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ABSTRACT
Because of the high pay and high flexibility, computer science
careers can be highly viable for people with blindness or vision
impairments (BVI). However, in our programming education, we
observed that existing screen readers used by students with BVI
usually cannot properly handle computer programs, which mix
English letters, digits, and punctuation marks. When applied to
computer programs, current screen readers either ignore the punc-
tuation marks, or mix English words, digits, and punctuation marks,
making the screen reading either incorrect or hard to understand.
The resulting difficulty in understanding program statements sig-
nificantly hinders students’ ability to locate incorrect code and
independent coding.

To address these limitations in current screen reading, we are de-
veloping a new semantic-oriented screen reader, called JupyterVox,
which reads Python statements by their meanings to speedup code
navigation, and thus improve independent coding skills. This new
screen reader is based on compiler’s lexical and syntax analyses
to parse, understand, and read program statements. This poster
presents the initial implementation and results of JupyterVox.
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1 INTRODUCTION
Software engineers are among the highest-paid occupations in the
US. In addition to the high pay, software engineering jobs are also
flexible in working modality. A significant number of software en-
gineering positions are remote and only require a desk, a computer,
and the Internet. These combined benefits make software engineer-
ing a perfect position for people with disabilities, including people
with blindness or vision impairments.

In the past years, the authors have been teaching simple Python
programming and machine learning to middle and high school
students with BVI. A major difficulty we and our students have
encountered in our teaching is the confusing readings from existing
screen readers. Screen readers are typically designed to read Eng-
lish paragraphs instead of computer program statements, which
mix letters, digits, and punctuation marks. The computer statement
readings from current screen readers are typically difficult to un-
derstand – the readings can be either complex and/or misleading. A
direct result of this understanding difficulty is the slow code reading
and code navigation, which directly leads to slow programming
speed and low independent coding abilities. Some students would
completely avoid using screen readers when coding and chose to
use the more expensive Braille displays. More specifically, there are
at least two issues with current screen readers,

(1) First, by default, most screen readers will ignore (some of)
the punctuation marks when reading. For example, as shown
in Figure 1, for the dictionary definition statement {”𝑡1” :
𝑎, ”𝑡2” : 𝑏}, Windows Narratoronly reads "T one A two
twelve." Mac VoiceOverreads braces, but not quote marks.
These readings completely misrepresented the statement.

(2) Second, when the screen readers are configured to read punc-
tuation marks, the readings become long and confusing. Fig-
ure 1 also shows the screen readings of Windows Narrator
and Mac VoiceOver when they are configured to read all
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Standard Screen Reader JupyterVox

Type of Statement Statement Time to
Understand

Understanding
Correctness Statement Time To

Understand
Understanding
Correctness

Expression a*b+c 10.24s correct a*(b+c) 9.67s correct
Assignment z=y%3//5 21.71s incorrect b=a//2 % 3//5 11.84s correct
Aug Assignment x +=5 6.82s correct b -= a 7.48s incorrect
Assign w. Expr. c=3-x*y 34.42s incorrect c = y/z+3 6.80s correct
Complex Assign. a=(x*y)+(z/5-b) 10.37s incorrect c = (a*b) - (3*z/y) 43.7s correct
if statement if x<=10: return 9 7.12s correct if x>=3: return 4 8.87s correct
String Variable test_string="Hello World" 7.19s incorrect day_string="Sunday" 10.80s correct

Table 1: Initial evaluation results.

{"t1":a, "t2":b}

Win Narrator (default):
T one A T two B

Mac VoiceOver (default):
left brace T one colon A  T 
two B right brace

Mac VoiceOver (all punc.):
Left brace quotation mark T one 
quotation mark colon a comma 
quotation mark T two quotation 
mark colon B right brace

Win Narrator (all punc.):
Opening brace double quotes 
T one double quotes colon a 
comma double quotes T two 
double quotes colon B closing 
brace

Emacspeak (default):
left brace quotes T one 
quotes colon a comma 
quotes T one quotes colon 
B right brace

Figure 1: An example of how the handling of punctuation
marks affect screen readings for three screen readers under
the default and read-all-puncutations (all punc.) settings.

((a+b)*c)-d

Win Narrator (default):
A plus B asterisk C D

Mac VoiceOver (default):
a plus B star C D

Mac VoiceOver (all punc.):
Left parenthesis left parenenthesis 
a plus B right parenthesis star C 
right parenenthesis 
hypen D

Win Narrator (all punc.):
Opening parenthesis opening 
parenthesis a plus sign B 
closing parenthesis asterisk 
C closing parenthesis 
hyphen D

Emacspeak (default):
left paren left paren a plus 
b righ paren asteris c right 
paren dash d

Figure 2: Second example of how the handling of punctuation
marks affect screen readings, especially for statements with
nested parentheses.

punctuation marks. Additionally, Figure 1 includes the read-
ing of Emacspeak [4], which is a screen reader that under-
stands programs and reads punctuation marks by default.
Figure 1 shows that all these readings mixed punctuation
marks, digits, and English words, and require considerable
effort to parse in one’s mind. This problem is even more com-
plicated when nested parentheses are involved (e.g., Figure 2)
– determining the matching pairs of parentheses while they
are read is extremely difficult for beginners.

Two other popular screen readers, Jaws [2] and NVDA [1], also
have the above limitations. There is also work on using audio-
assisted debugging [6, 7] and more intuitive languages [3, 5, 8].
However, these studies cannot be directly applied to Python, which
is extensively used in Data Science.

2 METHODOLOGY
To address these limitations, our hypothesis is that: Instead of read-
ing literally, the understanding of program statements can be signifi-
cantly simplified if the statements can be read based on their meaning
(semantics), which, in turn, accelerates code navigation and improves
independent coding skills for programming education.

As lexical and syntax analyses in compilers already understand
the semantics of program statements, it is then possible to employ
compiler techniques to generate semantics-oriented readings. More
specifically, we employ Python AST module to generate an abstract
syntax tree (AST) given a statement, then convert that AST tree to
an English sentence representing the meaning of that statement.
This conversion closely resembles the coding generation processing

((a+b)*c)-d

then minus dthen multiply c,a plus b, 
Generate reading:

AST Tree:Statement: BinOp

BinOp

BinOp

Sub

Mul

Add

Name(d)

Name(c)

Name(a) Name(b)

Figure 3: An example of reading generation using AST tree
in JupyterVox using the same statement from Figure 2.

using an AST tree. Figure 3 gives an example of how speeches are
generated based on an AST tree for the same statement in Figure 2.
The reading is “a plus b, then multiply c, then minus d.”

3 EVALUATION
We finished an initial implementation of the screen reader, called
JupyterVox. As an early evaluation of JupyterVox, we conducted a
short experiment with one human subject who listened to seven
statements read by the an existing screen reader and JupyterVox.
Table 1 gives the results of this screen reader. The subject was con-
sidered as having understood the reading once he could restate
the statement correctly. As Table 1 shows, JupyterVox could signifi-
cantly increase the correctness of statement understanding, from
only three statements to six statements.
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