
Testing Cloud Applications under
Cloud-Uncertainty Performance Effects

Wei Wang∗, Ningjing Tian†, Sunzhou Huang∗, Sen He∗ , Abhijeet Srivastava† Mary Lou Soffa‡ and Lori Pollock†
∗Department of Computer Science, University of Texas at San Antonio

†Department of Computer and Information Sciences, University of Delaware
‡Department of Computer Science, University of Virginia

{wei.wang, sunzhou.huang, sen.he}@utsa.edu, {ningjing, abhisri, pollock}@udel.edu, soffa@virginia.edu

Abstract—The paradigm shift of deploying applications to
the cloud has introduced both opportunities and challenges.
Although clouds use elasticity to scale resource usage at run-
time to help meet an application’s performance requirements,
developers are still challenged by unpredictable performance,
little control of execution environment, and differences among
cloud service providers, all while being charged for their cloud
usages. Application performance stability is particularly affected
by multi-tenancy in which the hardware is shared among varying
applications and virtual machines. Developers porting their
applications need to meet performance requirements, but testing
on the cloud under the effects of performance uncertainty is
difficult and expensive, due to high cloud usage costs.

This paper presents a first approach to testing an application
with typical inputs for how its performance will be affected by
performance uncertainty, without incurring undue costs of brute-
force testing in the cloud. We specify cloud uncertainty testing
criteria, design a test-based strategy to characterize the black-
box cloud’s performance distributions using these testing criteria,
and support execution of tests to characterize the resource usage
and cloud baseline performance of the application to be deployed.
Importantly, we developed a smart test oracle that estimates the
application’s performance with certain confidence levels using
the above characterization test results and determines whether
it will meet its performance requirements. We evaluated our
testing approach on both the Chameleon cloud and Amazon web
services; results indicate that this testing strategy shows promise
as a cost-effective approach to test for performance effects of
cloud uncertainty when porting an application to the cloud.

Keywords – Cloud Applications; Software Testing on Cloud;
Cloud Performance Uncertainty; Bootstrapping;

I. INTRODUCTION

A recent large survey reported that 95% of 1,060 surveyed
technical professionals have adopted cloud computing in their
organizations, with the majority (70%) of them employed
an Infrastructure-as-a-Service (IaaS) cloud, such as Amazon
EC2 and Microsoft Azure [1]. The main uses today include
High Performance Computing (HPC), data analytics, web
applications, and development and testing environments.

This paradigm shift of applications to a cloud has intro-
duced both opportunities and challenges. Not only does the
cloud application need to be tested for accuracy, but also
for performance as cloud applications typically have both
performance and cost requirements [2], [3], [4], [5]. Satis-
fying these requirements on public clouds is very challenging

because the performance of applications running on a cloud
suffers from considerable uncertainty. For example, Figure 1
shows the one week (3876 trials) performance trace of a
PARSEC benchmark, streamcluster, on the research cloud
Chameleon [6], [7]. The best performance is about 30% faster
than the worst performance. This wide performance range, in
turn, translates into highly uncertain cloud performance and
usage cost.

 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200

 0 1000 2000 3000 4000

E
xe

c
Ti

m
e
 (

se
c)

Trials

Fig. 1: The performance uncertainty of PARSEC benchmark
streamcluster on Chameleon Cloud

To ensure that their applications meet performance require-
ments in the cloud, software engineers need to determine
their performance and its fluctuation within the cloud. Tra-
ditionally, determining an application’s performance requires
performance testing, in which test cases are executed to
cover the factors that may impact performance [8]. Under a
cloud environment, additional factors must be considered, such
as virtual machine (VM) scheduling and multi-tenancy (in
which the hardware is shared among varying applications and
VMs) [9], [10]. These factors randomly affect performance,
causing fluctuations and uncertainties.

Unfortunately, cloud services are provided to the users as
black boxes, where users have limited control over cloud
execution environments. If traditional performance testing is
employed in a cloud, extremely long tests must be conducted
to extensively cover the random impacts of performance-
affecting factors, which can be cost prohibitive in practice.
For the example, for the benchmark in Figure 1, it requires
roughly ten days of executions (about 3000 trials) to get stable
average, maximum and minimum execution times.

Cloud elasticity, where users can increase resource allo-
cation to improve performance, may be employed to im-
prove performance satisfaction [11]. However, providing per-
formance requirement satisfaction remains an open research

1

question despite elasticity and other cloud management tech-
niques [12], [13], [14]. In fact, for better results, many elas-
ticity policies require prior knowledge of application perfor-
mance [15], [16]. Consequently, effective cloud performance
testing is a valuable enhancement to elasticity and many other
cloud management techniques.

This paper describes a novel testing approach to help soft-
ware engineers meet their performance and cost requirements
when porting their applications to public clouds; that is, we
present an approach to testing an application with typical
inputs for how its performance will be affected by cloud un-
certainty, without incurring undue costs of brute-force testing
in the cloud. We address the problem of determining a cloud
application’s performance from an application developer’s
perspective: a black-box cloud that operates with usage cost.
Specifically, we address the following challenges in testing
applications amidst cloud uncertainty effects:

1) Performance result accuracy. Due to the uncertainty
effects, the performance of a cloud application usually
follows a distribution with a wide range of possible
performance values. Therefore, performance statistics,
such as mean execution time, should be reported with
confidence intervals (CI). However, the performance
distributions of cloud applications usually do not follow
known theoretical distributions, making it very challeng-
ing to establish reliable confidence intervals. Without a
reliable confidence interval, it is nearly impossible to
accurately determine whether a cloud application can
meet its performance goals.

2) High testing cost. When performance tests of an ap-
plication are conducted on a cloud, they also incur
cloud usage cost. A testing technique should fully cover
the impacts of various performance factors. However, a
poorly designed technique may have high cloud usage
cost due to the black-box issue discussed above.

3) Cloud service generality. Different cloud service
providers have different VM configurations and hard-
ware. These differences may cause the behavior of an
application to vary with cloud services. A truly practical
cloud testing technique should work properly on any
cloud service despite these differences.

To the best of our knowledge, there has been no prior re-
search that guides software engineers through these challenges.
Our approach, which we call CAPT (Cloud Application Per-
formance Tester), consists of three major components. First, a
test-based approach to characterize a cloud’s per-resource per-
formance distributions given performance uncertainty testing
criteria, using common hardware resources that are generally
available in all cloud services. Second, a reduced cost approach
to test case execution to characterize an application in terms
of its resource usage profile and baseline performance on the
cloud. Third, a smart test oracle that estimates the application’s
performance on the target cloud using the test results from
the first two components and determines whether perfor-
mance requirements can be met. This smart oracle employs a

resource-based performance model and a statistical approach
called bootstrap to provide highly accurate estimations with
developer-selected confidence levels [17]. The testing cost
mainly comes from the first component, whose test results
can be reused over multiple application inputs and multiple
applications, reducing the overall testing cost.

We conducted a proof-of-concept implementation of CAPT
and evaluated it on two public clouds with configurations using
one VM of multiple VM types. The results show that CAPT
can accurately estimate the performance of various application
with an average error of 4.9%. CAPT can also reduce testing
cost by 66.9% on average. These results strongly suggest that
CAPT considerably reduces testing cost by conducting limited
tests of the target application on a cloud and employing a smart
test oracle.

This paper presents the following novel contributions:
• The definition of testing coverage criteria for cloud per-

formance uncertainty,
• A novel performance testing approach, CAPT , that em-

ploys cloud/application characterizations and a smart
oracle to determine whether an application can meet its
performance requirements on public clouds with high
accuracy and low testing cost.

• The use of bootstrapping in performance testing to
process the performance results of an application with
unknown theoretical performance distribution, and

• A feasibility study and evaluation of CAPT for applica-
tions executing with cost and performance requirements
on two IaaS clouds.

The rest of this paper is organized as follows: Section II
provides a use case scenario of CAPT . Section IV describes the
CAPT approach in detail, followed by an example presented
in Section V. Section VI describes the experimental evalua-
tion; Section VII discusses related work, and conclusions are
presented in Section VIII.

II. USAGE SCENARIO

Assume that Cloud X is a public cloud that is available
for users to run their applications. Like most clouds, Cloud
X offers various types of VMs, such as small, medium and
large instances. Cloud X has dynamic scheduling policies and
allows for multi-tenancy. A software engineer can configure
the VM sizes and numbers, but otherwise, the operation of
Cloud X is not explicitly made available to a given user, and
Cloud X is shared among many users, sometimes with more
users during some days and times than others.

Now assume that an organization wants to port applications
(e.g., HPC, data analysis, simulation, etc.) which have perfor-
mance requirements (e.g., execution time, response time) and
cost requirements to Cloud X. For a given application, a soft-
ware engineer, Eve, needs to determine what configurations of
VM meet the organization’s performance requirements 95% of
the time with the least cost. She provides her application to be
ported (Appport), its test suite and an initial specification to
use a large VM, because it is the most powerful configuration.
The CAPT approach starts by running the test suite through

2

Appport on one of her local machines to determine Appport’s
resource usage profile, for example, how Appport uses CPU
and memory bandwidth. CAPT then runs Appport on Cloud X
using a large VM for a few trials to get Appport cloud baseline
performance, which is computed as the average execution time
of the few trials on Cloud X.

Using CAPT’s pre-determined performance distributions of
Cloud X, Appport’s resource profile and baseline performance,
CAPT’s smart oracle estimates the 95th percentile performance
of Appport under the given large VM configuration with
a confidence level selected by Eve and determines whether
the large VM configuration meets Eve’s performance require-
ments. Eve is also provided information that will help in
determining the cost. Depending on the estimates, Eve can
change the VM configuration and repeat the process until the
“best” configuration is determined to meet the performance
requirement with the lowest cost.

III. BRIEF INTRODUCTION TO BOOTSTRAP

As discussed in Section I, the performance of an application
on a cloud is distributed across a wide range of possible values.
Therefore, any testing to examine performance is equivalent
to sampling the performance population. Thus, it is more
accurate to report performance results from these tests using
statistical estimations with confidence intervals (CI). However,
because the application performance distribution does not
always follow known theoretical distributions, it becomes quite
challenging to establish reliable CIs. To overcome this chal-
lenge, we employed non-parametric bootstrap, which allows
establishing reliable CIs without the need to know theoretical
distributions [17].

Here, we demonstrate the basic idea of bootstrapping with
an example. Suppose a set of tests is executed with an
application on a cloud to acquire a sample which has N
execution times. With this sample, the population’s mean
execution time, µ, can be estimated using the sample average,
t. Bootstrap is then employed to establish a CI of µ. To obtain a
bootstrap sample, N execution times are randomly drawn from
the original sample with replacement. This bootstrap sample
is essentially a resample of the original sample, treating the
original sample as its population. With the bootstrap sample,
a bootstrap average is computed. Repeating the bootstrap
sampling for R times, we can then acquire R bootstrap
averages, which produces a histogram of bootstrap averages.
By the definition of CI, the endpoints of the area that cover
90% of this histogram provide a CI of the original sample
average t with 90% confidence level, if R is sufficiently large
(usually R ≥ 1000). With large N and R, this CI can be used
as a reliable estimate of the CI of the original population mean
µ with 90% confidence level.

Similar processes can be applied to other statistical esti-
mates, such as median or quantiles. The confidence level can
also be adjusted based on needs by choosing endpoints that
cover different sizes of the area of the histogram. Intuitively,
bootstrap works correctly assuming re-sampling on the origi-
nal sample behaves similarly as the original sampling on the

Microbenchmark
Suite

Target
Cloud

Cloud Perf
Uncertainty
Coverage

Criteria

CPU
Memory

...

Per-resource
Performance
Distributions

VM
Configuration

Space

Fig. 2: Test-based characterization of the cloud as black box

population. This assumption is usually true when N and R
are sufficiently large and the original sample does not contain
missing data and internal dependencies [18].

Bootstrapping is employed by our smart oracle when it
needs to establish a CI for a quantile using the performance
distributions collected from the cloud characterization step.

IV. THE CAPT METHODOLOGY

This section describes the three major components of the
CAPT approach:

1) A test-based characterization to determine the black-
box cloud’s performance distributions under the cloud
testing criteria. The characterization tests are executed
for each resource type, such as CPU and memory,
to acquire the performance distribution of individual
resource types. The test coverage criteria usually cover
the performance factors that are of concern to software
engineers, including multi-tenancy and VM scheduling.

2) The execution of a small set of performance tests to
characterize the resource usage profile of the target
application and the baseline performance of the appli-
cation executing on a cloud. Resource profiling tests are
executed outside the cloud (e.g. on a local machine) to
eliminate cloud usage cost. Baseline performance tests
are executed on the cloud and are designed to include
only a small number of executions to minimize cost.

3) A smart test oracle that determines whether a given
application with a certain VM configuration can meet its
performance requirements. With a resource-based per-
formance model, the smart oracle combines cloud per-
formance distributions, application resource profile and
baseline performance, to estimate performance statistics
(e.g., mean execution time and 95th percentile execution
time) of the target application. An estimated perfor-
mance statistic is expressed as a confidence interval
(CI) with a confidence level (CL) selected by software
engineers. With the estimated performance statistics, the
smart oracle can then determine whether the perfor-
mance requirement can be met with certain CL.

3

A. Characterizing the Performance Distribution of a Cloud

Figure 2 depicts our overall approach to uncovering the
performance characteristics of the cloud, which is a black
box to the software engineer porting an application to it. The
cloud characterization process takes three inputs: a micro-
benchmark suite, a VM configuration space, and desired cloud
performance testing criteria.

The micro-benchmark suite consists of micro-benchmarks
that are able to reveal the performance with respect to
each common hardware resources in the cloud. For example,
we use a benchmark that is purely computation-bound to
determine the performance distribution of the CPU and a
benchmark that is purely memory-bound to determine the
memory performance distribution. We choose to characterize
a cloud based on resources for three reasons. First, application
performance fluctuations are fundamentally caused by fluctua-
tions in hardware resource usages. Second, different resources
have different impacts on performance fluctuations. Third, a
characterization based on common hardware resources makes
this characterization step applicable to any cloud services.
Although we focus on CPU and memory in this paper, the
idea of per-resource characterization can be extended to other
common types of resources, such as storage and network,
when testing applications with heavy usage of these resources.

The VM configuration space denotes the types and num-
bers of VM instances on which the application executes, as
specified by the software developer. Cloud services usually
provide various types of VMs, with certain CPU count and
memory capacity. In this paper, we focus on the configurations
with one VM of different VM types and leave configurations
with varying numbers of VMs for future work.

The testing coverage criteria target the factors that cause
cloud performance uncertainty. In this paper, we focus on the
coverage of multi-tenancy and VM scheduling. Each factor
also has its unique coverage criteria associated with it, which
is explained as follows:

• Coverage criteria for multi-tenancy. Multi-tenancy is
the primary cause of performance uncertainty. Sharing
hardware resources causes resource contention, which de-
grades the performance of cloud applications. The actual
performance degradation fluctuates with the types and
count of contending applications. Consequently, covering
multi-tenancy requires covering the potential types and
count of contending applications. Moreover, different
types of cloud applications have different probabilities of
executing in the cloud. Therefore, multi-tenancy coverage
criteria should be covering the potential types and count
of cloud applications with their associated probability.
However, because a cloud is provided as a black-box, it is
impossible to control the types of applications executing
together.
Fortunately, because the impact of multi-tenancy usually
exhibits seasonality (e.g., application types and count
vary daily/weekly/monthly), multi-tenancy coverage can
be translated into covering the types and count of cloud

applications within a seasonal period or cycle [19].
Whether to cover a daily, weekly, monthly or a custom
cycle, depends on the actual behavior of the cloud system
and testing budget. Ideally, all potential types of applica-
tions should be covered. However, as an initial attempt to
address the cloud performance testing problem, we strive
to cover all application types, instead of providing a the-
oretical guarantee of complete coverage. This theoretical
guarantee requires in-depth statistical analysis which is
beyond the scope of this paper and approach.

• Coverage criteria for VM scheduling. The CPU schedul-
ing policy of virtual machines may also cause perfor-
mance fluctuations [10]. The impact of scheduling policy
is extremely visible if the underlying hardware is Non-
Uniform Memory Access (NUMA) architecture where
thread-to-processor placement may produce considerable
remote memory access overhead. The coverage criteria
for VM scheduling should be covering the potential
thread-to-processor placements.

In traditional performance testing, test cases should be
executed with the application-to-port to meet the above cov-
erage criteria. However, as stated previously, to reduce testing
cost, we partition the test cases into two sets, with each set
characterizing either the cloud or application. The set of test
cases for cloud characterization is designed to meet the above
testing coverage criteria.

To satisfy the coverage criteria for multi-tenancy, the test
cases are designed to run micro-benchmarks repeatedly for
one multi-tenancy (daily/weekly/monthly or custom) cycle
with the VM types and VM count specified by the VM
configuration. To obtain performance distributions for both
CPU and memory, one test case is executed with a CPU
micro-benchmark while one test case uses a memory micro-
benchmark. After execution, a test case will give the perfor-
mance distribution of one resource type for one cycle. Note
that, similar to other time series data, multi-tenancy impacts
might include random bursts, besides seasonality. To mitigate
the effect of these random bursts, software engineers may
want to conduct additional test cases for additional cycles.
Combining data from multiple cycles provide more accurate
performance distributions which are less susceptible to the
noise of random bursts.

To satisfy the coverage criteria for VM scheduling, several
tests are needed to achieve a high probability of covering all
thread-to-processor placements. With the knowledge of the
core count of the VM and the processor count of the server, it
is easy to compute the number of possible thread-to-processor
placements. Based on this number, software engineers can
easily determine how many times a micro-benchmark should
be executed to achieve a high probability of covering all
placements. That is, a test case can be viewed as running a
micro-benchmark repeatedly until all placements are covered
with high probability. Note that, because test cases covering
multi-tenancy usually provide enough micro-benchmark runs
to cover VM scheduling, and because the black-box cloud does
not offer methods to separate the impacts of multi-tenancy

4

Application
to Port

Local
Machine

Local Test
Results:

Resource
Usage
Profile

Cloud Test
Results:

Base-line
Performance

Application
to Port

Local Tests

Target
Cloud

Cloud Tests

Original
Test Suite

with Inputs

Fig. 3: Tests to characterize application-to-port.

and VM scheduling, it is usually not necessary to separately
run test cases for VM scheduling coverage. The results from
multi-tenancy test cases can provide performance distributions
covering the combined impacts of both multi-tenancy and VM
scheduling, meeting both testing coverage criteria.

In summary, a test is defined as executing a micro-
benchmark repeatedly for one multi-tenancy cycle, using VM
configurations specified by software engineers, to meet the
coverage criteria of multi-tenancy and VM scheduling. Each
additional micro-benchmark requires an additional test. The
results of the tests include the performance (e.g., execution
times) of the micro-benchmarks, which give the per-resource-
type performance distributions of the cloud. Note that, for each
VM configuration, the cloud characterization needs to be done
only once. But its results can be reused for testing multiple
application inputs or multiple applications, thus reducing cost.

B. Determining an Application’s Resource Usage Profile

Similar to the cloud characterization step, our application
resource usage profile contains an application’s usage for
both CPU and memory. Fig. 3 shows the CAPT approach
to determining an application’s resource usage profile, with
inputs that consist of the application to be ported and real
user workloads for the application. Note that, similar to tradi-
tional performance testing, we assume that software engineers
provide testing inputs that resemble real inputs.

A resource usage profile is comprised of the processor
cycles that an application spends in CPU computation and
memory accesses. To reduce the testing cost, tests to profile the
application’s resource usage are executed on a local machine
instead of the cloud, using hardware performance monitoring
units (PMU) [20]. Note that, if the resource usage profiling is
executed on the cloud, the results may be skewed due to the
cloud’s performance uncertainty, and not all clouds support
hardware PMU monitoring needed for profiling.

We denote an application’s resource usage running on a
local machine using Appres. More specifically,

• Appcpu denotes the percentage of the total cycles that are
spent on CPU computations

• Appmem denotes the percentage of the total cycles that
are spent on memory accesses

To determine the resource usage profile, each test is to
execute an application on a local machine with its typical
input. During the test case execution, PMU readings are
also collected. The total cycles consumed by an application,
denoted by Cyclestotal, is obtained with one PMU event.
For instance, on Intel platforms, the event is typically named
“UNHALTED CORE CYCLES.” This event includes both
CPU computation and memory access cycles. Consequently,
CPU computation cycles can be computed by subtracting
memory cycles from the total cycles. Because memory ac-
cesses are usually slow and would block the execution of
the processor [20], they can be estimated using stalled CPU
cycles. For instance, the PMU event to read these stalls
on Intel processors is called “RESOURCE STALLS.” Some
memory accesses can overlap with computation and do not
stall execution. Since these memory accesses can overlap
with computation, their fluctuation has limited impact on
overall execution time. Therefore, we do not consider the
cycles of overlap-able memory accesses as part of memory
access cycles. Let Cyclesmem be the memory accesses/stall
cycles. Once total cycles and memory cycles are acquired, the
percentage of CPU and memory cycles can be computed as:

Appcpu =
Cyclestotal − Cyclesmem

Cyclestotal
× 100

Appmem =
Cyclesmem

Cyclestotal
× 100

(1)

C. Establishing an Application’s Cloud Baseline Performance

As Figure 3 shows, application characterization also in-
cludes obtaining the baseline performance of the application
on the cloud, which is later used by the smart oracle to estimate
the real performance of the application on cloud.

A test is an application executing on the cloud with its
typical input. The test is repeatedly executed for a few times
to reduce cost, and the average performance (e.g., average
execution time) is computed as the application’s baseline per-
formance. Let Appbaseline denote this baseline performance.
The number of test executions is determined by software
engineers based on their testing budget. More executions may
increase performance estimation accuracy with increased cost.
Note that, for each new input, an application resource profile
and baseline performance should be collected.

D. The Smart Oracle

Performance Estimation. Figure 4 depicts how the smart
oracle estimates the performance of the application-to-port on
a cloud. The smart oracle takes four inputs: the cloud per-
formance distributions, the application resource usage profile
and application baseline performance from previous steps,
as well as the desired performance statistic and confidence
level from the software engineer. The performance statistic
is the performance attribute that the software engineer wants
to know. For instance, this statistic may be any quantile of
the execution time. The confidence level (CL) is used by the
smart oracle to establish the CI for the performance statistic.

5

Estimate
Performance

Desired Performance
Statistic, Confidence

Level

VM
Configuration

Will (App,
Config) meet
requirement?

Yes/No
with confidence

App Base-
line Perf
on Cloud

App's Local
Resource

Usage
Profile

Cloud Performance
Distributions from
Charaterization

Smart Test Oracle

Performance
Requirement

From Software Engineer

Fig. 4: Smart Test Oracle

For example, if a software engineer wants to know whether an
application will meet the performance goal 95% of the time
with 90% confidence, the performance statistic should be 95th
percentile execution time, and CL should be 90%.

Knowing the desired performance statistic and CL, the smart
oracle first processes the cloud performance distributions (from
cloud characterization) to obtain the CI of the performance
statistic for CPU and memory resources using bootstrap. For
instance, with the above example statistic and CL, the smart
oracle processes the performance distributions to obtain 90%
CI of the 95th percentile execution times of the CPU and
memory micro-benchmarks.

As the goal of the smart oracle is to determine whether
the performance goal can be met, we only use the upper
bound of the CI.1 Let this upper bound for CPU and memory
be Cloudstatcpu and Cloudstatmem. Additionally, let the average
execution times of CPU and memory micro-benchmarks be
Cloudavgcpu and Cloudavgmem. The smart oracle then computes
the fluctuation ranges of the performance statistic relative to
average performance for CPU and memory using Equation (2).

Cloudrangecpu =
|Cloudstatcpu − Cloudavgcpu|

Cloudavgcpu

Cloudrangemem =
|Cloudstatmem − Cloudavgmem|

Cloudavgmem

(2)

To estimate the corresponding performance statistic for the
application with the same CL, the smart oracle applies the
respective fluctuation range to the CPU and memory portions
of its baseline performance, using the performance model of
Equation (3).

Appstat =Appbaseline × [Appcpu × (1 + Cloudrangecpu)+

Appmem × (1 + Cloudrangemem)]
(3)

By comparing the estimated performance statistic with the
performance goal, the smart oracle can then determine if the
performance goal can be met with the same CL. For instance,

1Note that, although the lower bound of the CI is not used in CAPT , it
could be useful to analyze other performance properties in the future.

with the above example statistic and CL, if the estimated 95th
percentile execution time is smaller than the performance goal,
the smart oracle determines that the performance goal can be
met with at most 90% confidence.
Result Interpretation. CI’s interpretation is confusing in
classic (frequentist) statistics. However, another benefit of non-
parastat bootstrap is that it can be viewed as an approximation
of Bayesian model [21]. Therefore, we can interpret the CIs
from bootstrap similarly as credible intervals. That is, when the
smart oracle determines that the performance goal can be met
with X confidence level, it can be approximately interpreted
as: with at most X probability, the performance goal can be
met. Note that, because the performance is estimated using
a performance model in Equation (3), the estimation has
errors due to the model’s inaccuracy. Therefore, X is the
upper bound of the confidence/probability. The lower bound
of the confidence/probability is determined by the estimation’s
error. The experiment results in Section VI show that the
maximum error is 14% and the average error 5%. Therefore,
the experimental lower bound of the confidence/probability is
approximately X − 14% at most and X − 5% on average.

V. EXAMPLE

Continuing with the example from Section II, assume that
Eve wants to port the application ferret from PARSEC onto
the Chameleon cloud [7]. She wants to use a single large VM
instance with a performance requirement of 120 secs as the
maximum execution time for 95% of the time. The application
will be executed with inputs similar to PARSEC’s “native”
input, assuming Chameleon cloud’s per-resource performance
distributions have already been characterized.

Eve considers whether a large VM instance is a good choice.
She executes ferret on a local machine. Table V indicates that
the resource usage profile for ferret, which spends 76% cycles
on CPU (Appcpu) and 24% cycles on memory (Appmem). Eve
also executes ferret on the Chameleon cloud with a large VM
configuration for 100 iterations, and finds the average baseline
execution time is 99 seconds (Appbaseline).

Eve then inputs ferret’s resource profile and baseline exe-
cution time into the smart oracle. Eve also specifies that she
wants to test for the 95th percentile execution time with 90%
confidence level. Based on Eve’s performance requirements,
CAPT provides the feedback to Eve that the estimated 95th
percentile execution time of ferret is less than 104.7 seconds
with at most 90% confidence, and thus the performance
requirement can be met with a large VM instance. Since
the cloud charges users by resource usage, she also wants to
know the associated costs. As a large instance meets Eve’s
performance requirement, Eve may consider using a large
instance and calculates the budget using the large instance’s
hourly rate. She could also try a medium VM to see if it meets
the performance requirement.

Assuming an hourly rate for a large VM instance on
the Chameleon cloud is $0.1865 (based on AWS t2.xlarge
pricing), the process of collecting 100 sample executions of
ferret on Chameleon for determining the baseline performance

6

costs d2.75ehours × 0.1865 = $0.56. If Eve instead were
to run ferret on a large VM instance for two weeks instead
of using CAPT , the cost to determine whether the large
instance will meet the performance requirements would be
336 hours× 0.1865 = $62.67. Thus, Eve saves money using
CAPT to determine whether the large VM instance is adequate
for her performance requirements. It is also worth noting that,
by using CAPT , Eve can get an estimation within 3 hours,
compared to two weeks wait without CAPT .

VI. EVALUATION

Our evaluation is designed to answer the following ques-
tions: 1) RQ1-Effectiveness: Are CAPT’s performance es-
timations accurate compared to the results acquired from
extensive performance testing? 2) RQ2-Cost Benefit: What is
the relative cost of the CAPT approach versus determining the
performance of an application directly in the cloud through
extensive performance testing?

A. Experimental Methodology

To answer the above questions, we used CAPT to con-
duct testing to estimate the 95th percentile execution times
of several applications with 90% confidence level on two
public clouds. We also conducted extensive performance tests
for these applications on the same clouds to acquire the
experimental 95th percentile execution times. We refer to this
extensive performance testing as the ground truth tests and
their results as the ground truth. We then compared CAPT’s
results and testing costs with the ground truth results and
ground truth testing cost to evaluate CAPT’s effectiveness and
cost benefit, respectively.

Micro-benchmarks suite. We selected two well known
micro-benchmarks, where each benchmark heavily utilizes
only one type of resource. These benchmarks are used to
obtain the performance fluctuation distributions of each type of
resource. Although the idea of CAPT’s cloud characterization
can be extended to most common types of resources, as a proof
of concept, we focus on the CPU and memory resources in
this paper. Table I describes the micro-benchmarks and their
corresponding resources.

Micro-benchmark Type Origin
Sysbench-CPU CPU Sysbench [22]

STREAM memory STREAM [23], [24]

TABLE I: Micro-benchmarks for cloud characterization

Subject Applications. We selected seven applications from
the PARSEC benchmark suite as the subjects of study for
evaluation [6]. These applications primarily utilize CPU and
memory for computation, with limited usage of disk and
network. Table II lists these applications with their primary
domains. These subjects cover a variety of domains that
may be ported to and benefit from cloud systems, including
data mining, financial analysis, simulation and system opti-
mizations. The “native” input sets from PARSEC, which are

designed for evaluations on real systems, are used as inputs
to all of our subject applications.

Application Domain
blackscholes (BS) Financial analysis
swaption (SW) Financial analysis
streamcluster (SC) Data mining
ferret (FE) Content-based similarity search server
bodytrack (BT) Body tracking of a person
canneal (CN) Chip design optimization
fluidanimate (FL) Fluid dynamics simulation

TABLE II: Subject applications

Cloud Infrastructure and VM configurations. Our eval-
uation was conducted on the research cloud Chameleon and
Amazon Web Services (AWS) [7]. We selected the Chameleon
cloud because it is free for researchers and a well maintained
cloud infrastructure. Chameleon cloud offers configurations
that are similar to the popular commercial clouds such as
AWS and Microsoft Azure. AWS was selected because it is
one of the leading service providers in cloud computing. The
applications running on Chameleon and AWS are affected
by cloud performance uncertainty factors, including virtual
machine (VM) scheduling and multi-tenancy [9], [19]. In
particular, through our correspondence with a Chameleon
maintainer, we confirmed that multi-tenancy does exist in
Chameleon. Figure 1 also shows that application performance
indeed fluctuates on Chameleon. Both Chameleon and AWS
offer several types of VM instances. For Chameleon, we used
all its VM types in this evaluation, except the “Tiny” instances
which are too small for our subject applications. While AWS
offers more choices of VMs, we chose to use three general
purpose instances that are also not too expensive for our large
scale evaluation (our evaluation on AWS costs about $2000 in
total) The instance types used in this evaluation are listed in
Table III and Table IV.

As stated in Section IV, we focus on the configurations
with a single VM. Chameleon instances are created in the data
center at the University of Chicago, while the AWS instances
are created in the AWS service region of US East (Ohio).
When executing micro-benchmarks and subject applications
on VMs with multiple CPU cores, all micro-benchmarks and
applications are configured to execute with multiple threads to
utilize all available cores.

Type Core Count Memory(GB) Pricing
Small (Sm) 1 2 free

Medium (Md) 2 4 free
Large (Lg) 4 8 free

TABLE III: VM instance types of Chameleon in this study

Type Core Count Memory(GB) Pricing
t2.small (t2s) 1 2 $0.023/hr

t2.medium (t2m) 2 4 $0.0464/hr
t2.xlarge (t2l) 4 16 $0.1856/hr

TABLE IV: VM instance types of AWS in this study

7

Coverage Criteria. In this evaluation, we chose the multi-
tenancy coverage criteria to cover both one daily cycle and
one weekly cycle, because they are the most common cycles
reported by prior work [19]. Daily and weekly cycles are
also more affordable to our evaluation than monthly cycles.
To cover both one daily cycle and one weekly cycle, a
cloud characterization test case must be executed for a week.
However, due to the bursty issue discussed in Section IV-A,
additional test cases were executed for another week to
mitigate the impact of random bursts. That is, for both
cloud characterization tests and ground truth tests, a micro-
benchmark or an application was executed repeatedly for two
weeks. Although executing for more weeks may provide more
accurate performance data, it is too expensive to conduct.
Recall that, as discussed in Section IV-A, the tests for covering
multi-tenancy coverage criteria also provide coverage for VM
scheduling criteria.

Performance Statistic and Confidence Level. The perfor-
mance statistic used in this evaluation is the 95th percentile
execution time, with the CL as 90%. Intuitively, with these two
parameters, CAPT aims at determining if a subject application
can meet its performance goal for 95% of the time with at
most 90% confidence. Recall that CAPT estimates the upper
bound of the CI of the performance statistic to determine the
satisfaction of performance goals.

B. Characterizing Cloud Performance Distributions

Procedure: Given there are two micro-benchmarks and six
types of VMs in total for the two clouds, a total of 24 tests
of micro-benchmark executions were conducted. Performance
results for the micro-benchmarks are collected to construct
per-resource performance distributions.

Results: Figure 5 gives the distributions (with histograms)
of the performance of CPU and memory micro-benchmarks.
Due to space limitations, only the medium VM types from
each cloud are shown. As Figure 5 shows, the performance
distributions of both clouds have large fluctuation ranges and
vary considerably depending on the resource type and cloud.
With statistic software, we also found that the distributions in
Figure 5 do not follow common theoretical distributions. These
characteristics make it very difficult to process the distribution
to acquire important performance statistics.

C. Determining Applications’ Resource Usage Profiles

Procedure: To determine the applications’ resource usage
profile, we executed each subject application on a local Ubuntu
server with Intel processor i7-2600 and followed the approach
in Section IV-B to calculate Appcpu and Appmem.

Results: Table V presents the results of the resources used
by the applications. Among all applications, blackscholes and
swaptions are CPU-intensive applications with little memory
access time. Streamcluster streams in large amounts of data,
thus it is a memory-intensive application that spends most
of its time in memory accesses. The rest of the applications,
including ferret, bodytrack, canneal and fluidanimate, shows a
mixture of both CPU computation and memory accesses.

Application Appcpu Appmem

swaption 99.8% 0.2%
blackscholes 99.2% 0.8%
streamcluster 2.4% 97.6%

ferret 76% 24%
bodytrack 64% 36%
canneal 79% 21%

fluidanimate 31% 69%

TABLE V: Subject applications’ resource usage profiles

D. Establishing Application Cloud Baseline Performance

Procedure: To establish application baseline performance,
we executed each application for 100 times on each VM
configuration, following the approach in Section IV-C. 100
runs are chosen because we found they provide a good balance
between accuracy and cost for most applications.

Results: Table VI shows the baseline execution time of
our applications. The rows represent each subject application,
while each column represents a VM type. These results sug-
gest that the subject applications cover a variety of applications
in terms of execution times.

Chameleon AWS
Sm Md Lg t2s t2m t2l

SW 228.7 118.2 61.8 2618.3 1329.8 576.8
BS 130.9 65.5 37.1 740.0 371.3 161.2
SC 513.7 303.5 159.6 2359.7 1203.2 524.0
FE 364.9 174.6 99.1 2084.4 1075.2 472.8
BT 124.0 69.8 47.0 765.6 384.9 168.4
CN 126.9 70.4 39.0 1010.0 436.5 146.5
FL 323.4 189.0 104.5 1715.3 873.3 419.9

TABLE VI: Application baseline results in seconds

E. CAPT Effectiveness

We next examined the research question: Are CAPT’s
performance estimations accurate compared to the results
acquired from extensive performance testing?

Procedure: We compare CAPT estimations with ground
truth results. More specifically, we used CAPT to estimate
the upper bound of the CI of the 95th percentile execution
times (Perest) of the subject applications with 90% confidence
level for each VM configuration. We also conducted ground
truth tests with these applications to acquire the experimental
95th percentile execution times as the ground truth results
(Perfexp). Then we computed the percentage error using
Equation (4).

Error =
|Perfest − Perfexp|

Perfexp
× 100% (4)

Results: Figure 6 presents the percentage errors for CAPT’s
estimations on two clouds. As the figure shows, CAPT’s esti-
mations have high accuracy. The average error on Chameleon
is 5.1%, with a maximum error of 13.8%. The average error on
AWS is 3.0%, with a maximum error of 5.9%. The average
error on two clouds is 4.9%. These low errors suggest that
CAPT can provide reliable estimations to replace traditional
performance testing.

8

0%
2%
4%
6%
8%

10%
12%
14%

 4.5 5 5.5 6

(a) Chameleon Med VM CPU Dist.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

 25 30 35 40 45 50 55 60 65

(b) Chameleon Med VM Mem Dist.

0%
2%
4%
6%
8%

10%
12%
14%

 29 30 31 32 33 34 35

(c) AWS t2.medium VM CPU Dist.

0%
1%
2%
3%
4%
5%
6%
7%
8%

 46 48 50 52 54 56 58 60

(d) AWS t2.medium VM Mem Dist.

Fig. 5: CPU and memory performance distributions based on cloud characterization tests with micro-benchmarks. X axis:
execution times in seconds; Y axis: percentages of executions with particular execution times.

0%
2%
4%
6%
8%

10%
12%
14%

FL
_S

m
CN

_S
m

SC
_S

m
SW

_S
m

BS
_S

m
BT

_S
m

FE
_S

m
FL

_M
d

CN
_M

d
SC

_M
d

SW
_M

d
BS

_M
d

BT
_M

d
FE

_M
d

FL
_L

g
CN

_L
g

SC
_L

g
SW

_L
g

BS
_L

g
BT

_L
g

FE
_L

g
Av

g

Pe
rc

en
ta

ge
 E

rr
or

(a) Error on Chameleon for each application-VM pair

0%
1%
2%
3%
4%
5%
6%

FL
_t

2s
CN

_t
2s

SC
_t

2s
SW

_t
2s

BS
_t

2s
BT

_t
2s

FE
_t

2s
FL

_t
2m

CN
_t

2m
SC

_t
2m

SW
_t

2m
BS

_t
2m

BT
_t

2m
FE

_t
2m

FL
_t

2l
CN

_t
2l

SC
_t

2l
SW

_t
2l

BS
_t

2l
BT

_t
2l

FE
_t

2l
Av

g

Pe
rc

en
ta

ge
 E

rr
or

(b) Error on AWS for each application-VM pair

Fig. 6: Percentage errors of CAPT’s performance estimations

F. CAPT Cost Benefits

Lastly, we address the research question: What is the
relative cost of the CAPT approach versus determining the
performance of an application directly in the cloud through
extensive performance testing?

Procedure: We compared the total testing cost of CAPT
with the total testing cost of ground truth tests for all subject
applications. The total testing cost of CAPT includes the costs
of cloud characterization tests and application baseline tests.
The total testing cost of ground truth tests includes the cost to
execute all applications for two weeks. Because the bills from
AWS do not include per-VM cost, we estimate the testing
costs using the total test execution time and AWS’s pricing
model listed in Table IV. The sum of the computed test costs
is roughly the same as the bill we received from AWS. For
Chameleon, there is no charge for VM usage. However, by
employing the pricing model from AWS, it is possible to
determine the relative cost benefits from using CAPT . Note
that, storage costs are not included in our calculations.

t2.small t2.medium t2.xlarge
ground truth tests $54.10 $109.13 $436.53
CAPT total costs $22.75 $38.51 $137.79
CAPT cost reduction 58.0% 64.7% 68.4%

TABLE VII: Testing costs for all subject applications on AWS

Results: Table VII shows the costs of conducting tests on
AWS. As the table shows, for the seven subject applications,
CAPT can reduce testing cost by 64% on average, compared to
traditional testing (ground truth tests). For a single application,
if the cloud characterization cost is not considered, the cost of
using CAPT can be 62 times smaller than traditional perfor-
mance testing. For Chameleon, using a similar pricing model
as AWS, the average cost reduction of CAPT is 69.1%, 70.2%
and 70.7% for small, medium and large VMs, respectively. The
average cost reduction on both clouds is 66.9%. The primary
cost reduction comes from the fact CAPT only executed two
two-week (cloud characterization) test cases for each VM
configuration and reuse their results for all applications, while
the extensive performance tests executed seven applications
each for two weeks for each VM configuration.

Note that another benefit of CAPT is its time saving.
Application characterization tests usually take a few hours.
If the cloud is already characterized, the smart oracle can
provide performance estimations instantaneously, meaning the
performance estimations are available in only several hours.
However, without CAPT , running the applications to cover
all cloud uncertainty factors typically takes weeks. Therefore,
CAPT can potentially reduce the time cost for cloud perfor-
mance testing. Software engineers may even use CAPT as a
screening tool to quickly determine the VM configurations that
may meet performance goals, then conduct longer performance
tests to get more accurate performance results.

G. Threats to Validity

Our evaluation focused on the cost effectiveness of the
CAPT approach for a set of seven applications using a suite
of two micro-benchmarks for the cloud characterization. The
results may not generalize to other applications. To address

9

this threat, we selected well known benchmarks for CPU
and memory characterization and a variety of applications for
evaluation. Our evaluation is conducted on Chameleon and
AWS; results may differ on other clouds. For more accurate
resource usage profiles, applications should be tested on local
machines with similar processors to those in the target cloud.

We observed that there are two main sources of errors in
CAPT . The first source is an inaccurate baseline performance.
Because baseline performance is acquired as the average from
only 100 runs, it may be different from the average acquired
from two-week executions. We observe that longer baseline
runs may mitigate the impact of this type of error. The second
source is the random bursts in a cloud. The burst issue is
more severe on Chameleon than AWS, causing the relatively
higher errors on Chameleon. To mitigate this error, more
than two weeks of tests should be conducted for both cloud
characterization and ground truth tests. However, research is
required to investigate the proper number of tests to obtain
stable performance distributions on clouds.

Additionally, limited by space and cloud execution costs, in
this proof-of-concept evaluation, we do not consider config-
urations with multiple VMs. Other common resources, such
as storage and network, are not considered as well. Cloud
performance may also be affected by other factors, such as
hardware heterogeneity. We plan to extend this research in the
future to consider these issues.

VII. RELATED WORK

A number of studies in performance testing have been
focusing on the proper selection of test inputs. Common
approaches for input selection include static code analysis [25],
[26], [27], dynamic analysis and profiling [28], [29], and
probability symbolic execution [30], [31], [32]. There are also
studies focusing on performance regression detection through
proper test case selection and performance data analysis [33],
[34], [35], [36]. Performance models are also employed to
predict performance and its fluctuations due to variations
in system configurations, program model and inputs [37],
[38], [39]. However, performance testing on cloud presents
a new problem, where the performance of a single application
with a single input under a single system configuration still
experiences significant fluctuations and uncertainty due to
uncontrollable external issues (e.g., multi-tenancy). Therefore,
by focusing on the performance uncertainty issue of the cloud,
CAPT is complementary to these performance testing studies.

There are studies investigating testing on cloud. Gambi et
al. proposed to reduce testing cost on cloud by reusing VMs
and interleaving tests and VM reimaging [40]. Malik et al.
presented an approach to detect performance variations in
large scale system [41]. Núñez and Hierons proposed a cloud
system model to facilitate cloud testing on simulators [42].
Rose et al. investigated employing cloud system for probability
testing [43]. Several studies investigated automating cloud
testing [44], [45], [46]. There is also research on testing
auto-scaling policies and elasticity [47], [48]. Others proposed
strategies for testing the performance of cloud applications

under various loads [49], [50], [51], [52], [53], [54], [55], [56].
Although these studies investigated various testing issues on
cloud, none of them addresses the testing challenges imposed
by cloud performance uncertainty.

Many studies have observed and analyzed the performance
variation and uncertainty on cloud [57], [58], [59], [60], [61],
[9], [62], [63], [19]. Our work is inspired by these prior studies
on cloud performance uncertainty. Elasticity may help meet
performance requirements by scaling up resource usages [16],
[64], [65], [66]. However, as stated in Section I, providing
performance guarantee is still an open question even with
elasticity and many other system management techniques [12],
[13], [14]. An effective cloud testing technique such as CAPT
may even help the design of elasticity by providing better
estimations of performance [15], [16]. There is also work on
predicting the performance of cloud applications [67], [68],
[69], [70], [71]. These studies predicted how performance
changed with input/workload sizes. They focused on applica-
tions whose performance has a strong correlation with work-
load sizes, such as database, map-reduce and high performance
computing applications. They also required reliable training
sets of performance data. However, CAPT , as a performance
testing approach, is generic in terms of application types.
Moreover, CAPT can also be employed to provide reliable
training sets to these studies.

VIII. CONCLUSIONS AND FUTURE WORK

Setting appropriate VM configurations for applications on
clouds is critical for both performance and cost. However,
this task can be challenging to software engineers due to
the performance uncertainty of the cloud systems. In this
paper, we present a proof-of-concept approach to testing
an application for how its performance will be affected by
cloud uncertainty, without incurring undue testing costs. We
specify cloud uncertainty testing criteria, design a test-based
strategy to characterize the black-box cloud’s performance
distributions using the testing criteria, and support execution
of tests to characterize the application to be deployed as both a
resource usage profile and a cloud baseline performance using
sampling. We conducted a proof-of-concept implementation of
CAPT , and our evaluation results for two public clouds show
that CAPT can accurately estimate the performance of the
considered cloud applications with 4.9% error on average and
reduce the testing cost of 66.9% on average. Our future work
will include increasing the number and type combinations of
VMs for the configuration, more cloud service providers, as
well as additional types of resources and applications.

Acknowledgments This work was supported by the Na-
tional Science Foundation under grants CCF-1617390 and
CCF-1618310. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied of NSF. The authors would like to
thank the anonymous reviewers for their insightful comments.
We would also like to thank Jinay Jani and Xin Nie for their
valuable inputs.

10

REFERENCES

[1] RightScale, “RightScale 2015 State of the Cloud Report,” 2015.
[2] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities,” in High Performance Computing and Communi-
cations, 2008. HPCC ’08. 10th IEEE International Conference on, 2008,
pp. 5–13.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software Practice & Experience, vol. 41, no. 1, pp. 23–50,
Jan. 2011.

[4] B. Narasimhan and R. Nichols, “State of Cloud Applications and
Platforms: The Cloud Adopters’ View,” Computer, vol. 44, no. 3, pp.
24–28, March 2011.

[5] P. Gupta, A. Seetharaman, and J. R. Raj, “The usage and adoption
of cloud computing by small and medium businesses,” International
Journal of Information Management, vol. 33, no. 5, pp. 861 – 874,
2013.

[6] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

[7] “A configurable experimental environment for large-scale cloud re-
search,” https://www.chameleoncloud.org/, [Online; accessed 2015-10-
22].

[8] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, Performance Test-
ing Guidance for Web Applications: Patterns & Practices. Redmond,
WA, USA: Microsoft Press, 2007.

[9] P. Leitner and J. Cito, “Patterns in the Chaos: A Study of Performance
Variation and Predictability in Public IaaS Clouds,” ACM Trans. Internet
Technol., vol. 16, no. 3, pp. 15:1–15:23, Apr. 2016.

[10] M. Hajjat, R. Liu, Y. Chang, T. S. E. Ng, and S. Rao, “Application-
specific configuration selection in the cloud: Impact of provider policy
and potential of systematic testing,” in 2015 IEEE Conference on
Computer Communications (INFOCOM), 2015.

[11] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud
Computing,” National Institute of Standards & Technology, Gaithers-
burg, MD, United States, Tech. Rep., 2011.

[12] T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “Workloadcompactor:
Reducing datacenter cost while providing tail latency slo guarantees,”
in 2017 ACM Symposium on Cloud Computing, 2017.

[13] P. Janus and K. Rzadca, “Slo-aware colocation of data center tasks based
on instantaneous processor requirements,” in 2017 ACM Symposium on
Cloud Computing, 2017.

[14] T. Chen and R. Bahsoon, “Self-Adaptive Trade-off Decision Making
for Autoscaling Cloud-Based Services,” IEEE Transactions on Services
Computing, vol. 10, no. 4, July 2017.

[15] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup, “An Experimental Performance Evaluation of
Autoscaling Policies for Complex Workflows,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
2017.

[16] M. Mao and M. Humphrey, “Auto-scaling to Minimize Cost and Meet
Application Deadlines in Cloud Workflows,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2011.

[17] B. Efron, The Jackknife, the bootstrap and other resampling plans.
SIAM, 1982.

[18] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their
Application. New York, NY, USA: Cambridge University Press, 2013.

[19] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability
of production cloud services,” in 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2011.

[20] Intel, “Intel 64 and IA-32 architecture software developer’s manual,”
2009.

[21] D. B. Rubin, “The bayesian bootstrap,” The Annals of Statistics, vol. 9,
no. 1, pp. 130–134, 1981.

[22] A. Kopytov, “SysBench: A System Performance Benchmark,”
https://github.com/akopytov/sysbench0, 2017, [Online; accessed 23-Feb-
2017].

[23] J. D. McCalpin, “The STREAM Benchmark,”
https://www.cs.virginia.edu/stream/, [Online; accessed 2017-02-22].

[24] ——, “A survey of memory bandwidth and machine balance in current
high performance computers,” IEEE TCCA Newsletter, vol. 19, p. 25,
1995.

[25] S. Chattopadhyay, L. K. Chong, and A. Roychoudhury, “Program Perfor-
mance Spectrum,” in Proceedings of the 14th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems,
2013.

[26] P. Zhang, S. Elbaum, and M. B. Dwyer, “Automatic generation of
load tests,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, 2011.

[27] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated Test Generation
for Worst-case Complexity,” in Proceedings of the 31st International
Conference on Software Engineering, 2009.

[28] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measuring Em-
pirical Computational Complexity,” in Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
2007.

[29] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda, “Panappticon:
Event-based tracing to measure mobile application and platform per-
formance,” in Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis,
2013.

[30] B. Chen, Y. Liu, and W. Le, “Generating Performance Distributions
via Probabilistic Symbolic Execution,” in Proceedings of the 38th
International Conference on Software Engineering, 2016.

[31] A. Filieri, C. S. Pasareanu, and G. Yang, “Quantification of Software
Changes Through Probabilistic Symbolic Execution (N),” in Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015.

[32] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys, “Statistical
Symbolic Execution with Informed Sampling,” in Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014.

[33] K. C. Foo, Z. M. J. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora,
“An Industrial Case Study on the Automated Detection of Performance
Regressions in Heterogeneous Environments,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, 2015.

[34] A. Cavalli, S. Maag, and G. Morales, “Regression and Performance Test-
ing of an e-Learning Web Application: dotLRN,” in 2007 Third Inter-
national IEEE Conference on Signal-Image Technologies and Internet-
Based System, 2007.

[35] C. Yilmaz, A. Porter, A. S. Krishna, A. M. Memon, D. C. Schmidt, A. S.
Gokhale, and B. Natarajan, “Reliable Effects Screening: A Distributed
Continuous Quality Assurance Process for Monitoring Performance
Degradation in Evolving Software Systems,” IEEE Transactions on
Software Engineering, 2007.

[36] S. Mostafa, X. Wang, and T. Xie, “Perfranker: Prioritization of perfor-
mance regression tests for collection-intensive software,” in Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2017.

[37] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer, “Scaling
Size and Parameter Spaces in Variability-Aware Software Performance
Models (T),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2015.

[38] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The Impact of Feature
Selection on Defect Prediction Performance: An Empirical Comparison,”
in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), 2016.

[39] H. Gautama and A. J. C. van Gemund, “Low-cost static performance
prediction of parallel stochastic task compositions,” IEEE Transactions
on Parallel and Distributed Systems, 2006.

[40] A. Gambi, A. Gorla, and A. Zeller, “O!Snap: Cost-Efficient Testing in
the Cloud,” in 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2017.

[41] H. Malik, H. Hemmati, and A. E. Hassan, “Automatic Detection of
Performance Deviations in the Load Testing of Large Scale Systems,”
in 2013 35th International Conference on Software Engineering (ICSE),
2013.

[42] A. Núñez and R. M. Hierons, “A Methodology for Validating Cloud
Models using Metamorphic Testing,” Annals of Telecommunications,
vol. 70, no. 3, Apr 2015.

11

[43] L. M. Rose, S. Poulding, R. Feldt, and R. F. Paige, “Towards A Scalable
Cloud Platform for Search-Based Probabilistic Testing,” in 2013 IEEE
International Conference on Software Maintenance, 2013.

[44] Y. Magid, R. Tzoref-Brill, and M. Zalmanovici, “Coverage-based met-
rics for cloud adaptation,” in Proceedings of the 2Nd International
Workshop on Quality-Aware DevOps, 2016.

[45] A. Gambi, S. Kappler, J. Lampel, and A. Zeller, “CUT: Automatic
Unit Testing in the Cloud,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017.

[46] B. Garcia, F. Gortazar, L. Lopez-Fernandez, M. Gallego, and M. Paris,
“Webrtc testing: Challenges and practical solutions,” IEEE Communica-
tions Standards Magazine, vol. 1, no. 2, pp. 36–42, 2017.

[47] A. Gambi, W. Hummer, and S. Dustdar, “Automated Testing of Cloud-
based Elastic Systems with AUToCLES,” in Automated Software En-
gineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 714–717.

[48] S. Dustdar, A. Gambi, W. Krenn, and D. Nickovic, “A pattern-based
formalization of cloud-based elastic systems,” in Proceedings of the 2015
IEEE/ACM 7th International Workshop on Principles of Engineering
Service-Oriented and Cloud Systems, 2015.

[49] Z. M. Jiang, “Automated Analysis of Load Testing Results,” in Pro-
ceedings of the 19th International Symposium on Software Testing and
Analysis, 2010.

[50] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing in the
Cloud: Exploring the Practice,” Software, IEEE, vol. 29, no. 2, pp. 46–
51, 2012.

[51] N. Snellman, A. Ashraf, and I. Porres, “Towards Automatic Performance
and Scalability Testing of Rich Internet Applications in the Cloud,” in
Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, 2011.

[52] P. Mohagheghi and T. Sæther, “Software Engineering Challenges for Mi-
gration to the Service Cloud Paradigm: Ongoing Work in the REMICS
Project,” in Services (SERVICES), 2011 IEEE World Congress on, 2011.

[53] J. H. Kim, S. M. Lee, D. S. Kim, and J. S. Park, “Performability Analysis
of IaaS Cloud,” in Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2011 Fifth International Conference on, 2011.

[54] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and
C. Pu, “Expertus: A Generator Approach to Automate Performance
Testing in IaaS Clouds,” in Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, 2012.

[55] Z. Ganon and I. Zilbershtein, “Cloud-based Performance Testing of
Network Management Systems,” in Computer Aided Modeling and
Design of Communication Links and Networks, 2009. CAMAD ’09. IEEE
14th International Workshop on, 2009.

[56] “Elastest: an elastic platform for testing complex distributed large
software systems.” [Online]. Available: http://elastest.eu/

[57] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance,” VLDB
Endownent, vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[58] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transcations on Parallel Dis-
tributed System, vol. 22, no. 6, pp. 931–945, Jun. 2011.

[59] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance Evaluation of Amazon EC2
for NASA HPC Applications,” in Proceedings of the 3rd Workshop on
Scientific Cloud Computing Date, 2012.

[60] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, 2012.

[61] A. Gandhi, P. Dube, A. Karve, A. Kochut, and H. Ellanti, “The Un-
observability Problem in Clouds,” in Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on, 2015.

[62] D. Shue, M. J. Freedman, and A. Shaikh, “Performance Isolation and
Fairness for Multi-tenant Cloud Storage,” in Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation,
2012.

[63] Z. Ou, H. Zhuang, A. Lukyanenko, J. Nurminen, P. Hui, V. Mazalov, and
A. Yla-Jaaski, “Is the Same Instance Type Created Equal? Exploiting
Heterogeneity of Public Clouds,” Cloud Computing, IEEE Transactions
on, 2013.

[64] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-scaling with Dead-
line and Budget Constraints,” in Grid Computing (GRID), 2010 11th
IEEE/ACM International Conference on, 2010.

[65] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
Deadline-constrained Provisioning for Scientific Workflow Ensembles in
IaaS Clouds,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012.

[66] B. Dougherty, J. White, and D. C. Schmidt, “Model-driven Auto-
scaling of Green Cloud Computing Infrastructure,” Future Generation
Compututer System, vol. 28, no. 2, pp. 371–378, Feb. 2012.

[67] R. Mian, P. Martin, F. Zulkernine, and J. L. Vazquez-Poletti, “Towards
Building Performance Models for Data-intensive Workloads in Public
Clouds,” in Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering, 2013.

[68] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance
and Resource Modeling in Highly-concurrent OLTP Workloads,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, 2013.

[69] I. K. Kim, J. Steele, Y. Qi, and M. Humphrey, “Comprehensive
Elastic Resource Management to Ensure Predictable Performance for
Scientific Applications on Public IaaS Clouds,” in Proceedings of the
2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, 2014.

[70] A. Matsunaga and J. A. B. Fortes, “On the Use of Machine Learning
to Predict the Time and Resources Consumed by Applications,” in
Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, 2010.

[71] F. Tian and K. Chen, “Towards Optimal Resource Provisioning for
Running MapReduce Programs in Public Clouds,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, 2011.

12

