
DraMon: Predicting Memory Bandwidth Usage of Multi-threaded Programs with
High Accuracy and Low Overhead

Wei Wang, Tanima Dey, Jack W. Davidson, and Mary Lou Soffa
Department of Computer Science

University of Virginia
{wwang, td8h, jwd, soffa}@virginia.edu

Abstract
Memory bandwidth severely limits the scalability and per-

formance of today’s multi-core systems. Because of this lim-
itation, many studies that focused on improving multi-core
scalability rely on bandwidth usage predictions to achieve the
best results. However, existing bandwidth prediction models
have low accuracy, causing these studies to have inaccurate
conclusions or perform sub-optimally. Most of these models
make predictions based on the bandwidth usage samples of a
few trial runs. Many factors that affect bandwidth usage and
the complex DRAM operations are overlooked.

This paper presents DraMon, a model that predicts band-
width usages for multi-threaded programs with low overhead.
It achieves high accuracy through highly accurate predictions
of DRAM contention and DRAM concurrency, as well as by
considering a wide range of hardware and software factors
that impact bandwidth usage. We implemented two versions
of DraMon: DraMon-T, a memory-trace based model, and
DraMon-R, a run-time model which uses hardware perfor-
mance counters. When evaluated on a real machine with
memory-intensive benchmarks, DraMon-T has average ac-
curacies of 99.17% and 94.70% for DRAM contention pre-
dictions and bandwidth predictions, respectively. DraMon-R
has average accuracies of 98.55% and 93.37% for DRAM
contention and bandwidth predictions respectively, with only
0.50% overhead on average.

1. Introduction
Although multi-core systems have become ubiquitous,

various scalability issues severely limit the performance of
these powerful platforms. Consequently, there is much on-
going research that investigates potential solutions to multi-
core scalability challenges. For example, some studies have
investigated core allocations for multi-threaded programs to
achieve optimal scalable performance and avoid resource
over-commitment [20, 35]. The performance limits of fu-
ture multi-core processors and the design options for CPU
cores have been explored to achieve better scalability [8, 29].
Methods to mitigate memory resource contention to improve
scalability have also been developed [43]. In addition, there is
research to build tools to help developers analyze and resolve
scalability bottlenecks of existing programs [10, 12, 19].

Because memory bandwidth is one of the primary limits of

multi-core systems scalability, these studies depend on band-
width predictions to achieve the best results. More specifi-
cally, they all require a model to predict the memory band-
width usage of a multi-threaded program when it executes
with a certain number of cores/threads. For example, research
on optimal core allocation required memory bandwidth pre-
diction to avoid allocating more cores when the bandwidth is
already saturated [20, 35].
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Figure 1. Memory bandwidth usage of facesim
on an AMD Opteron 6174 with linear prediction
model and a regression-based model.

Unfortunately, the memory bandwidth models used in the
previous work have low accuracy. They rely on simple mathe-
matical models or regression analysis, and only consider sam-
ples of bandwidth usage for prediction. DRAM contention
and DRAM concurrency, as well as other important factors
(e.g., program memory behaviors) are overlooked. Figure 1
gives the bandwidth usage of a PARSEC benchmark facesim
running on an AMD 6-core processor [4], as well as the band-
width predictions of two popular models. One is a linear
model that assumes memory bandwidth usages increase lin-
early with the number of cores [20, 32, 35]. The other is
based on multiple logarithmic and linear regressions [19]. As
the figure shows, both models have low accuracy. The linear
model has an average accuracy of 14% while the regression-
based model has an average accuracy of 44% in this example.

The low accuracy in bandwidth prediction can cause the
optimization techniques to perform sub-optimally. For ex-
ample, when managing the core allocation of facesim on the
AMD processor, these low accuracy models predict the opti-
mal core allocation to be 6 cores, which performs 8% slower
than the actual optimal core allocation, 4 cores [20, 35]. More
importantly, running with two more cores wastes energy and
reduces system utilization.



To the best of our knowledge, no existing model can pro-
vide highly accurate bandwidth usage predictions on real ma-
chines, because of four major challenges,
• The first challenge is to correctly predict the contention for

DRAM resources from co-running threads. The severity
of DRAM contention varies with program behavior in a
complicated manner. However, because DRAM contention
significantly impacts bandwidth usage, it must be correctly
predicted.

• The second challenge is to correctly predict the DRAM
concurrency. DRAM requests accessing different banks
can be served simultaneously and overlap with each other.
This overlapping further complicates the prediction of the
latency of DRAM requests.

• The third challenge is to consider the large variety of hard-
ware and software factors that affect bandwidth usage be-
sides contention and concurrency. These factors have to be
clearly identified and carefully considered.

• The last challenge is to design a model with low overhead.
Some uses (e.g., resource contention management) require
a low-overhead model that can be applied during execution
to handle dynamic workloads.
To address these challenges, this paper presents DraMon, a

highly accurate bandwidth model that considers a wide range
of factors. We demonstrate that predicting bandwidth usages
requires predicting DRAM contention (e.g., row buffer hit ra-
tio) and DRAM concurrency. We also show that contention
and concurrency can be predicted with high accuracy and in
short amount of time using probability theory. We imple-
mented two versions of DraMon: DraMon-T, a memory-trace
based model, and DraMon-R, a run-time model which uses
performance monitoring units (PMUs) as inputs.

When evaluated on a real AMD machine with memory-
intensive benchmarks, DraMon shows high accuracy.
DraMon-T has an average accuracy of 99.17% for DRAM
contention prediction, and an average accuracy of 94.70% for
bandwidth prediction. DraMon-R has accuracies of 98.55%
and 93.37% for DRAM contention and bandwidth predic-
tions, respectively. Moreover, DraMon-R prediction requires
0.03 seconds, which adds only 0.5% overhead to execution
time on average.

DraMon predicts the bandwidth usage of a multi-threaded
program when it executes using one memory controller
(MC). For multiple MCs (non-uniform memory architecture,
NUMA) with no inter-MC memory references, these MCs
can be modeled independently using DraMon. The case with
inter-MC references is left for future work. To avoid introduc-
ing other CPU resource contention and increasing synchro-
nization and context switch overheads, here we do not con-
sider simultaneous multi-threading (SMT) and assume only
one application thread is executing on one core.

Our contributions include:
• A memory-trace based model, DraMon-T, which predicts

bandwidth usage, DRAM contention and concurrency with
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high accuracy on a real multi-core system.
• A run-time model, DraMon-R, which does not rely on

memory traces, but instead uses PMU readings as inputs.
DraMon-R has a similar accuracy as DraMon-T with very
low overhead.

• An analysis of the factors related to bandwidth usage and
of their usages for bandwidth prediction.
The rest of the paper is organized as follows. Section 2

discusses DRAM systems. Section 3 provides a high level
overview of DraMon. Section 4 explains DraMon in detail.
Section 5 describes how to obtain input parameters. Section 6
evaluates DraMon on a real machine. Section 7 discusses
other related issues. Section 9 discusses related work and
Section 10 summarizes the paper.

2. Memory System Background
Before introducing DraMon, this section describes the

memory systems on contemporary multi-core platforms.
2.1. DRAM Architecture

Figure 2 depicts a generic memory system and DRAM
structure. The on-chip memory controller (MC) is connected
to several channels. A DRAM request can access one chan-
nel at a time, or it can access all channels at once, depending
on the configurations of the MC. A channel is composed of
several ranks. A rank can be roughly viewed as a memory
module. Each rank has several memory chips. A memory
chip is composed of several banks. Each bank is essentially
a cell array where a cell is used to store 0 or 1. The banks
with the same index of all chips form a conceptual bank of a
rank. For example in Figure 2, the BANK0s of all chips of
RANK1 form its conceptual BANK0. When BANK0 is
accessed, the BANK0s of every chip on RANK1 are acti-
vated simultaneously.
2.2. DRAM Request Types

Each bank (both conceptual and physical) has a row buffer.
When accessing a piece of data, the row containing this data
is read into the row buffer. Then the target data is extracted
and sent to MC. Figure 3 shows the operations of a DRAM
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read [16]. First, the connections between the row buffer and
the cell array are precharged (PRE). This precharge is crucial
for stable reading, and it requires tRP time. Next, the MC
issues a row access (RA) command and reads the row into
the row buffer in tRCD time. After the row is ready, MC
sends the column address (CA) and locates the target data in
tCAS time. Finally, the data is extracted and send to MC
using tBurst time.

Depending on the status of the target bank, a DRAM re-
quest falls into one of three categories [2]:
• Hit: the row buffer has the desired row. Only column

access and data transportation is required. Therefore,
the latency of a hit is tCAS + tBurst.
• Miss: the bank is precharged, but the row buffer is

empty. The desired row has to be read into the row
buffer. Therefore, the latency of a miss is tRCD +
tCAS + tBurst .
• Conflict: the bank is not yet precharged for this request.

A precharge is required. Therefore, the latency of a con-
flict is tRP + tRCD + tCAS + tBurst.

Note that although a conflict can be viewed as a miss, its ser-
vice time is very different from a miss. This difference is
important for accurately predicting average DRAM request
latency and bandwidth usage.

2.3. DRAM Contention

If we compare a row buffer with a cache line, we can
easily see similarities. They are both used to temporarily
store a copy of data. They are both rewritten to store ac-
tive data. And they are both shared by and contended for
by co-running threads. Consequently, similar to predict-
ing cache contention, which is to predict the hit/miss ra-
tios, predicting DRAM contention is essentially predicting
the ratios (percentages) of the three types of DRAM requests:
Ratiohit, Ratiomiss and Ratioconf .

2.4. DRAM Concurrency

The latencies of Section 2.2 are single-request latencies.
In practice, multiple DRAM requests can be served simul-
taneously, thus greatly reducing their average latency. Fig-
ure 4 shows four consecutive hits, assuming both tCAS and
tBurst are 4 cycles [16]. As the figure shows, the column
open operation (tCAS) can overlap with data transportation
(tBurst). Therefore, it only takes 21 cycles to serve all
four requests. Thus, the average latency of these hits is only
21
4 = 5.25 cycles, while the full single-request hit latency is
tCAS + tBurst = 8 cycles.

Similarly, the operations of miss and conflict can also over-
lap with other DRAM requests. Because this concurrency can
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Figure 4. Four concurrent DRAM hits.

significantly reduce average DRAM latency, it must be care-
fully considered in a bandwidth model.

2.5. Memory Controller Optimizations

Because of the large differences between the latencies of
hit, miss and conflict, memory controllers employ several op-
timization techniques. Accurately predicting memory band-
width requires considering these optimizations.

The first common optimization is a closed or adaptive page
policy, where an opened row buffer is automatically closed
and precharged if it is idle for some time [16]. Later, a re-
quest to the same bank can then proceed to open a new row
without having to wait for precharging. Four Bank Activation
Window (FAW) also increases the chance of automatic row
buffer closing is [16]. Because of power constraints, only
four banks can be activated in a rank within a certain time
window. This relatively long time window renders opened
banks idle and more likely to be automatically closed.

The second common optimization is request reorder-
ing [16]. If a request in the MC queue hits an open row, the
MC may issue it before the requests that are queued earlier,
to enjoy the low latency of DRAM hits.

3. Overview
As stated previously, accurately predicting bandwidth us-

age requires considering DRAM contention and DRAM con-
currency. This section connects DRAM contention and
DRAM concurrency to bandwidth usage mathematically, and
serves as a road map for the following sections.

3.1. Predicting Bandwidth from DRAM
Contention and Concurrency

Memory bandwidth (BW ) usage is basically the product
of the number of channels chnl cnt available, the memory
request rate Ratemem per channel (the number of requests
finished per second), and the size of each request Sizemem:

BW = chnl cnt×Ratemem × Sizemem. (1)

Memory request rate is determined by two factors: (1)
Rateissue, the maximum issue rate of DRAM requests lim-
ited by program behavior, and (2) Ratedram, the DRAM ser-
vice rate limited by DRAM contention. The actual memory
request rate is limited by the smaller of the two:

Ratemem = min(Rateissue, Ratedram). (2)

Therefore, predicting memory request rate is reduced to the
problem of predicting issue rate and DRAM service rate.

Predicting DRAM service rate is equivalent to predict-
ing the reciprocal of the average DRAM request latency



Latdram.1 DRAM latency can be further divided into two
components, the average read request latency (Latr) and
the average write request latency (Latw). As an optimiza-
tion, modern MCs delay write requests and group them to-
gether for issuing [6, 16]. Because reads and writes are pro-
cessed separately by MCs, their average latencies can be com-
puted separately. Their weighted average is then the average
DRAM latency. Additionally, switching from writes to reads
requires stalling the data bus which adds an extra overhead
(Owtr). Similarly, when multiple ranks are accessed, rank-to-
rank switching also requires data bus stalls and adds overhead
(Ortr). Assume the read request ratio is Ratior and the write
request ratio is Ratiow. Summarizing the above, we have:
Ratedram =

1

Latdram
,

Latdram = Ratior × Latr + Ratiow × Latw + Owtr + Ortr.

(3)

Similar to predicting the average cache latency, the aver-
age read/write latency can be computed using the following
equations [13]:

Latr =Ratiohit × Latr,hit + Ratiomiss × Latr,miss+

Ratioconf × Latr,conf

Latw =Ratiohit × Latw,hit + Ratiomiss × Latw,miss+

Ratioconf × Latw,conf .

(4)

Note that the hit/miss/conflict (HMC) ratios here are the
average ratios of both reads and writes. The actual ratios of
reads and writes are different. However, because their laten-
cies are close (differ by one cycle), using average HMC ratios
for both reads and writes is a good approximation.

Combining the above equations gives equation (5) in Fig-
ure 5. This equation connects bandwidth usage to DRAM
contention (HMC ratios, Ratioty) and DRAM concurrency
(HMC latencies, Latr/w,ty). Predicting bandwidth also re-
quires predicting the maximum issue rate Rateissue, the
write-to-read switching overhead Owtr and the rank-to-rank
switching overhead Ortr. Algorithm 1 gives the sections
where these components are predicted. Four variables
(chn cnl, Sizemem, Ratior, Ratiow) can be acquired from
memory traces or PMUs.
3.2. Model Algorithm

Algorithm 1 gives the steps of using DraMon, which re-
quires several parameters as inputs, including parameters that

1The DRAM latency here is not the single-request latency. It is rather the
average latency of multiple overlapped requests, which is the time between
they are issued from the MC and the data returned to the MC. It is only used
to predict memory bandwidth.

Algorithm 1 Algorithm of DraMon
1: collect hardware related parameters (Sect. 5.2)
2: for each program p do
3: collect software related parameters (Sect. 5.3)
4: for each core/thread count n do
5: predict maximum issue rate Rateissue (Sect. 4.1)
6: predict HMC ratios Ratioty (Sect. 4.2)
7: predict HMC latencies Latr/w,ty (Sect. 4.3)
8: predict write-to-read overhead Owtr (Sect. 4.4)
9: predict rank-to-rank overhead Ortr (Sect. 4.5)

10: predict bandwidth usage BW (Eq. (5))
11: end for
12: end for

describe a platform’s hardware configuration and the param-
eters that describe a program’s memory behavior. With these
parameters, DraMon predicts the memory bandwidth for a
multi-threaded program running with a certain number of
cores/threads using equations (5).

4. The Bandwidth Model in Detail
This section discusses the prediction of the unknown com-

ponents of equation (5) in detail. Note that our prediction
equations require several input parameters. Obtaining these
parameters is discussed in Section 5.

4.1. Predicting Issue Rate

For a multi-threaded program, if the issue rate of a single
core/thread is Rateissue single (input parameter obtained in
Section 5), then its maximum possible issue rate when run-
ning with n cores/threads is

Rateissue = Rateissue single × n. (6)

4.2. Predicting HMC ratios

Here we describe the prediction of the hit/miss/conflict
(HMC) ratios of one thread of a multi-threaded program. The
same process can be applied to predict the HMC ratios of oth-
ers threads. The overall HMC ratios of the program is then
the average of all threads’ HMC ratios.

We first use an example with two threads to illustrate the
basic idea of our DRAM contention prediction. Then we ex-
pand this idea to handle any number of threads and describe
the equations for predicting HMC ratios. For simplicity, we
focus on predicting hit ratio first.

4.2.1. A Two-thread Example
Consider a case where two threads T0 and T1 are executing
simultaneously. Here we predict the T0’s hit ratio. Naturally,
predicting the hit ratio requires identifying the hits in T0’s

BW =chnl cnt×min(Rateissue,
1

Ratior × Latr + Ratiow × Latw + Owtr + Ortr
)× Sizemem

Latx =
∑
ty

Ratioty × Latx,ty, where x ∈ {r, w}, ty ∈ {hit,miss, conf}
(5)

Figure 5. Overall equation for predicting bandwidth usage. Bold faced variables are unknown and
require prediction.
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Figure 6. Predicting the hit ratio of thread T0

when it is running with another thread T1.

requests and computing their percentage. However, this ap-
proach requires processing millions of requests which is time
consuming. Here we use a key insight we gain into the rela-
tion between hit ratio and hit probability.

Insight 1: The hit ratio of T0 is equivalent to the probabil-
ity that one of its requests is a hit. Conversely, predicting the
hit ratio of T0 is equivalent to predicting the probability that
an arbitrary request of T0 is a hit.

This insight allows us to focus on one single request. It
also permits predicting the hit ratio using probability theory
which greatly reduces prediction time. Without loss of gen-
erality, here we predict the hit probability of the k’th request
of T0, denoted by R0,k.

Whether R0,k is a hit, depends on its preceding requests.
Figure 6a gives a sequence of requests when T0 runs alone.
The box under each request gives its bank and row addresses.
In this figure, R0,k−2 is the last request before R0,k that ac-
cesses the same bank (Bank0) used by R0,k. Depending on
R0,k−2’s row address, R0,k can be a hit, miss or conflict. If
R0,k−2 also accesses Row27, R0,k is a hit. If R0,k−2 accesses
a row other than Row27, R0,k is a conflict. If the row opened
by R0,k−2 is closed by the MC, then R0,k is a miss.

Similarly, when there is co-running thread T1, the type
(hit/miss/conflict) of R0,k depends on its preceding requests
from both threads. However, there are billions of requests
preceding R0,k. It is impossible to consider all of them. Here,
we gain our second key insight from Figure 6.

Insight 2: Only requests issued after R0,k−2 (including
R0,k−2) have to be considered when predicting the type of
R0,k, because any change made to Bank0’s row buffer by
requests before R0,k−2 is reset by R0,k−2.

This insight greatly reduces the number of preceding re-
quests that require consideration. Figure 6b and 6c show the
requests from both T0 and T1. In these two figures, only one
of T1’s requests, R1,k−1, is issued between R0,k−2 and R0,k,
and its destination affects the type of R0,k.

→Ri,k→ 

Reqeust of T1: →R1,k-Δ →R1,k-Δ+1→ ...→ R1,K-1→

Dest: SmRw or SmBk or SmCh or DfCh

Dest: 
SmRw or
SmBk 

→Ri,k-Δ→

Reqeust of Ti: →Ri,k-Δ-1 →Ri,k-Δ+1→ ...→ Ri,K-1→

Dest: SmCh or DfCh

Reqeust of Tj: →Rj,k-Δ →Rj,k-Δ+1→ ...→ Rj,K-1→

Dest: SmRw

Reqeust of Tn: →Rn,k-Δ →Rn,k-Δ+1→ ...→ Rn,K-1→

Dest: SmRw or SmBk or SmCh or DfCh

hit

(a) Case 1: Request Ri,k is a hit when Tj ’s requests access the
same row used by Ri,k .

→Ri,k→ 

Reqeust of T1: →R1,k-Δ, →R1,k-Δ+1→ ...→ R1,K-1→

Dest: SmBk or SmCh or DfCh

Dest: 
SmRw

→Ri,k-Δ→

Reqeust of Ti: →Ri,k-Δ-1, →Ri,k-Δ+1→ ...→ Ri,K-1→

Dest: SmCh or DfCh

Reqeust of Tj: →Rj,k-Δ, →Rj,k-Δ+1→ ...→ Rj,K-1→

Dest: SmBk or SmCh or DfCh

Reqeust of Tn: →Rn,k-Δ, →Rn,k-Δ+1→ ...→ Rn,K-1→

Dest: SmBk or SmCh or DfCh

hit

(b) Case 2: Request Ri,k is a hit when Ri,k−∆ accesses the
same row used by Ri,k .

Figure 7. Predicting the hit ratio of thread Ti

when it is running with n− 1 threads.
There are two cases where R0,k is a hit. In case 1 (Fig-

ure 6b), R1,k−1 accesses the same row (Row27) used by R0,k.
Therefore, R0,k hits the row opened by R1,k−1. In case 2
(Figure 6c), R1,k−1 does not access the same row (Row27)
used by R0,k. However, R0,k−2 accesses Row27. Therefore,
R0,k hits the row opened by R0,k−2. If the probabilities of
case 1 and case 2 are P1 and P2, then the probability that
R0,k is a hit is P1 + P2, which is also the hit ratio of T0.

In summary, the two key insights above allow us to focus
on one request and a limited number of its preceding requests.
By enumerating the destinations of the preceding requests,
we list all the cases which can produce a hit. Then we predict
the probabilities of these cases, the sum of which is then the
hit ratio. Next we generalize this example to any number of
threads, and predict the case probabilities.

4.2.2. Generalizing to n threads
Consider the case where n threads are running simultane-
ously. Here we predict the hit ratio of the i’th thread Ti. Ac-
cording to Insight 1, predicting Ti’s hit ratio is equivalent to
predicting the probability that its k’th request Ri,k is a hit.

Assume the nearest preceding request from Ti that ac-
cesses the same bank used by Ri,k is Ri,k−∆. Insight 2
can be generalized as: only requests after Ri,k−∆ (including
Ri,k−∆) should be considered when determining the type of
Ri,k. Moreover, we define the Bank Reuse Distance (BRD)
of Ri,k as ∆. In Figure 6, R0,k’s BRD is 2 because the nearest
same-bank accessing request from T0 is R0,k−2.

Figure 7a gives the sequence of requests issued between
Ri,k−∆ and Ri,k by all n threads. Each row between Ri,k−∆

and Ri,k represents the requests issued from one thread.
Threads are depicted in independent rows because they ex-
ecute in parallel. The type (hit/miss/conflict) of Ri,k depends
on preceding requests’ destinations, which fall into four cate-



gories:
• SmRw, the same row used by Ri,k.
• SmBk, a different row on the bank used by Ri,k.
• SmCh, a different bank of the channel used by Ri,k.
• DfCh, a different channel than Ri,k’s channel.
To reduce computation time, we assume that all requests

from the same thread have the same destination, i.e., the same
row. Because of the data locality, this assumption holds for
most programs (more than 85% consecutive requests of our
benchmarks hit the same row). In Figure 7, the destination of
one thread is marked above its requests.

Similar to the example in Figure 6, there are two cases
where Ri,k is a hit. In case 1 (Figure 7a), at least one thread
Tj has a destination of SmRw, and Ri,k hits the row opened
by Tj’s requests. In case 2 (Figure 7b) none of the middle
threads accessing SmRw. However, Ri,k−∆ accesses this
row, and Ri,k hits the row opened by Ri,k−∆.

The hit probability of Ri,k, which is also the hit ratio of
Ti, is the sum of the probabilities of these two cases. Ad-
ditionally, the total number of preceding requests have to be
determined. Too many preceding requests may cause the MC
to close the bank accessed by Ri,k (recall the adaptive page
policy). Next we discuss predicting these values.

4.2.3. Predicting the Number of Preceding Requests
From BRD’s definition, there are ∆ requests of Ti that should
be considered when predicting the type of Ri,k.

For a co-running thread Tj , the number of its requests to
be considered depends on its issue rate. Assume the single
thread issue rate of Ti is Rateissue,i, and the single thread is-
sue rate of Tj is Rateissue,j . During the time when Ti issued
∆ requests, the number of requests issued by Tj is

ReqCnt∆,j = ∆× Rateissue,j
Rateissue,i

. (7)

4.2.4. Predicting Case Probabilities and the Hit Ratio
Hit ratio prediction requires the following input parameters:
• the hit ratio of Ti when there are no co-running threads,
Ratiohit,single,
• the probabilities, PSmRw, PSmBk, PSmCh and PDfCh,

that a co-running thread access SmRw, SmBk, SmCh
and DfCh respectively,
• the number of requests after which an opened row-buffer

is automatically closed, Dac, and,
• the total number of threads, n.

Obtaining these parameters is discussed in Section 5. With
these inputs, DraMon predicts the probabilities of the two
cases in Figure 7 and the hit ratio of Ti.

Case 1: At least one co-running thread has a destination
of SmRw (Figure 7a). This case can be further broken down
into two sub-cases.

Sub-case A: No co-running thread has a destination of
SmBk. The probability of sub-case A is

PcaseA = P (∃SmRw∧ 6 ∃SmBk)

= P ( 6 ∃SmBk)− P ( 6 ∃SmRW∧ 6 ∃SmBk)

= (1− PSmBk)n−1 − (PSmCh + PDfCh)n−1.

(8)

Clearly, sub-case A is a hit:
Ratiohit,∆(caseA) = PcaseA. (9)

Sub-case B: At least one co-running thread has a destina-
tion of SmBk. The probability of sub-case B is
PcaseB = Pcase1 − PcaseA = P (∃SmRw)− P (caseA)

= (1− P ( 6 ∃SmRw))− PcaseA

= (1− (1− PSmRw)n−1)− PcaseA.

(10)

Sub-case B can be a hit or a conflict depending on whether
the last access before Ri,k is a SmRW or SmBk. Because the
orders of the requests are random, the type of the last request
follows uniform distribution. Therefore, approximately half
of the permutations are hits:

Ratiohit,∆(caseB) =
1

2
PcaseB . (11)

Case 2: No co-running thread has a destination of SmRw.
However, if Ri,k−∆ is SmRw, Ri,k may still be a hit (Fig-
ure 7b). Ri,k−∆ is SmRw means Ri,k is hit when there are no
co-running threads. Therefore, the probability that Ri,k−∆ is
SmRw is actually Ti’s single thread hit ratio, Ratiohit,single.

Case 2 can be broken down into several sub-cases depend-
ing on whether a co-running thread accesses the same channel
of Ri,k. We represent each sub-case as a vector. For example,
the l’th sub-case is El,∆ = {el,1, ..., el,j , ..., el,n}. An ele-
ment el,j represents whether thread Tj accesses Ri,k’s chan-
nel: el,j = 1 means yes, and el,j = 0 means no. Clearly,
there are 2n sub-cases (1 ≤ l ≤ 2n). In sub-case El,∆, the
total number of requests from co-running threads that access
Ri,k’s channel is

ml,∆ =
∑

j
ReqCnt∆,j × el,j . (12)

The probability of sub-case El,∆ is then
Pl,∆ =Ratiohit,single ×

∏
j
(el,j × (PSmBk+

PSmCh) + (1− el,j)× PDfCh).
(13)

If there is no SmBk request, then El,∆ can be a hit if the
row buffer is not automatically closed. If there are SmBk
requests, El,∆ can still be a hit if the row buffer is not auto-
closed and the MC reorders the requests. In short, El,∆ is a
hit if the row buffer is not auto-closed:

Ratiohit,l,∆(case2) =

{
Pl,∆, if ml,∆ < Dac,

0, otherwise.
(14)

The hit ratio is then the sum of all sub-cases:
Ratiohit,∆ = Ratiohit,∆(caseA)+

Ratiohit,∆(caseB) +
∑

l
Ratiohit,l,∆(case2).

(15)

Note that different requests have different BRDs. In other
words, for an arbitrary request Ri,k, it may have different
BRDs with different probabilities. Assume the input param-
eter, the probability of BRD ∆ is P∆. Then the hit ratio of
thread Ti is the sum of the hit ratios of all its BRDs:

Ratiohit =
∑
∆

P∆ ×Ratiohit,∆. (16)



4.2.5. Predicting Miss/Conflict Ratios
The miss and conflict ratios can be predicted similarly.

4.3. Predicting Request Latencies

With HMC ratios determined, this section discusses the
prediction of HMC latencies. From Figure 4, we gain a third
key insight into DRAM concurrency and HMC latencies.

Insight 3: When there is large number of DRAM requests
served concurrently, the average latencies of hit/miss/conflict
requests are approximately their maximum latencies minus
the time that they overlap with other requests’ data transfers.

Assume the maximum latencies of hit/miss/conflict are
Maxty , ty ∈ {hit,miss, conflict}, Insight 3 is essentially

Latty = Maxty − overlapped data transfers. (17)

The maximum latencies are listed in Sec-
tion 2.2. Therefore, we only have to determine the
overlapped data transers.
4.3.1. Hit Latency (Read)
For a hit, the column access time (tCAS in Section 2.2) can
overlap with any request’s data transfer. However, its own
data transfer (tBurst) requires exclusive access to the data
bus. Consequently, its average latency is

Latr,hit = Maxr,hit − overlapped data transfers

= (tCAS + tBurst)− tCAS = tBurst.
(18)

4.3.2. Miss Latency (Read)

Because a miss opens a new bank, and because of the FAW
limit and adaptive page policy, its overlapped data transfer
time varies with the type of overlapped requests. That is, we
can rewrite equation (17) as

Latr,miss = Maxr,miss −
∑
ty

overlap trans timety. (19)

Because the overlapped data transfer time is the number
of overlapped requests multiplied by the data transportation
time (tBurst), we can further rewrite the equation to
Latr,miss = Maxr,miss −

∑
ty

overlap reqty × tBurst. (20)

Here, the overlap reqty represents the number of type ty re-
quests that overlap with one miss request.

Now the problem of determining miss latency is reduced
to the problem of determining the number of overlapped re-
quests of each type. First, consider the case of hits over-
lapping with a miss. Within a sequence of DRAM requests,
Ratiohit of them are hits and Ratiomiss are misses. There-
fore, for one miss, there are at most Ratiohit

Ratiomiss
hits. Addition-

ally, FAW limits the maximum number of banks (MaxBk)
that can be simultaneously accessed. Moreover, because con-
current hits are most likely from different threads and do not
access the same bank, the total number of concurrent hits is
also limited by MaxBk. Assume that the input parameter
rk cnt is the number of ranks being accessed. Combining all
these arguments, we have

MaxBk = rk cnt× 4,

overlap reqhit = min(MaxBk − 1,
Ratiohit
Ratiomiss

).
(21)

Unfortunately, the number of misses that overlap with an-
other miss cannot be determined using the same approach be-
cause there is only one Ratiomiss. Here, we consider a se-
quence of n requests from n threads. In this sequence, there
are n × Ratiomiss misses. That is, one miss may overlap
with n×Ratiomiss− 1 misses. Additionally, FAW limit and
MaxBk also apply to concurrent miss.

Furthermore, conflicts also require opening new rows,
whereas the FAW and adaptive page policy also apply. There-
fore, we compute the number of misses and conflicts that
overlap with a miss together,

overlap reqmiss+conf = min(MaxBk − 1,

n× (Ratiomiss + Ratioconf )− 1).
(22)

Combining equations (20) through (22), we have
Latr,miss = (tRCD + tCAS + tBurst)−

(min(MaxBk − 1,
Ratiohit
Ratiomiss

) + min(MaxBk − 1,

n× (Ratiomiss + Ratioconf )− 1))× tBurst.

(23)

4.3.3. Conflict Latency (Read)

We predict the average latency of conflicts using the same
approach as the miss latency:

Latr,conf = (tRP + tRCD + tCAS + tBurst)−

(min(MaxBk − 1,
Ratiohit
Ratioconf

) + min(MaxBk − 1,

n× (Ratiomiss + Ratioconf )− 1))× tBurst.

(24)

4.3.4. Write latencies

Write HMC latencies can be predicted similarly using the
above equations with two changes. First, one extra DRAM
cycle besides tBurst is required for data transfer [16]. Sec-
ond, write recovery time (tWR) should be used as column
access time instead of tCAS.

4.4. Write-to-Read Switching Overhead

When switching from write-to-read, the data bus has to be
stalled for tWTR time. Assume the ratio of requests that re-
quire a write-to-read switch is Ratiowtr (parameter obtained
in Section 5). The write-to-read overhead is

Owtr = Ratiowtr × tWTR. (25)

4.5. Rank-to-Rank Switching Overhead

When switching between ranks, the data bus has to be
stalled for tRTRS time. Assume the ratio of requests that re-
quire a rank-to-rank switch is Ratiortr (parameter obtained
in Section 5). The rank-to-rank overhead is

Ortr = Ratiortr × tRTRs. (26)

At this point we have predicted all unknown variables in
equation (5), and DraMon is fully presented.



Parameters Description Value
Sizemem size of each DRAM request 64 Bytes
tRCD row activation time 13.5 ns
tCAS column access time 13.5 ns
tRP precharge time 13.5 ns
tBurst data transfer time 6 ns
tWR write recovery time 15 ns
tRTRS rank switching time 4.5 ns
tWTR write-to-read switching time 7.5 ns
chnl cnt number of channels 2
bk cnt number of banks per rank 8
Dac row buffer auto-close distance 4 requests

Table 1. Hardware Parameters
Parameters Description
Rateissue,single single thread issue rate
∆ and P∆ Bank reuse distances and their probs
Ratiohit,single single thread hit ratio
Ratiomiss,single single thread miss ratio
Ratioconf,single single thread conflict ratio
PSmRw same-row accessing probability
PSmBk same-bank-diff-row accessing prob.
PSmCh diff-bank-same-channel accessing prob.
PDfCh different channel accessing probability
Ratiowr Write request ratio
Ratiowtr write-to-read switching request ratio
Ratiortr rank switching request ratio
rk cnt number of ranks accessed

Table 2. Software Parameters
5. Obtaining Parameters

As discussed in Section 4, DraMon requires input parame-
ters. This section discusses the collection of these parameters.
5.1. Experimental Platform

To demonstrate parameter collection, we use a machine
with an AMD Opteron 6174 Processor. This processor has
two dies. Each die has six cores which share one 6MB L3
cache and one MC. Each core has 128KB split L1 Cache and
256KB L2 cache. Each MC is connected to two channels
of total 12GB memory which is composed of six Samsung
M393B5273CH0YH9 DDR3-1333 memory modules. Be-
cause this research focuses on predicting the bandwidth of
one MC, here we use one-die/six-core of this processor. The
machine is running Linux 2.6.32.
5.2. Hardware Parameters

Hardware Parameters can be collected from data sheets
and PCI configurations registers [2, 30]. Table 1 gives the
description of the hardware parameters, as well as their val-
ues of the AMD Opteron 6174 processor.
5.3. Software Parameters

Table 2 gives a list of software parameters. Here we
describe two approaches to collect their values. One uses
memory-traces. The other one does not require traces. In-
stead, it uses PMUs, and it can be applied during execution.

5.3.1. Trace-based Approach
We run each program with one thread and generate its mem-
ory trace with Pin [22]. This trace contains the virtual ad-

Parameters PMU
Rateissue,single DRAM ACCESSES PAGE, HW CPU CYCLES
Ratiohit,single DRAM ACCESSES PAGE:HIT
Ratiomiss,single DRAM ACCESSES PAGE:MISS
Ratioconf,single DRAM ACCESSES PAGE:CONFLICT
Ratiowr MEM CONTROLLER REQ:WRITE REQ
Ratiowtr MEM CONTROLLER TURN:WRITE TO READ
Ratiortr MEM CONTROLLER TURN:CHIP SELECT

Table 3. Collecting program parameters from
PMUs

Benchmarks PSmRw PSmBk PDfCh BRDs
streamcluster. 0.01% 6.26% 49.67% 1(78%), 8(22%)
facesim 0.00% 5.57% 50.20% 1(90%), 2(10%)
canneal 0.01% 6.20% 50.67% 1(93%), 8( 7%)
fluidanimate. 0.01% 6.28% 48.93% 1(78%), 4(22%)

Table 4. PSmRw, PSmBk, PDfch and BRDs of four
PARSEC benchmarks.

dresses of memory requests, which are translated to physi-
cal addresses using the page table exported by Linux kernel.
Each physical address is later translated to a DRAM address,
which includes the channel, rank, bank, row and column ad-
dresses [2]. This translated trace is fed into an in-house cache
simulator to generate DRAM requests.

We analyze the DRAM request trace to collect bank reuse
distances and their probabilities (∆ and P∆), as well as
Ratiowr, Ratiowtr, and Ratiortr. To acquire single thread
HMC ratios, we feed the trace into an in-house DRAM simu-
lator.

To obtain PSmRw, PSmBk, PSmCh and PDfCh, we run
the program with two threads and collect their memory traces
using the above approach. Then we run both traces with our
DRAM simulator to generate these probabilities.

The missing last parameter is Rateissue,single , which can
be acquired using the PMU. On the AMD processor we use,
this PMU counter is DRAM ACCESSES PAGE (Table 3).
5.3.2. Run-time Approach
Most software parameters can also be collected from PMUs.
Table 3 gives a list of software parameters and their corre-
sponding PMUs on the AMD processor we used.

Unfortunately, there is no PMU that provides values for
PSmRw, PSmBk, PSmCh, PDfCh and bank reuse distances.
However, from memory traces, we discovered that most pro-
grams share common values for these variables. Table 4
gives the values of these parameters of four PARSEC bench-
marks (for BRD values, a x(y) represents a BRD of x with
probability y). The table shows that all benchmarks have
PSmBk of around 6%. The reason for this similarity is the
memory interleaving behavior of the MC. Currently, when
allocating memory pages, MC distributes the pages evenly
among the banks for better performance. For example, when
there is only one conceptual rank of memory used, there are
16 banks involved (8 per channel). Therefore, the proba-
bility that one bank is accessed by a thread is 1

16 . And
the probability that two threads accessing the same bank is
1
16 ·

1
16 · 16 = 6.25%. Because of this memory interleav-



ing behavior, we use 1
bk cnt·rk cnt·chnl cnt as PSmBk, where

rk cnt can be acquired from the OS. Similarly, we use 0%
for PSmRw because two threads rarely access the same row,
and 50% for PDfCh because there are two channels. PSmCh

is 1− PSmRW − PSmBk − PDfCh.
For BRDs, most programs have a BRD of one with a

high probability. The reason for this similarity is data local-
ity, i.e., consecutive requests are likely to access the same
row. Consequently, we assume a sequential access pattern
for DraMon-R. On our machine, the channel-interleaving dic-
tates that every eight consecutive same-row requests start ac-
cessing a new channel. That is, among the eight requests, the
first request has a BRD of eight with probability 1

8 = 12.5%;
the reset seven requests have a BRD of one with probabil-
ity 7

8 = 87.5%. That is, we use 1(87.5%) and 8(12.5%) as
BRDs for run-time prediction.

6. Experimental Evaluation
Our goal is to evaluate the accuracy and fidelity of Dra-

Mon. Here we use the same platform specified in Section 5.1.
Our experiments use 10 benchmarks from PARSEC2.1 and
all 10 benchmarks from NPB-OMP3.3.1 [4, 17]. Three PAR-
SEC benchmarks bodytrack, dedup and x264 are not used be-
cause they are I/O bound and have very limited bandwidth
requirement.

Two kernel benchmarks are also considered for their high
bandwidth requirements and wide uses: fft, a Fast Fourier
Transform program [37], and bw mem from lmbench3 bench-
mark suite [23]. For PARSEC and NPB benchmarks, the
largest executable input sets, “native” and “D”, are used. All
benchmarks are compiled using GCC/GFortran 4.4.3. PAR-
SEC and kernel benchmarks are compiled with O3 optimiza-
tion flag, and NPB benchmarks are compiled with O1 flag.
These benchmarks cover a variety of memory access pat-
terns, including read/write requests, single-bank/multi-bank
accesses and streaming/random accesses.

For each benchmark, we predict its HMC ratios and band-
width usages when it runs with two to six cores/threads using
one MC. Then we compare the predicted values with the real
values obtained from PMUs (Table 2), and report the accu-
racy of our predictions. Additionally, we compare DraMon
to a state-of-the-art, multiple linear and logarithmic regres-
sions based bandwidth model [19].

We define the bandwidth prediction accuracy as

Accuracybw = 100%−
∣∣∣∣BWreal −BWpredicted

BWreal

∣∣∣∣ . (27)

For HMC ratios predictions, we leverage the multinomial
likelihood L from the likelihood theory [31],

DKL =
∑
ty

Ratioty,real × log2

(
Ratioty,real

Ratioty,predicted

)
,

L = 2−DKL , ty ∈ {hit,miss, conflict}.
(28)

Intuitively, L represents the probability that a model is accu-
rate if the model predicts a probability distribution. Here, we
simply refer to L as “HMC ratios prediction accuracy.”

Benchmarks Memory Accuracy L
behavior DraMon-T DraMon-R

streamcluster read, single-rank, streaming 99.83% 99.80%
facesim read, single-rank, streaming 99.34% 98.26%
canneal read/write, single-rank 98.65% 98.51%
lu.D read/write, multi-rank 98.50% 97.57%
mg.D read/write, multi-rank 99.64% 98.64%
sp.D read/write, multi-rank 99.07% 97.90%
fft read/write, single-rank, streaming 99.83% 99.80%
bw mem read, single-rank, streaming 99.83% 99.80%
Average 99.17% 98.55%

Table 5. DRAM contention (HMC ratios) predic-
tion accuracy.

6.1. DRAM Contention (HMC Ratios) Pre-
diction

Table 5 gives the accuracy of DRAM contention predic-
tion for the eight most memory-intensive benchmarks. As the
table shows, DraMon is very accurate for memory-intensive
programs with a wide range of memory behaviors.

Currently we collect traces with up to 75 million re-
quests.The recording and processing of a trace takes about
30 minutes. It may be possible to use shorter traces for online
processing as suggested by previous research [41].

For the rest benchmarks (other than the eight in Table 5),
the average accuracy of DraMon-T is 96.99%, and the av-
erage accuracy of DraMon-R mode is 96.85%. The highest
accuracy of DraMon-T is 99.53% (fluidanimate). The high-
est accuracy of DraMon-R is 99.48% (raytrace). The lowest
accuracy of both models is 92.46%(blackscholes). Because
of space limitations, we cannot present each benchmark’s re-
sult. The overall accuracies of DraMon-T and DraMon-R for
all benchmarks are 97.95% and 97.61%, respectively.

6.2. Bandwidth Usage Prediction

6.2.1. Bandwidth Results
Figure 8 composes the bandwidth prediction results for the
eight memory-intensive benchmarks. The result of facesim
for five cores/threads is missing because it fails to execute
with five cores/threads.

DraMon-T has an average accuracy of 94.7%, and
DraMon-R has an average accuracy of 93.37%. These re-
sults demonstrate that DraMon can accurately predict band-
width usage for programs with a wide range of bandwidth
requirements and memory behaviors. The highest accura-
cies of DraMon-T and DraMon-R are 98.31% (streamclus-
ter) and 95.07% (mg.D), respectively. The lowest accuracies
of DraMon-T and DraMon-R are 91.49% (lu.D) and 90.30%
(fft), respectively.

The bandwidth usages of the rest benchmarks increase lin-
early with the number of cores/threads. Both models have a
high average accuracy of 97.61%, with the highest accuracy
of 99.31% (blackscholes) and the lowest accuracy of 90.43%
(bt.D). The overall accuracies of DraMon-T and DraMon-R
for all benchmarks are 96.32% and 95.73%..
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Figure 8. Bandwidth prediction results. X-axis is the number of cores/threads, and the Y-axis is mem-
ory bandwidth in GB/s.

6.2.2. Comparing to Regression Model
In Figure 8, results labeled with “regres” are the predictions
from a regression-based model [19]. The average accuracy
of this model is 77.61%, which is significantly lower than
DraMon. Its worst case accuracy is 44.37% (facesim), which
is also lower than DraMon’s lowest accuracy (90.30%). Ex-
cept for lu.d and bw mem, six benchmarks have higher ac-
curacies using DraMon. For bw mem, the regression model
has a higher accuracy because it is trained using a micro-
benchmark that has a similar behavior as bw mem.

6.3. Execution Time of the Run-time Model

The run-time model requires reading seven PMUs (Ta-
ble 3). We collect the PMU readings for 0.5 seconds of exe-
cution. We implemented DraMon using C. The average time
for computing the bandwidth of one core/thread configuration
is 0.03 seconds. For each benchmark, five configurations are
predicted. Including parameter collection, the total prediction
time is 0.65 seconds, which only adds 0.5% to the execution
time of our benchmarks in average.

7. Discussion
Prefetcher Impact: In our experiments, the memory

prefetcher is enabled. This prefetcher fetches a stream of
data from memory if a stride memory access pattern is de-
tected [2]. We observe that this prefetcher has a high prefetch-
ing accuracy. It also adaptively decreases the number of
prefetching requests in case of heavy DRAM contention [2].
Therefore, the existence of this prefetcher does not affect Dra-
Mon’s accuracy. However, a less accurate or non-adaptive
prefetcher may need to be modeled separately.

DRAM Refresh Impact: DRAM cells need periodical
refreshing to retain their data, which can degrade DRAM
performance. The DRAM module used in our experiments
requires that each bank spend 160ns on refreshing every
7.8us [30]. Therefore, the DRAM refresh has a theoreti-
cal overhead of 160ns

7.8us = 2% [38]. This overhead may be
lower than 2% if rank-level parallelism happens [16]. This
low overhead does not significantly impact the accuracy of
DraMon. Additionally, DRAM refresh overhead can be miti-
gated for high density DRAM modules [24, 26, 34].

Cache Impact: This research focuses on DRAM, predict-
ing cache performance is beyond its scope. However, because
DraMon is evaluated on a real machine, cache does have
some impact on our results. Fortunately, memory-intensive
benchmarks already have high cache miss rates, and their
memory behaviors are not affected by cache contention.2

However, four benchmarks, ferret, swaptions, freqmine,
and ep.D which have very low bandwidth requirements, are
affected by cache contention or data sharing. Predicting their
bandwidth usages requires a cache model [36, 40]. Because
these benchmarks’ bandwidth usages depend on cache, their
results are not included in the average accuracies in Section 6.

Generalization: Using DraMon on a new platform re-
quires updating its input parameters accordingly. The hard-
ware parameters can be updated based on the new hardware
configuration. For DraMon-T, the software parameters can
still be obtained from memory traces. For DraMon-R, the cor-
responding PMUs should be identified on the new platform.
Software parameters which cannot be obtained from PMUs

2These benchmarks are known as devils by previous research [42].



(i.e., SmRw, SmBk, SmCh and DfCh probabilities, and bank
reuse distances) are determined by the DRAM configuration
(banks/ranks/channels), as well as the channel-interleaving
scheme as discussed in Section 5.3.2.

8. Case Study
To demonstrate the performance benefits brought by Dra-

Mon, we present a case study where we use both DraMon-
R and the regression model to predict the experimentally-
optimal core allocation of multi-threaded benchmarks [19].
We use four memory-intensive benchmarks, which are
streamcluster, facesim, canneal and bw mem. Clearly, the
optimal core allocations of these benchmarks are the core al-
locations that have the highest bandwidth usages.

Using the AMD Opteron 6174 processor, we first ran each
benchmark with one thread to collect input parameters using
PMUs. With the PMU readings, we predicted the highest-
bandwidth-usage core allocation (i.e., the optimal core alloca-
tion) for each benchmark using the two models, and adapted
the benchmarks to execute with the two predicted optimal
core allocations. Then we compared their performance with
the default static core allocation, which uses all available
cores. We employed a technique similar to that used by
Thread Tailor to support changing thread count during exe-
cution [20].
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Figure 9. Performance improvement of the op-
timal core allocations predicted by DraMon-R
and the regression model compared to the de-
fault static core allocation.
As Figure 8 shows, DraMon-R accurately predicts band-

width utilization. This accurate prediction yields more ac-
curate core allocation which in turn yields performance im-
provements. Figure 9 shows that the core allocation based on
DraMon-R outperforms the static allocation for facesim and
bw mem. In contrast, the regression model performs simi-
larly as the static allocation. For streamcluster and canneal,
because their scalability is not bandwidth limited on this par-
ticular processor, and because both models have low over-
head, all three allocations perform similarly. These results
indicate the importance of dynamic core allocation, without
which multi-threaded programs may perform sub-optimally
and waste energy. These results also show that the benefit of
dynamic core allocation can only be achieved with an accu-
rate bandwidth model. Additionally, they show that the low

overhead of DraMon adds little performance penalty to dy-
namic core allocation.

9. Related Work
There are several studies that modeled DRAM analyti-

cally. Choi et al., Yuan et al. and Wang modeled the DRAM
busy time [7, 38, 44]. These models always require memory
traces, and their goal was to provide guidelines for DRAM
design rather than predicting bandwidth usage. Kim et al.
proposed a model to predict the impact of bank partition-
ing [18]. Ahn et al. modeled bandwidth usage of programs
with regular memory access patterns [1]. These two models
do not consider DRAM contention. Additionally, all of these
studies were conducted using simulators, while DraMon is
evaluated on a real machine.

A Linear bandwidth model was first proposed by Snavely
et al. for multi-processors systems [32]. It was later applied
to multi-core systems [20, 29, 35]. To improve accuracy, the
linear model was also extended with a roof-line, i.e., the max-
imum peak bandwidth [39]. Kim et al. proposed model-
ing bandwidth with multiple linear and logarithmic regres-
sions [19]. As demonstrated in this paper, the linear model
and regression-based model have low accuracy because sev-
eral important factors are overlooked.

Cache reuse distance has been used to predict cache miss
rate by many studies [5, 9, 40]. These research efforts in-
spired us to use bank reuse distance.

There also has been work on improving MC/DRAM de-
signs and OS memory allocation algorithms [3, 6, 11, 14, 15,
21, 25, 27, 28, 33]. DraMon can predict the bandwidth us-
ages of these techniques by changing its case selection phase
(Section 4.2), or updating its input parameters accordingly.

10. Summary
This paper presents DraMon, a model that predicts the

bandwidth usage of multi-threaded programs on real ma-
chines with high accuracy. DraMon can be directly employed
by previous scalability studies to improve their performance
and accuracy. It also can be used to improve DRAM system
design and memory allocation algorithms.

We demonstrate that accurately predicting memory band-
width requires predicting DRAM contention and DRAM con-
currency, which both can be predicted with high accuracy
and in short computation time using probability theory. We
also identify the hardware and software factors that should
be considered for bandwidth prediction. These parameters
can be collected from memory trace, as well as PMUs for
run-time prediction. When evaluated on a real machine, Dra-
Mon shows high average accuracies of 98.55% and 93.37%
for DRAM contention and bandwidth predictions, with only
0.50% overhead on average.
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