Contention Man-
agement on Multicore Systems,” in USENIX Annual
Technical Conference, 2011.

[18] B. Lepers, V. Quema, and A. Fedorova, “Thread and
Memory Placement on NUMA System: Asymmetry
Matters,” in Proceedings of USENIX Annual Technical
Conference, 2015.

[19] H. W. Lenstra Jr., “Integer Programming with a Fixed
Number of Variables,” Mathematics of Operations Re-
search, vol. 8, no. 4, 1983.

[20] G. Pataki, M. Tural, and E. B. Wong, “Basis Reduction
and the Complexity of Branch-and-Bound,” in ACM-
SIAM Symp. on Discrete Algorithms, 2010.

[21] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa,
“DraMon: Predicting Memory Bandwidth Usage of
Multi-threaded Programs with High Accuracy and Low
Overhead,” in Int’l Symp. on High Performance Com-
puter Architecture, 2014.

[22] R. W. Moore and B. R. Childers, “Inflation and Defla-
tion of Self-adaptive Applications,” in Int’l Symp. on
Software Engineering for Adaptive and Self-Managing
Systems, 2011.

[23] “"GNU GOMP libgomp Documentation",” 2014.

[24] T. Koch, Rapid Mathematical Prototyping. PhD thesis,
Technische Universität Berlin, 2004.

[25] L. Peng, J.-K. Peir, T. K. Prakash, C. Staelin, Y.-
K. Chen, and D. Koppelman, “Memory Hierarchy
Performance Measurement of Commercial Dual-core
Desktop Processors,” Journal of Systems Architecture,
vol. 54, no. 8, 2008.

[26] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley, “An Updated Set of Basic Linear Al-
gebra Subprograms (BLAS),” ACM Transactions on
Mathematical Software, vol. 28, 2002.

[27] Intel, “Reference Manual for Intel Math Kernel Library
11.1 Update 3,” 2013.

[28] W. Y. Alkowaileet, “NUMA-aware multicore Matrix
Multiplication,” Master’s thesis, University of Califor-
nia, Irvine, 2013.

[29] R. J. Hyndman and A. B. Koehler, “Another look at
measures of forecast accuracy,” International Journal
of Forecasting, vol. 22, no. 4, 2006.

[30] P. Radojković, V. Čakarević, M. Moretó, J. Verdú,
A. Pajuelo, F. J. Cazorla, M. Nemirovsky, and
M. Valero, “Optimal Task Assignment in Multi-
threaded Processors: A Statistical Approach,” in Proc.
of Architectural Support for Programming Languages
and Operating Systems, 2012.

[31] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels,
Statistics of Extremes: Theory and Applications. John
Wiley & Sons, 2006.

[32] E. Castillo, Extreme Value Theory in Engineering. El-
sevier, 1988.

[33] V. Weaver, D. Terpstra, and S. Moore, “Non-
determinism and Overcount on Modern Hardware Per-
formance Counter Implementations,” in Int’l Symp. on
Performance Analysis of Systems and Software, 2013.

[34] T. Achterberg, “SCIP: solving sonstraint integer pro-
grams,” Mathematical Programming Computation,
vol. 1, no. 1, 2009.

[35] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, “Thread
Reinforcer: Dynamically Determining Number of
Threads via OS Level Monitoring,” in Int’l Symp. on
Workload Characterization, 2011.

430

[36] Y. Xie and G. H. Loh, “Dynamic Classification of Pro-
gram Memory Behaviors in CMPs,” in Workshop on
Chip Multiprocessor Memory Systems and Intercon-
nects, 2008.

[37] E. Z. Zhang, Y. Jiang, and X. Shen, “Does Cache Shar-
ing on Modern CMP Matter to the Performance of Con-
temporary Multithreaded Programs?,” in ACM Symp.
on Principles and Practice of Parallel Programming,
2010.

[38] X. Xiang, B. Bao, C. Ding, and K. Shen, “Cache Con-
scious Task Regrouping on Multicore Processors,” in
Int’l Symp. on Cluster, Cloud and Grid Computing,
2012.

[39] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm,
“RapidMRC: Approximating L2 Miss Rate Curves
on Commodity Systems for Online Optimizations,” in
Proc. of Architectural Support for Programming Lan-
guages and Operating Sys., 2009.

[40] D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast
Modeling of Shared Caches in Multicore Systems,” in
Proc. of Int’l Conf. on High Performance and Embed-
ded Architectures and Compilers, 2011.

[41] J. Li and J. F. Martinez, “Dynamic Power-performance
Adaptation of Parallel Computation on Chip Multipro-
cessors,” in Int’l Symp. on High-Performance Com-
puter Architecture, 2006.

[42] H. Sasaki, T. Tanimoto, K. Inoue, and H. Naka-
mura, “Scalability-Based Manycore Partitioning,” in
Int’l Conf. on Parallel Architectures and Compilation
Techniques, 2012.

[43] M. Kim, P. Kumar, H. Kim, and B. Brett, “Predict-
ing Potential Speedup of Serial Code via Lightweight
Profiling and Emulations with Memory Performance
Model,” in Int’l Symp. on Parallel and Distributed Pro-
cessing Symposium, 2012.

[44] D. Eklov, N. Nikoleris, D. Black-Schaffer, and
E. Hagersten, “Bandwidth Bandit: Quantitative Char-
acterization of Memory Contention,” in Int’l Symp. on
Code Generation and Optimization, 2013.

[45] R. Wang, L. Chen, and T. M. Pinkston, “An Analytical
Performance Model for Partitioning Off-Chip Memory
Bandwidth,” in Int’l Symp. on Parallel and Distributed
Processing, 2013.

[46] Z. Majo and T. R. Gross, “Memory System Perfor-
mance in a NUMA Multicore Multiprocessor,” in Int’l
Conf. on Systems and Storage, 2011.

[47] M. Kudlur and S. Mahlke, “Orchestrating the Execu-
tion of Stream Programs on Multicore Platforms,” in
Proc. of Programming Language Design and Imple-
mentation, 2008.

[48] H. M. Wagner, “An integer linear-programming model
for machine scheduling,” Naval Research Logistics
Quarterly, vol. 6, no. 2, 1959.

[49] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankar-
alingam, C. Estan, and B. Robatmili, “A General
Constraint-centric Scheduling Framework for Spatial
Architectures,” in Proc. of Programming Language
Design and Implementation, 2013.

[50] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramo-
nian, and A. Davis, “Handling the Problems and Op-
portunities Posed by Multiple On-chip Memory Con-
trollers,” in Int’l Conf. on Parallel Architectures and
Compilation Techniques, 2010.

[51] M. Dashti, A. Fedorova, J. Funston, F. Gaud,
R. Lachaize, B. Lepers, V. Quema, and M. Roth, “Traf-
fic Management: A Holistic Approach to Memory
Placement on NUMA Systems,” in Int’l Conf. on Ar-
chitectural Support for Programming Languages and
Oper. Sys., 2013.

[52] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Har-
ris, C. A. Nelson, and C. D. Offner, “Extending
OpenMP for NUMA Machines,” in Int’l Conf. on Su-
percomputing, 2000.

[53] Z. Majo and T. R. Gross, “(Mis)Understanding
the NUMA Memory System Performance of Multi-
threaded Workloads,” in IEEE Int’l Symp. on Workload
Characterization, 2013.

[54] L. Nai, Y. Xia, C.-Y. Lin, B. Hong, and H.-H. S.
Lee, “Cache-conscious Graph Collaborative Filtering
on Multi-socket Multicore Systems,” in Proc. of Com-
puting Frontiers, 2014.

[55] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana,
“Self-Optimizing Memory Controllers: A Reinforce-
ment Learning Approach,” in Int’l Symp. on Computer
Architecture, 2008.

[56] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Mem-
ory request prioritization for massively parallel proces-
sors,” in Int’l Conf. on High Performance Computer
Architecture, 2014.

[57] Z. Fang, L. Zhang, J. B. Carter, S. A. Mckee,
A. Ibrahim, M. A. Parker, and X. Jiang, “Active
Memory Controller,” The Journal of Supercomputing,
vol. 62, no. 1, 2012.

[58] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ail-
amaki, “Reactive NUCA: Near-optimal Block Place-
ment and Replication in Distributed Caches,” in Int’l
Symp. on Computer Architecture, 2009.

[59] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “BuMP:
Bulk Memory Access Prediction and Streaming,” in
Proc. of Int’l Symp. on Microarchitecture, 2014.

[60] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong,
and J. W. Lee, “A Fully Associative, Tagless DRAM
Cache,” in Proc. of Int’l Symp. on Computer Architec-
ture, 2015.

431

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

