
Virtual Machine Provisioning for Applications with Multiple Deadlines
in Resource-Constrained Clouds

Rehana Begam, Wei Wang and Dakai Zhu
The University of Texas at San Antonio

San Antonio, Texas 78249
Email: {ylm213@my.utsa.edu; wei.wang@utsa.edu; dakai.zhu@utsa.edu}

Abstract—Recently, several studies have considered applica-
tions with a single time constraint (i.e., deadline) running on
cloud systems. In this work, to effectively support user requests
with flexible timing constraints (e.g., users may prefer expe-
dited services and are willing to pay extra for getting their job
processed at earlier times), we consider applications with multi-
ple deadlines for being processed in resource-constrained cloud
systems and investigate corresponding virtual machine (VM)
provisioning schemes. Specifically, by considering the multiple
deadline-bid pairs of user requests, we propose a Slope-based
Time-Sensitive Resource Factor with Dominant Resource being
considered to prioritize such requests. In addition, we study
the mapping schemes that allocate multiple VMs of a user
request to only one or multiple computing nodes, which are
denoted as Bundled and Distributed mappings, respectively. The
evaluation results show that, compared to the single deadline
schemes, the proposed VM provisioning schemes that consider
multiple deadlines and distributed mapping can significantly
improve the achieved system benefit and resource utilization.

1. Introduction

In cloud computing, resource allocation is the important
process of assigning available resources to the needed cloud
applications over the internet and service requests may
starve if it is not done properly [1]. The computing resources
in cloud systems are normally provided to serve requests in
the form of virtual machines (VMs). The problem of VM
provisioning in clouds has been investigated from different
points of view and many research studies have been reported
on resource allocation for cloud systems [2], [3], [4]. For in-
stance, the VM provisioning techniques have been proposed
to improve user application performance [5], [6], [7], [8],
to efficiently utilize cloud resources [9], [10], [11], [12], to
minimize the user cost and maximize the revenue for cloud
service providers [13], [14], [15], [16], [17], or to deliver
services even in presence of failures [18], [19], [20], [21].

However, only limited research has focused on applica-
tions with timing constraints (i.e., deadlines) [7], [22], [23],
[24], [25]. Note that, many applications running on cloud
systems do have various timing-constraints. For instance,
data analytic jobs account for a large proportion of cloud
jobs (such as web logs analysis, weather forecast analysis,

finance analysis, scientific simulation, machine learning,
etc. [26], [27], [28]) and most of these jobs have timing
constraints, where the results may become useless if they
cannot be processed in a certain time. Moreover deadlines
can also be considered as a performance assurance metric
in the Service Level Agreement (SLA) [22].

When deadlines of jobs are considered, Mao and
Humphrey employed integer programming to determine the
optimal auto-scaling policies for jobs budget constraints on
public clouds [29], [30]. In [25], a deadline-driven resource
manager for scientific applications running on hybrid clouds
was studied. Le et al. compared the performance of sev-
eral classic scheduling algorithms for jobs with deadlines
in cloud systems, including first-come-first-serve, shortest
job first and EDF algorithms [7]. Zhu et al. investigated
a real-time workflow fault-tolerant model and a dynamic
fault-tolerant scheduling algorithm for real-time scientific
workflows [31]. In [23], Li et al. introduced the DCloud
resource allocator that leverages the (soft) deadlines of jobs
in public clouds and exploits the time sliding (delaying the
launching of a job) and bandwidth scaling (dynamic reduc-
tion of network bandwidth) techniques. However, none of
these papers consider resource-constrained (private) clouds.

Focusing on resource-constrained clouds, we have stud-
ied several time-sensitive VM provisioning schemes for
applications with a single deadline [32]. Specifically, for
simple user requests of a single VM, by considering the
Time-Sensitive Resource Factor (TSRF) and Dominant Re-
source (DR) of user requests, we proposed two prioritization
schemes and Euclidean-Distance based mapping approach.
Note that, the work did not consider user requests that need
multiple VMs and flexible timing constraints.

In order to support flexible timing requirements of user
requests, it can be beneficial to allow user requests to have
multiple timing-constraints (i.e., deadlines). For instance,
some users may prefer expedited services with extra cost
to get their jobs processed at earlier times. Moreover, for
cases with bursty user requests and not all of them can be
processed in time, some user requests may accept degraded
services as long as their applications can be processed by
the extended deadline with much lower cost.

In this work, we consider user requests that can require
more than one VMs and have multiple deadlines to spec-
ify their flexible service and cost requirements, which are

2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems

978-1-5386-2588-0/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2017.65

498

different from our previous work [32]. In particular, based
on the slope of user request’s bid vs. deadline (i.e., how
bid decreases when deadline increases), we propose a novel
Slope-based Time-Sensitive Resource Factor (TSRF) with
Dominant Resource (DR) to prioritize the requests. Then,
by allowing the multiple demanded VMs of a user request
be allocated to only one or different computing nodes in
the cloud, we study both Bundled and Distributed mapping
schemes, with the objective of improving resource utiliza-
tion, processing more user requests in time and achieving
better system benefits. The evaluation results show than,
compared to the existing schemes that consider only a single
deadline, the proposed multi-deadline based schemes can
lead to much better resource utilization and system benefit.

The remainder of this paper is organized as follows.
Section 2 presents the system models. The multi-deadline
based time-sensitive VM provisioning schemes are proposed
in Section 3 followed by a motivational example. The
evaluation results are discussed in Section 4 and Section 5
concludes the paper.

2. System Models

2.1. Resource-Constrained Clouds

We consider a resource-constrained (private) cloud
system that consists of M computing nodes Π =
{N1, . . . ,NM}. There are R types of resources Γ =
{R1, . . . ,RR} in the system (such as CPU cores and mem-
ory). Each node Nk represents a pool of such resources with
its capacity vector being denoted as Nk = (c1k, . . . , c

R
k).

Here, crk represents the total capacity of resource Rr on
node Nk (e.g., number of CPU cores). With heterogeneous
computing nodes being considered, the capacity of one type
of resource in different nodes can be different.

The computing resources in the cloud can be accessed by
cloud users in the form of virtual machines (VMs). In this
work, we consider V types of virtual machines that have
different resource requirements. For the VM type Vk, its
required resources can be denoted by a demand vector Vk =
(w1

k, . . . , w
R
k), where wr

k represents the required capacity (or
amount) of resource Rr.

As an example, focusing on two types of resources (CPU
and memory), we can consider a cloud system with two
nodes N1 and N2. Suppose that there are 16 CPU cores
and 128 GB memory in node N1 and 4 CPU cores and 8
GB memory in node N2. Suppose that there are four types
of virtual machines with their resource demand vectors as
V1 = (1, 2), V2 = (2, 8), V3 = (2, 16) and V4 = (4, 32)
(where the numbers mimic the ones for Amazon EC2
VM instances t2.small, t4.large, r4.large, and
t4.xlarge [33]), respectively.

To provide guaranteed performance of the requested
VMs to cloud users, similar to other recent works [34], [35],
[36], we assume that there is no sharing of resources among
the VMs that are simultaneously mapped to the same node.
That is, a physical CPU core from a node will be allocated

for each virtual CPU demanded by a VM, and the same for
other resources. Moreover, for simplicity, we consider only
the capacity/demand of a resource (e.g., number of cores or
amount of memory) in a node/VM without differentiating
its actual model and specification (such as core frequency
or memory speed). Exploring those features is beyond the
scope of this paper and will be addressed in our future
work. In addition, we further assume that a VM can only be
mapped to a single node where all its demanded resources
have to be supported by that node [34], [35], [36].

2.2. User Requests with Multiple Deadlines

In addition to the application to be processed, a
user request can be represented as a tuple θi =
(ai, 〈vi,mi〉, ti,DBi). Here, ai denotes the arrival time of
the user request. To run the desired application, we assume
that the user knows the type vi (1 ≤ vi ≤ V) and number
mi of VMs needed as well as the (worst case) operation
time ti to execute the application, which includes the VMs’
setup and tear down overheads (that is, we assume that new
VMs are instantiated for each request).

To model the flexible timing requirements of user re-
quests, the deadline-bid vector DBi specifies the list of
service levels where the level j is represented by a pair of
deadline and bid 〈di,j , bi,j〉. Here, di,j is the j’th deadline of
request θi and bi,j represents the corresponding bid for the
application being processed by di,j . We use bid as a generic
term to represent the user cost or system benefit. We assume
that there are li service levels for request θi. That is, we
have DBi = 〈〈di,1, bi,1〉, . . . , 〈di,j , bi,j〉, . . . , 〈di,li , bi,li〉〉.
Without loss of generality, we assume that di,j < di,j+1

and bi,j > bi,j+1 where j ∈ [1, li − 1].
As an example, suppose that a user request arrives at

time 5, which requires 2 VMs of type V1 to run its applica-
tion for 10 time units. Here, if the application can be pro-
cessed within 20 time units, the user specified bid is 15; sim-
ilarly, if it is served within 25 time units, the bid is 10; and
35 time units with the bid of 2. The user request can be rep-
resented as θ = (5, 〈v1, 2〉, 10, 〈〈20, 15〉, 〈25, 10〉, 〈35, 2〉〉).

The key notations used in this work is summarized in
Table 1.

TABLE 1: Key Notations

Notations Definitions

Nk A cloud computing node k
crk Capacity of resource Rr of node Nk

Rr A resource type
Vk A VM type
wr

k Required capacity of resource Rr for VM type Vk

θi A user request
ai Arriving time of user request θi
mi The number of requested VMs of user request θi
ti Execution time (worst case) of user request θi
DBi vector of all deadline vs. bid pairs for user request θi
di,j The j’th deadline of user request θi
bi,j Bid for the deadline di,j of user request θi
li Number of deadline vs. bid pairs of user request θi

499

3. VM Provisioning with Multiple Deadlines

For user requests with a single deadline, we have studied
the prioritization heuristics based on the Time-Sensitive
Resource Factor (TSRF) and Dominant Resource (DR) [32].
Note that, even if there is only one deadline vs. bid pair,
finding the optimal VM provisioning for user requests is a
general bin packing problem and is NP-hard. Therefore, in
this work, by extending the idea of Time-Sensitive Resource
Factor (TSRF) and considering the multiple deadlines of
user requests, we focus on investigating efficient prioritiza-
tion and mapping heuristics.

3.1. Overview of VM Provisioning

Algorithm 1 : VM Provisioning at each interval T

1: //collect user requests and available resource capacities
2: Θ(t0) = {θi|θi ∈ (Arrival or Wait Queues)};
3: Π = UpdateAvailCapacity();
4: for (θi ∈ Θ(t0)) do
5: Q ← Prioritize(θi, ∗); //∗ is S-M-TSRF or /DR
6: end for
7: //allocate requested VMs to computing nodes
8: AllocateVMs(Q, Π);
9:

10: Procedure Prioritize(θi, *)
11: // j is current deadline level of θi
12: calculate sli,j ; [eqn(1)]
13: calculate ξi,j or τi,j ; [eqn(4) or eqn(6)]

To effectively process user requests, we consider an
interval-based strategy for VM provisioning and Algo-
rithm 1 shows the main steps at the beginning of an interval
T . It first collects the newly arrived user requests as well as
those that have not been served yet to form the request set
(line 2). For each computing node, the available capacity
of its resources is updated (line 3 with the help of func-
tion UpdateAvailCapacity()). The two main steps: requests
prioritization and allocation of requests’ VMs (line 5 and
line 8, respectively) will be discussed in details in the next
two sections.

3.2. Slope-based Multi-Deadline Prioritization

Note that, as discussed in Section 2, an important feature
for user requests with multiple pairs of deadlines and bids
is that, the deadline and its associated bid are correlated.
In general, bid decreases as deadline increases and vice
versa. To obtain the maximum system benefits (i.e., overall
achieved bids), we should exploit such correlation of user
requests. Intuitively, the user request with the largest drop
of its bid for larger deadlines should be served at an earlier
time to obtain larger system reward. Following this idea, we
propose the Slope-based scheme to prioritize user requests
based on their deadline vs. bid pairs.

Figure 1: Slope of bid-deadline curves

As an example, considering four (4) user requests θ1,
θ2, θ3 and θ4, with their service vectors as DB1 =
〈〈1, 9〉, 〈3, 8〉, 〈4, 2〉〉, DB2 = 〈〈1, 7〉, 〈2, 6〉, 〈3, 2〉〉, DB3 =
〈〈2, 7〉, 〈5, 2〉, 〈6, 1〉〉 and DB4 = 〈〈3, 10〉, 〈9, 4〉, 〈9, 1〉〉.
Figure 1 shows the bid vs. deadline relation for these four
user requests.

Here, we can see that for user request θ1, the line
segment from point 〈3, 8〉 to point 〈4, 2〉 is steeper than
the line segment from point 〈1, 9〉 to point 〈3, 8〉. It means
that the bid in the second pair would drop faster to the next
level than the one in the first pair, and we should try to
process request θ1 by its second deadline 3. Moreover, the
bid in the second pair of request θ1 also drops (from 〈3, 8〉
to 〈4, 2〉) faster than that of the second pair of request θ2
(from 〈2, 6〉 to 〈3, 2〉). It means that the request θ1 should
have higher priority with its second deadline vs. bid pair
being considered when compared to that of the request θ2.

From their bid-deadline curves, we define the slope for
the j’th level of a user request θi as:

sli,j =
‖bi,j − bi,(j−1)‖
‖di,j − di,(j−1)‖ (1)

Then, considering the multiple deadline of request θi, the
Modified Time-Sensitive Resource Factor (mTSRF) η̂ki,j to
indicate the resource usage efficiency of θi on a computing
node Nk with its j’s deadline can be defined as:

η̂ki,j =
bi,j

(di,j − t0) · ti ·
∑

Rr∈Γ
yr
i

crk

(2)

where yri =
∑

Rr∈Γ mi · wr
vi denotes the total demand of

θi for resource Rr; crk is the available resource capacity
of resource Rr in the node Nk. By considering all eligible
computing nodes that have enough remaining resources
for θi, we can formulate Modified Time-Sensitive Resource
Factor (mTSRF) as η̂i,j :

η̂i,j = max
Np∈Π

{η̂ki,j|∀Rr ∈ Γ, yri ≤ crk} (3)

Here, with the inversely proportional relation to the overall
resource usage ratio, the factor will have a higher value
when the required resources are relatively less on one node.
Similarly, smaller deadlines, less required time and larger
benefit values can also lead to higher values for η̂ki,j .

500

Finally, by incorporating the slope of deadline-bid pairs
with the mTSRF, the Slope-based Multi-Deadline TSRF (S-
M-TSRF) ξi,j is defined as:

ξi,j = sli,j · η̂i,j (4)

Similarly, we can extend θi’s dominant share dsi and
define its Modified TSRF with Dominant Resource (mT-
SRF/DR) δ̂i,j and the Slope-based Multi-Deadline TSRF
with Dominant Resource (S-M-TSRF/DR) τi,j for the j’th
deadline level of θi as:

δ̂i,j =
bi,j

(di,j − t0) · ti · dsi (5)

τi,j = sli,j · δ̂i,j (6)

Once the S-M-TSRF or S-M-TSRF/DR factor values
for all requests are obtained, we can prioritize the requests
accordingly where the ones with larger factor values are
assigned higher priorities (lines 10 to 13 in Algorithm 1).
When two requests have the same value, tie can be broken
arbitrarily.

3.3. Mapping of VMs: Bundled vs. Distributed

A bad request-to-node mapping strategy could lead to
poor resource utilizations and system performance. We re-
cently proposed an Euclidean Distance (ED) based mapping
heuristic for requests requiring only a single VM [32]. When
multiple VMs are needed for a user request to run its
application, it is possible that the VMs do not fit in any sin-
gle computing node but can be distributed among multiple
computing nodes. Considering such cases, we propose two
different mapping in this work: Bundled and Distributed.

3.3.1. Euclidean Distance for Bundled Mapping. For the
Bundled-based mapping, all the VMs’ resource requirements
are considered together as the total resource demand of
the request when calculating its Euclidean Distance. Let’s
consider a request θi that needs mi VMs of type Vvi with its
demand vector as Dvi = (y1i , . . . , y

R
i). Then the Bundled-

Euclidean-Distance edb,ki of θi on node Nk can be defined
as:

edb,ki =

√√√√∑
Rr∈Γ

(
crk
c1k

− yri
y1i

)2

(7)

where yri =
∑

Rr∈Γ mi · wr
vi denotes the total demand of

θi for resource Rr and Nk = (c1k, . . . , c
R
k) is the available

capacity vector for node Nk at time t.

3.3.2. Euclidean Distance for Distributed Mapping. Al-
though the bundled mapping simplifies the allocation, it can
be hard to find one feasible computing node for all the VMs
demanded by a request. In contrast, the Distributed mapping
considers one VM at a time when calculate the request’s
Euclidean Distance. Let’s consider a request θi that needs
mi VMs of type Vvi . For each of these VMs, it will call the

Algorithm 2 : Function Map(Π, θi, *-ED) at interval T

1: Πeligible
i = ∅; edi = ∞; pi = −1; //initialization

2: //Find all eligible computing nodes for the request θi
3: for (each Nk ∈ Π) do
4: if (Nk ≥ Dvi) then
5: Add node Nk to Πeligible

i ;
6: end if
7: end for
8: for (each Nk ∈ Πeligible

i) do
9: Calculate edki ; [Equations(7) or (8)]

10: if (edki < edi) then
11: edi = edki ; pi = k; //node Nk is better
12: end if
13: end for
14: Output: pi

mapping Algorithm 2 (mi times in total) and is considered
to be successful only when all the VMs can be served at
the same interval T . For this mapping, the demand vector
for any one VM would be Dvi = (w1

vi , . . . , w
R
vi). And the

Distributed-Euclidean-Distance edd,ki of θi on node Nk can
be defined as:

edd,ki =

√√√√ ∑
Rr∈Γ

(
crk
c1k

− wr
vi

w1
vi

)2

(8)

where Nk = (c1k, . . . , c
R
k) is the available capacity vector

for node Nk .
Algorithm 2 shows the basic steps of our mapping

schemes, which can be used with both bundled and dis-
tributed Euclidean Distances of a user request. It first finds
all eligible nodes Np where there is enough resource to
serve the θi request’s resource demand Dvi (line 3 to 7). It
then calculates the euclidean distance for all those eligible
nodes and selects the one with the minimum distance (line 8
to 13). For the Bundled and Distributed approaches, they
calculates the total resource demand Dvi and euclidean
distance differently, as discussed above, which results in
different mapping of the same request.

3.4. VM Allocation for Requests with Multiple
Deadlines

Finally, the steps for allocating the VMs of user requests
with multiple deadlines are summarized in Algorithm 3. For
all the user requests from the queue, the algorithm first
checks if the current j’th deadline of the highest priority
request θi can be met (function isValid(θi, j) in line 4) or
not. If the deadline can be met, then function Map(θi, Π,
*) finds an appropriate computing node pi based on the
selected allocation mechanism. The capacity of the selected
node is then updated and the request is removed from the
Q and put into the selected users set. If no feasible node
can be found, the request is put back to the waiting queue.

If the current j’th deadline of the request can not be
met, the algorithm looks for the request’s next deadline (if

501

Algorithm 3 : VM allocation at interval T

1: S ← Ø; // selected user requests set
2: while (Q is not empty) do
3: θi ← top(Q)
4: if (isValid(θi)) then
5: pi = Map(θi,Π, *-ED); //* is bundled/distributed
6: if (pi ∈ Π) then
7: S ← S ∪ 〈θi, pi〉;
8: Q.pop();
9: UpdateAvailCapacity();

10: else
11: Q.pop(); // no suitable pi in this T
12: Add(θi, Wait Queue);
13: end if
14: else
15: if (j < max level) then
16: j ← j + 1
17: Q ← Prioritize(θ̂i, ∗);//* is S-M-TSRF or /DR
18: else
19: Q.pop(); // discarded
20: end if
21: end if
22: end while
23: Output: S

any), and updates its parameters accordingly and puts back
the updated request θ̂i in the priority queue Q with a new
priority. If the request has already exhausted all its deadlines,
it cannot be served by its latest deadline and is discarded.

4. Evaluations and Discussions

TABLE 2: VM configurations and bids

VM CPUs Memory(GB) bid/time unit

c4.large 2 3.75 [0.05, 0.15]

c4.xlarge 4 7.5 [0.15, 0.25]
c4.2xlarge 8 15 [0.35, 0.45]
r4.xlarge 4 30.5 [0.22, 0.32]

r4.2xlarge 8 61 [0.48, 0.58]
m4.xlarge 4 16 [0.15, 0.25]
m4.2xlarge 8 32 [0.35, 0.45]

m4.4xlarge 16 64 [0.75, 0.85]

We have conducted extensive simulations to evaluate the
performance of our proposed multi-deadline time-sensitive
VM provisioning schemes, and compared them against with
the existing schemes [32] that consider only a single dead-
line. In our experiments, we consider 8 different types of
VMs, and their configurations are derived from amazon EC2
instance and are shown in Table 2. The table also shows the
average bid per time unit for each VM. To obtain trace data,
we installed Openstack (version Mitaka) on a cluster of 10
compute nodes and run applications from the NAS Parallel
Benchmark suit on these VMs and collected their execution
times. Then, the execution time trace data is utilized to drive
our simulator to emulate different system loads.

Request Generation: User requests are generated from
the runtime trace data. For each request, we randomly pick
one application from MPI or OMP benchmarks and use the
associated VM type, VM counts, execution times and aver-
age bids. The arrival time is randomly generated between
two consecutive interval times. The request is considered
for allocation in the next interval.

For the execution time of the request, 1 mins (60 sec-
onds) of VM setup/tear-down overhead is added to the
execution time of the application. The first level deadline of
each request is set as 2 to 4 times of its required execution
time, and other levels are generated from an exponential
growth function. For the bids of requests, we generate the
first level bid by randomly selecting a value from the range
showed in Table 2 and multiplying it with the VM count and
the execution times. For the next level bids, an exponential
decay function is used. For simplicity, we assume that each
user request has 3 levels of 〈deadline, bid〉.

We consider cloud systems with different amounts of
resources, where the heterogeneous clusters are shown in
Table 3. For a cloud system with given cluster configuration,
we generate requests to emulate the average system loads
between 80% − 140%. We run the simulation for 1000
minutes and use a fixed interval size T = 5 mins (if not
specified otherwise). For each interval, the system load is set
between +/−40% of the average system load and approriate
requests are generated to reach the desired workload for the
interval.

TABLE 3: Different clusters for a cloud system

Cluster (CPUs, Memory(GB)) #Nodes

HTC-Small
(2, 4) 2
(4, 8) 2

HTC-Medium
(2, 4) 4
(4, 8) 2

(8, 32) 2

HTC-Large

(2, 4) 8
(4, 8) 4

(8, 32) 2
(16, 64) 2

4.1. Performance for Expedited Service

To emulate the Expedited Service, we assume that the
last deadline is the base, which will be exploited by the
single-deadline based schemes (such as EDF, TSRF and
TSRF/DR [32]). The other two earlier deadlines along with
the associated larger bids will be exploited by our proposed
slope-based M-TSRF and M-TSRF/DR schemes, which are
denoted as S-M-TSRF and S-M-TSRF/DR, respectively.

Figure 2 shows the discarded requests for the con-
sidered schemes under different system loads, where the
Figures 2a, 2b and 2c are for the cloud systems with large,
medium and small clusters, respectively. Here, we report
the ratio of the number of discarded requests over the total
number of generated requests. Clearly, as system loads be-
come higher, more requests are discarded under all schemes.
With only the last deadline being considered, we can see that

502

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

a. large cluster b. medium cluster c. small cluster

Figure 2: Discarded requests (%) for expedited service with T = 5 mins

 0

 20

 40

 60

 80

 100

 120

 140

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist
 0

 20

 40

 60

 80

 100

 120

 140

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist
 0

 20

 40

 60

 80

 100

 120

 140

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

a. large cluster b. medium cluster c. small cluster

Figure 3: Achieved system benefit (%) for expedited service with T = 5 mins

both the single-deadline based TSRF and TSRF/DR schemes
performs better than EDF with less requests being discarded,
which is consistent with the existing results [32].

By considering the smaller deadlines, our proposed
slope-based schemes can reduce the discarded user requests,
especially for higher system loads. Similar as the single-
deadline based schemes, when the dominant resources are
considered, less number of user requests are discarded.
Moreover, compared to the bundled mapping where all VMs
of a request need to be allocated to a single computing node,
the distributed mapping has more flexibility when choosing
computing nodes and thus has higher probability of suc-
cessfully allocating the requests. As a result, the distributed
mapping generally performs better than its counterpart with
bundled mapping. Compared to the single-deadline EDF
scheme, our proposed multiple deadline schemes can reduce
the discarded requests up to 8% when the load is 140%.

Figure 3 further show the achieved system benefits as the
ratio of the accumulated bids for the successfully served
requests over the total last bids for all requests. First, for
the single-deadline based schemes, the results are similar to
those reported in our previous study [32]. Note that, for the
proposed multiple deadline based schemes, a request can
be served before its expedited deadline and a higher bid
than the last one can be achieved. Therefore, we can see
that, the proposed schemes that consider multiple deadlines
can achieve higher than 100% system benefit, especially
for cloud systems with larger clusters of more resources.

For the case of large cluster, the achieve system benefit of
the proposed multiple deadline schemes is almost double of
those achieved by the single deadline based schemes.

4.2. Performance for Degraded Service

Next, we consider the case of degraded services for
requests. That is, for each request, we consider the first pair
of deadline and bid as the baseline, which is utilized by
the single deadline based schemes. The other two larger
deadlines and smaller bids correspond to degraded services
that can be accepted by the user, and will be exploited
by our proposed schemes that consider multiple deadlines.
Note that, a user request will be discarded by the single
deadline based schemes if it can not be served by its first
deadline. However, under the multiple deadline scheme, it
will be discarded only if it can not be served before its latest
deadline.

Figure 4 shows the discarded requests under all schemes
for different system loads in cloud systems with large,
medium and small clusters, respectively. Again, as system
load increases, more requests are discarded by all schemes.
For the single deadline based schemes, the TSRF and
TSRF/DR perform better than EDF, which is consistent with
our previous study [32].

When the extended deadlines of requests are considered,
the proposed multiple deadline based schemes can further
decreases the number of discarded requests, which is similar

503

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

 0

 5

 10

 15

 20

 25

 30

 35

 40

80 90 100 110 120 130 140

d
i
s
c
a
r
d
e
d

r
e
q
u
e
s
t
s

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

a. large cluster b. medium cluster c. small cluster

Figure 4: Discarded requests (%) for degraded services with T = 5 mins

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

80 90 100 110 120 130 140

a
c
h
i
e
v
e
d

r
e
w
a
r
d

(
%
)

average system load (%)

EDF
TSRF

TSRF/DR
S-M-TSRF-bundle

S-M-TSRF/DR-bundle
S-M-TSRF-dist

S-M-TSRF/DR-dist

a. large cluster b. medium cluster c. small cluster

Figure 5: Achieved system benefit (%) for degraded services with T = 5 mins

to the case of expedited services. The performance differ-
ence between the proposed schemes and the single deadline
based schemes becomes larger for cloud systems with more
resources. Again, the schemes that consider distributed map-
ping have more more flexibility and thus have higher proba-
bility of successfully allocating the requests. Therefore, they
perform better than those with bundled mapping where all
VMs of a request need to be allocated together.

Figure 5 further shows the percentage of the achieved
system benefits for all schemes. Since the baseline is the
first pair with the largest bid for all requests, the achieved
benefits are all less than 100%. However, by reducing the
number of discarded requests, the proposed multiple dead-
line based schemes achieve more system benefit than those
of single deadline based schemes, and the difference can
be as high as 30%. But the difference diminishes for cloud
systems with small cluster of less resources.

5. Conclusion

To support flexible timing requirements of user requests
(for both expedited and degraded services), we consider
requests with multiple deadlines and investigate time sensi-
tive VM provisioning schemes when such requests run on
resource-constrained clouds. Specifically, we consider user
requests that have multiple deadline-bid pairs to represent
their flexible service requirements. Based on the rate of bid
decreases for larger deadlines, we propose a Slope-based

technique and integrate it with Time-Sensitive Resource
Factor (TSRF) with Dominant Resource (DR) to priori-
tize those requests. Moreover, we extend Euclidean-distance
based mapping by considering to allocate the multiple VMs
of a user request to only one or multiple computing nodes,
which are denoted as Bundled vs. Distributed mappings,
respectively. Using execution trace data from benchmark ap-
plications, we evaluate the proposed schemes with extensive
simulations. The evaluation results show that, compared to
the single deadline based schemes, the proposed multiple
deadline based VM provisioning schemes and distributed
mapping can significantly reduce the number of discarded
requests, improve resource utilization and system benefit (up
to 30%), especially for cloud systems with more resources
and higher system loads.

Acknowledgments

This work is supported in part by the National Science
Foundation through the awards CNS-1422709 and CCF-
1617390. Any opinions, findings, and conclusions as well
as recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] V. V. Vinothina, R. Sridaran, and P. Ganapathi, “A survey on resource
allocation strategies in cloud computing,” International Journal of

504

Advanced Computer Science and Applications (IJACSA), vol. 3, no. 6,
2012.

[2] M. Bjorkqvist, L. Y. Chen, and W. Binder, “Opportunistic service
provisioning in the cloud,” in Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on. IEEE, 2012, pp. 237–244.

[3] F. Wuhib and R. Stadler, “Distributed monitoring and resource man-
agement for large cloud environments,” in Integrated Network Man-
agement (IM), 2011 IFIP/IEEE International Symposium on. IEEE,
2011, pp. 970–975.

[4] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal,
B. McKee, C. Hyser, D. Gmach, R. Gardner et al., “Integrated
capacity and workload management for the next generation data
center,” in ICAC08: Proceedings of the 5th International Conference
on Autonomic Computing, 2008.

[5] S. Kim and Y. Kim, “Application-specific cloud provisioning model
using job profiles analysis,” in High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Em-
bedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th In-
ternational Conference on. IEEE, 2012, pp. 360–366.

[6] W.-T. Su and S.-M. Wu, “Node capability aware resource provisioning
in a heterogeneous cloud,” in 2012 1st IEEE International Conference
on Communications in China (ICCC). IEEE, 2012, pp. 46–50.

[7] G. Le, K. Xu, and J. Song, “Dynamic resource provisioning and
scheduling with deadline constraint in elastic cloud,” in 2013 Inter-
national Conference on Service Sciences (ICSS). IEEE, 2013, pp.
113–117.

[8] Y. Guo, P. Lama, J. Rao, and X. Zhou, “V-cache: Towards flexible
resource provisioning for multi-tier applications in iaas clouds,” in
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th Inter-
national Symposium on. IEEE, 2013, pp. 88–99.

[9] C. S. Pawar and R. B. Wagh, “Priority based dynamic resource
allocation in cloud computing,” in Cloud and Services Computing
(ISCOS), 2012 International Symposium on. IEEE, 2012, pp. 1–6.

[10] S. Zaman and D. Grosu, “Combinatorial auction-based mechanisms
for vm provisioning and allocation in clouds,” in Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on. IEEE, 2012, pp. 729–734.

[11] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, “Elastic
application container: A lightweight approach for cloud resource pro-
visioning,” in 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications. IEEE, 2012, pp. 15–22.

[12] B. B. Nandi, A. Banerjee, S. C. Ghosh, and N. Banerjee, “Dynamic
sla based elastic cloud service management: A saas perspective,”
in 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013). IEEE, 2013, pp. 60–67.

[13] Q. Zhu and G. Agrawal, “Resource provisioning with budget con-
straints for adaptive applications in cloud environments,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, 2010, pp. 304–307.

[14] G. Feng, S. Garg, R. Buyya, and W. Li, “Revenue maximization using
adaptive resource provisioning in cloud computing environments,” in
Proceedings of the 2012 ACM/IEEE 13th International Conference
on Grid Computing. IEEE Computer Society, 2012, pp. 192–200.

[15] C. Tian, Y. Wang, F. Qi, and B. Yin, “Decision model for pro-
visioning virtual resources in amazon ec2,” in Proceedings of the
8th International Conference on Network and Service Management.
International Federation for Information Processing, 2012, pp. 159–
163.

[16] S. Rizou and A. Polyviou, “Towards value-based resource provi-
sioning in the cloud,” in Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on. IEEE,
2012, pp. 155–160.

[17] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of
requests for virtual machine sets with placement constraints in iaas
clouds,” in 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013). IEEE, 2013, pp. 499–505.

[18] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource pro-
visioning for hybrid cloud infrastructure,” Journal of parallel and
distributed computing, vol. 72, no. 10, pp. 1318–1331, 2012.

[19] B. Javadi, P. Thulasiraman, and R. Buyya, “Enhancing performance
of failure-prone clusters by adaptive provisioning of cloud resources,”
The Journal of Supercomputing, vol. 63, no. 2, pp. 467–489, 2013.

[20] B. Javadi, J. Abawajy, and R. O. Sinnott, “Hybrid cloud resource
provisioning policy in the presence of resource failures,” in Cloud
Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on. IEEE, 2012, pp. 10–17.

[21] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879,
2011.

[22] G. Liu, H. Shen, and H. Wang, “Deadline guaranteed service for
multi-tenant cloud storage,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 10, pp. 2851–2865, 2016.

[23] D. Li, C. Chen, J. Guan, Y. Zhang, J. Zhu, and R. Yu, “Dcloud:
deadline-aware resource allocation for cloud computing jobs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 8, pp.
2248–2260, 2016.

[24] Y. Xiang, B. Balasubramanian, M. Wang, T. Lan, S. Sen, and M. Chi-
ang, “Self-adaptive, deadline-aware resource control in cloud com-
puting,” in Self-Adaptation and Self-Organizing Systems Workshops
(SASOW), 2013 IEEE 7th International Conference on. IEEE, 2013,
pp. 41–46.

[25] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya,
“Deadline-driven provisioning of resources for scientific applications
in hybrid clouds with aneka,” Future Generation Computer Systems,
vol. 28, no. 1, pp. 58–65, 2012.

[26] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh, “Spruce:
A system for supporting urgent high-performance computing,” Grid-
Based Problem Solving Environments, pp. 295–311, 2007.

[27] “Amazon-emr, http://aws.amazon. com/cn/elasticmapreduce/?hp=tile,”
2014.

[28] “Hadoop-rackspace, https://devel- oper.rackspace.com/databases/hadoop,”
2014.

[29] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-scaling with Deadline
and Budget Constraints,” in Grid Computing (GRID), 2010 11th
IEEE/ACM International Conference on, 2010.

[30] M. Mao and M. Humphrey, “Auto-scaling to Minimize Cost and
Meet Application Deadlines in Cloud Workflows,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011.

[31] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, “Fault-
tolerant scheduling for real-time scientific workflows with elastic
resource provisioning in virtualized clouds.”

[32] R. Begam, W. Wang, and D. Zhu, “Timer-cloud: Time-sensitive vm
provisioning in resource- constrained clouds,” IEEE Transactions on
Cloud Computing; in submission; A preliminary version of this work
appeared in HPCC 2015., May 2017.

[33] “Amazon ec2 instances, https://aws.amazon.com/ec2/instance-types/,”
March 2017.

[34] L. Mashayekhy, M. Nejad, and D. Grosu, “A ptas mechanism for pro-
visioning and allocation of heterogeneous cloud resources,” Parallel
and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp.
1–1, 2014.

[35] M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mech-
anisms for dynamic virtual machine provisioning and allocation in
clouds,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 26, no. 2, pp. 594–603, Feb 2015.

[36] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,” Parallel and Distributed

Systems, IEEE Transactions on, 2014.

505

