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Abstract—Performance fluctuation of cloud running applica-
tions, due to collocations of different tenants on the same machine,
is one of the cloud users’ concerns. To alleviate users’ concerns
with insightful information, performance modeling and prediction
of their applications is deemed necessary. In this paper, we
propose two hierarchical and a monolithic performance modeling
and prediction frameworks for multi-VM applications running
on clouds. Hierarchical frameworks have been considered to dis-
tribute the required processing power for performance modeling
and prediction over a group of collaborating VMs for better
scalability, and to reduce the load of transferring unprocessed pro-
filing data. Several unsupervised learning algorithms and existing
single-VM models have been incorporated into the hierarchical
frameworks to evaluate their effects on models’ accuracy. Then,
the results are compared with a baseline approach where the
most intuitive monolithic framework requires the accumulation
of all profiling data on a central VM. We have considered a
comprehensive set of micro-benchmarks to probe the contention
in various resources of all collaborating VMs. Then, using the
proposed frameworks, the experienced contention levels by each
VM and the overall performance of the applications are modeled
and predicted. The results of our experiments in a private and
two public clouds show that the distributed and hierarchical
frameworks can predict the overall applications’ performance
effectively with comparable accuracy to the monolithic framework
with an average prediction error of 5% for different cluster sizes
and clouds.

I. INTRODUCTION

As reported by Berkeley view of cloud computing, per-

formance variation has been one of the main concerns of

cloud running applications [17]. Performance variation stems

from the collocation of multiple cloud tenant VMs on the

same hardware competing for the available resources. Although

there are efforts to control performance variation caused by

collocation [36, 37], studies show that there is still an average

of 20% to 25% performance variation for cloud running appli-

cations [33, 34, 40]. Moreover, performance variation accounts

for nearly 25% of users’ created support tickets [28], wasting

users’ time and requiring providers’ specialized support teams.

To address users’ concerns, the accurate performance modeling

and prediction of their cloud running applications can signif-

icantly help them to set their performance expectations, find

slow-running VMs that affect applications’ progress, and make

insightful scheduling and auto-scaling decisions [5, 38, 39].

However, performance modeling and predictions of cloud

applications is a challenging task due to the distinct intensity

and source of interference experienced by every single VM,

uniquely affecting the performance of applications. Moreover,

the source and intensity of interference experienced by a VM

can often vary based on the changes in its collocated VMs

and their running applications on the same host [13]. These

changes will result in different contention levels, subsequently

impacting the overall performance of multi-VM applications.

To model and predict the performance of multi-VM cloud

applications under different contention levels experienced by

VMs in a group, an accurate resource profiling of all col-

laborating VMs is required. Architecture-level profiling with

CPU’s Performance Monitoring Unit (PMU), although well

studied [13, 32], is not accessible by ordinary cloud users.

OS-level profiling, using the operating system offered resource

utilization, does not provide an accurate measure of resource

contention. Finally, application-level profiling, using a frame-

work provided execution graph, does not apply to all cloud

running applications and is not suitable for ordinary cloud users

[6, 47, 48].

To address the resource profiling issue, prior studies have

used micro-benchmarks to estimate the intensity of resource

contention in different resources such as CPU, Memory, I/O,

and cache [4, 40, 46]. Leitner et al. used resource profiling

to model the average performance of single-VM cloud run-

ning applications not suitable for runtime prediction [40].

Baughman et al. used actual application performance to model

the average execution time with different data input sizes [4].

Varghese et al. [46] used user-provided weights for the profiled

resources to rank a list of VM instances. However, some

models [4, 40] provide the average performance of applications

on different cloud instances, but do not considering the change

in contention levels. And some models [46] rely on inaccurate

weights provided by the users, while others have only con-

sidered a limited set of resources to profile [40]. To address

the existing limitations, in our previous works [33, 34] we

have used micro-benchmarks for in-situ performance modeling

and prediction of cloud running applications. A set of devised

micro-benchmarks are executed before the target application to

collect contention information and corresponding application

performance. Then, the collected data is used for accurate in-

situ performance modeling and prediction of single-VM cloud

applications.

Note that the studied models can predict the performance of
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single-VM applications, which does not consider the contention

in intra-VM communications for multi-VM applications. To

address this problem, in this paper, we propose DiHi, a

framework for distributed and hierarchical in-situ performance

modeling and prediction of multi-VM cloud applications. We

use a comprehensive set of micro-benchmarks to profile the

contention experienced by each VM in different resources

including the intra-VM communications (i.e. CPU, Memory

bandwidth/latency, I/O, L1, L2, L3 caches, and Network

bandwidth/latency). The execution of micro-benchmarks on all

collaborating VMs in parallel will be followed by the actual

application execution, providing the experienced contention

levels by each VM and the corresponding performance of the

application. Then, the collected performance data is used for

model training and evaluation. Once the performance model is

built for a specific instance (VM-type/flavor) and application,

considering the periodic execution of cloud applications [28],

it can be reused as needed in the future.

In DiHi, to distribute the required processing for scalable

model training and prediction, and to reduce the amount

of profiling data to transfer between the collaborating VMs,

hierarchical models are used [51]. For hierarchical performance

modeling and prediction, the first level of VMs is responsible

for pre-processing and clustering of the profiling data into

different contention levels. Then, the experienced contention

levels by each VM is sent to a managing VM for aggregation

and final modeling. In this way, micro-benchmarks execution

results will be extracted, normalized, and clustered using un-

supervised learning algorithms into different contention levels

on each collaborating VM. In this step, clustering algorithm is

used given that the effect of experienced contention by each

collaborating VM on the final application performance is still

unknown. Next, the contention level information from all the

VMs will be sent to the managing VM for aggregation.

Finally, the effect of different contention levels experienced

by each collaborating VM on the overall performance of

the application will be modeled by the managing VM us-

ing feed-forward Neural networks (NN). This approach will

make performance modeling and prediction more scalable

by reducing the extensive processing load on a single VM.

Moreover, training the model in a distributed fashion speeds-

up the modeling and prediction process and reduces the load of

transferring the unprocessed profiling data to a central VM. We

have also considered to incorporate the previously built single-

VM models, as used in uPredict [33], into the DiHi hierarchical

model. The single-VM model will replace the clustering algo-

rithm in DiHi to estimate the experienced contention levels in

local resources of each collaborating VMs. Since the single-

VM model won’t consider the effect of contention in intra-VM

communications, its output will be sent in conjunction with

measured communication contention to the managing VM for

aggregation and modeling.

Experiments have been conducted on a private cloud,

Chameleon cloud [7], and Google Compute Engine (GCE) [20]

using six representative cloud applications from HiBench [24],

CloudSuite [16], and Nas Parallel Benchmarks (NPB) [3].

Various clustering algorithms have been considered in the

DiHi framework to evaluate their effects on the final models’

accuracy, including KMeans [22], Affinity Propagation [18],

Mean Shift [49], and Birch [53] clustering. Moreover, feed-

forward neural networks [23], as the most accurate model for

performance modeling and prediction [33], has been used for

the final aggregation of the clustering results on the managing

VM.

The results of our experiments show that DiHi framework

with the considered set of micro-benchmarks can provide

a precise measure of different contention levels experienced

by collaborating VMs, leading to an accurate performance

modeling and prediction with only 12.6%, 3.4%, and 2.8%

average prediction errors with KMeans clustering algorithm

on private cloud, Chameleon cloud, and GCE respectively. We

have compared the accuracy of DiHi framework with mono-

lithic feed-forward neural networks requiring the collection

and processing of all performance data in a central location.

The results show that DiHi is slightly less accurate than

the monolithic model with only 1.6% more prediction error

while decreasing network communications and distributing

computation for performance modeling and prediction. The

main contributions of this work include:

1) A distributed and hierarchical performance modeling

and prediction framework, DiHi, is proposed to provide

accurate performance modeling and prediction of multi-

VM cloud applications.

2) A comprehensive set of micro-benchmarks (CPU, Mem-

ory bandwidth/latency, I/O, L1, L2, L3 caches, and

Network bandwidth/Latency) is used to examine the

contention in a wide range of system resources.

3) Integration of single-VM models into DiHi framework

to evaluate the effectiveness of adopting the existing

performance models.

4) An extensive evaluation of the proposed framework is

conducted using six representative cloud applications on

a private and two public clouds.

The rest of this paper is organized as follows. Section II

provides the related works on performance modeling and pre-

diction of cloud applications. Section III discusses the micro-

benchmarks that are used to profile the resource contention on

each VM. The proposed methodology and predictive frame-

works are presented in Section IV. Section V discusses the

experimental setup and evaluation results. Finally, Section VI

concludes the paper.

II. RELATED WORKS

Proper Instance Selection: With the abundance of existing

VM-configurations users have difficulty choosing the proper

instance type. To assist the users, research studies have focused

on predicting the average performance of user applications in

a wide range of instance types and cloud providers [2, 10,

15, 42, 50]. Cherry Pick [2] selects several different instance
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configurations for the actual application execution to predict

the average performance across all the different instance types.

In Cherry Pick, Bayesian optimization is used for instance

selection to reduce the total number of required executions

for performance modeling. Paris [50] models the application’s

behavior with different amounts of available system resources

to recommend the instance type that better meets users’ goals.

They have considered a wide range of resources to profile

using OS-level provided information to model and predict the

application’s performance. Moreover, Paris uses both offline

and online performance modeling to reduce the cost and

number of experiments required on the cloud. QuMan [42]

is another tool that uses profiled application performance in

isolation to estimate an appropriately sized VM on the cloud.

However, the OS-level resources profiling used in Paris do

not accurately reflect the experienced contention, and about

50% prediction error is observable. Moreover, performance

profiling of users’ applications in an isolation environment

appears to be impractical, and modeled average performance

seems imprecise.

Cloud Workload Prediction: Long tail latency is a major

concern among cloud users. To alleviate users’ service dis-

ruption, several studies have predicted the incoming workload

requests to make better VM collocation decisions in cloud

data centers [9, 29, 52]. For instance, Kumar et al. used a

pool of tasks (i.e. incoming workload requests) to extract the

seasonal features for model training [29]. The trained model

then can be used for future workload prediction to assist

VM collocation. Although this approach seems promising, it

requires the existence of a clear trend between the pool of

tasks and future submissions. For hard-to-predict tasks without

clear recurring patterns, Yu et al. proposed the use of a

clustered pool of tasks based on workload characteristics [52].

Then, by using initial workload parameters for any submitted

task the closest cluster can be found to predict the expected

future workloads. Provided workload prediction can be used to

make smart scheduling decisions, thus preventing any required

instance migration. However, for this research category, a pool

of incoming workloads with known characteristics and clear

seasonality is required, though it may not always be accessible.

Interference Prediction and Prevention: To make better

collocation decisions, numerous research studies have used

Performance Monitoring Unit (PMU) counters to determine the

sensitivity of applications to the source of interference [12, 13,

21, 32, 36, 37, 45]. DeepDive [36] uses PMU to detect the time

and source of interference. In [45], the authors not only de-

tected the source of interference using PMU counters but also

alleviated contention by throttling background applications.

Mage [37] first determines the sensitivity of the application

to the source of interference. Then, bases on the sensitivity

profile, it determines the proper placement of the application.

However, all of these studies have considered architecture-level

access to the system resources and CPU counters with control

over the placement of the VMs. In contrast, PMU counters

are not accessible by the cloud users, nor do they have any

control over their applications placements, which thus makes

the adoption of these solutions for cloud users impossible.

Framework-Specific Performance Prediction: In their

studies, a number of researchers have focused on the

application-specific performance modeling (e.g., Hadoop and

Spark workloads) of cloud running applications by leveraging

additional information about the job progress in the framework

[6, 8, 47, 48]. In [47, 48], the authors used the Directed Acyclic

Graph (DAG) information of a spark task to model the perfor-

mance of different stages. Then, they predicted the application

performance through the limited execution of newly submitted

job and the existing model. Castiglione et al. [6] used Mean

Field Analysis to analyze a large number of communications

between the collaborating machines to provide a description

of elements and their relations for modeling and prediction.

However, these studies require information about the progress

of task’s different stages or communication patterns, which is

not accessible for all cloud running applications. Moreover, it

is difficult for ordinary cloud users to adopt such framework

dependent techniques.

Application-Specific Performance Prediction: Several

studies have considered different ways of application bench-

marking for performance modeling and prediction [4, 31, 40,

44, 46, 50]. In [31], specific lines of code were inserted

into several parts of the application’s source code. The in-

serted codes were used to benchmark the progress of different

execution stages. Then, the benchmarked progress with the

corresponding application’s performance under different cloud

instances and settings were collected and used for modeling

and later predictions. Tak et al. [44] implemented an easy-to-

install PesudoApp that emulates the sequence of systems calls

for a considered application. The execution of the PesudoApp

under different cloud settings provided required benchmark-

ing information for the performance prediction of the actual

application. In [46], the authors use micro-benchmarks to

profile different system resources for various cloud instances.

Then, the profiling data with a set of weights provided by

the user, representing the importance of each resource, will be

used to generate two ranked lists of instances for the users

with the consideration of performance and cost. Studies used

benchmarking for performance modeling share some similari-

ties to our approach. However, modifying the source code or

emulating sequence of system calls may not always be practical

for cloud users and can be difficult to adopt. Moreover, users do

not have accurate information about the impact of different re-

sources on the overall application’s performance, which needs

to be found. Finally, all these research studies focused on the

average performance of the applications on different instances

and have not considered the changed in the contention and

corresponding application run-time performance. Our proposed

framework, using micro-benchmarking, profiles the contention

level of different resources and trains a model on the expe-

rienced contention levels and the corresponding application’s
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performance to accurately predict run-time performance.

III. PRELIMINARY AND PERFORMANCE PROFILING

Depending on the collocated VMs and their running appli-

cations on the same hardware, every single VM will expe-

rience unique levels of contention during its execution. It is

required to estimate the contention level experienced by each

particular VM in a group of VMs for performance model-

ing and prediction of multi-VM cloud running applications.

Although PMU counters are widely adopted for performance

modeling and interference detection [36, 37, 42, 48], they are

not accessible to the cloud users. Moreover, not all applica-

tions or frameworks provide information about their progress.

For these reasons, we considered using micro-benchmarks to

probe the contention experienced by each collaborating VM.

To estimate the contention in the host’s local resources, we

use a set of micro-benchmarks which were developed based

on Lmbench [30] opensource benchmarking suite. Moreover,

iperf [26] benchmarking suite is used for estimating the con-

tention in intra-VM network communications. What follows

are the implementation details for the micro-benchmarks and

their considered execution time.

A. Contention Estimation with Micro-benchmarks

For the implementation details of our CPU, Memory Band-

width, and Disk IO micro-benchmarks we refer the readers to

the uPredict framework [33], and their output are represented

as ccpu, cmem, and cdisk, respectively.

Cache: To evaluate the contention level in the cache subsystem

three micro-benchmarks are devised for L1, L2, and L3 caches,

respectively. These three micro-benchmarks will run on each

VM sequentially with threads equal to the number of available

vCPUs to access an array of size 256KB, 2MB, and 20MB

with the stride size of 128 respectively. The total number of

times each micro-benchmark with all the threads can access

the resources in a fixed period of time will be considered as

the progress indicator (cL1, cL2, and cL3). Intuitively, faster

progress (more accesses in a fixed time) will be an indicator

of lower contention levels, and slower progress will be an

indicator of higher contention levels in a specific duration of

time. The size of the array each micro-benchmark will access

is set proportionate to the amount of cache available in the

targeted cache level. With the first access to each data element,

it will be brought to the cache, and the next few accesses will

be faster for the fetched data. However, if due to contention

some data elements have been pushed out of the cache, the

next access will be slower in order to fetch the data back to

the cache, resulting in longer access time and lower number

accesses in a fixed period of time by the micro-benchmarks.

Memory Latency: Modern applications’ performance has

shown more sensitivity toward memory latency [35]. Memory

latency micro-benchmark estimates the contention by accessing

an array of 2GB with the stride size of 128 with only one thread

to do a pointer-chasing. In pointer-chasing, each memory
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Fig. 1: Network Bandwidth/Latency Profiling for All Possible

Pairs of VMs

location contains the address of the next memory location

to access, and one thread is utilized to prevent inter-thread

contention. The number of memory accesses (clatency) in a

fixed duration of time will be considered as an indicator of

contention in memory latency. Intuitively, with larger latency,

the number of accesses to memory will decrease, and vise

versa.

Network Bandwidth/Latency: Network contention can be

represented by change in network bandwidth or latency, affect-

ing the communication time of collaborating VMs and conse-

quently their performance. The source of network contention

can be an adapter shared between multiple hosted VMs on the

same hardware or data center network traffic on VMs’ commu-

nication route. To measure existing network bandwidth/latency

between two VMs we use iPerf3 micro-benchmark suite [26].

For iPerf3 to measure network bandwidth/latency one VM

acts as a server, listening for the incoming data on a specific

port from the client VM. IPerf3 floods the network bandwidth

with data that will be sent from the client to the server to

measure the available network bandwidth and corresponding

connection latency. The results of measured network bandwidth

and latency for a pair of client and server will be denoted as

ci,jNet−Band and ci,jNet−Lat, in which i and j are the client and

server VM numbers correspondingly. For each VM as a client,

the experiment will repeat with all the other collaborating

VMs as the server, generating a tuple of measured network

bandwidth/latency. Equation 1 shows such a tuple for network

bandwidth where n is the total number of available VMs in

the group and i is the client VM number.

ciNet−Band = (ci,1Net−Band, · · · , ci,i−1
Net−Band,

ci,i+1
Net−Band, · · · , ci,nNet−Band) (1)

An increase in network bandwidth and a decrease in con-

nection latency represents a decrease in network contention

affecting the performance of collaborating VMs favorably,

and vise versa. In this work, network bandwidth and latency

between all pairs of the VMs have been measured in both

directions (From client to server and server to client) by

changing the client and server roles as shown in Figure 1.

B. Profiling Duration

Longer profiling duration may better reflect variations of

changes in the system contention level, but it will impose high
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overhead. Therefore, shorter profiling duration is favorable

to reduce the overhead as much as possible. Yet, it may not

be able to capture all contention information, affecting the

prediction accuracy. For this reason, to balance the profiling

overhead and model’s accuracy, all considered micro-

benchmarks are capable of sub-second profiling duration. We

have investigated the effects of profiling duration on model’s

prediction accuracy, the results show that 0.4 second profiling

duration will provide accurate enough information about the

probed resources for performance modeling and prediction.

Moreover, increasing the profiling duration up to 3 seconds

only has negligible improvement on the model’s accuracy. As

a result, in all the experiments, 0.4 second profiling duration

has been considered.

All micro-benchmarks evaluating the contention in local

resources (CPU, Memory bandwidth/latency, I/O, L1, L2, and

L3 cache) will be executed sequentially on each VM, and the

process happens for all collaborating VMs in parallel. However,

for profiling the contention in shared resources between all

the VMs in the same group (Network bandwidth/latency), the

micro-benchmarks will execute on each pair of VMs one after

the other to prevent the intra-VM profiling contention and

conflict. Right after the execution of all the micro-benchmarks,

the target application executes on all the collaborating VMs

in the group. This will provide the resource contention experi-

enced by each collaborating VM and corresponding application

performance. The results will be used for model training and

future predictions which will be discussed in Sec. IV.

IV. MULTI-VM PERFORMANCE MODELING AND

PREDICTION

A. Overview

The impact of resource contention depends on its source

and intensity, creating varying contention levels. For multi-VM

cloud applications, their overall performance depends on the

experienced contention level by each collaborating VM in a

group. A VM may experience high contention levels and slow

down the whole group, negatively affecting the performance

of the application. The effect of contention levels experienced

by the collaborating VMs on application performance can

be modeled using machine learning algorithms. This process

consists of two phases, performance modeling and prediction.

In the modeling phase, in each iteration, micro-benchmarks

will execute on all the collaborating VMs before the

target application execution to measure the contention

experienced by the VMs and corresponding application

performance. The results of this step is denoted as

{p1vm, p2vm, · · · , pivm, · · · , pnvm, tapp} where pivm is a tu-

ple of micro-benchmarks execution results on ith VM

(cicpu, c
i
L1, · · · , ciNet−Band, c

i
Net−Lat), n is the number of

collaborating VMs in the group, and tapp is the measured

application performance (e.g., execution time) for the profiled

level of resource contention. This process will be repeated

for multiple iterations to collect required performance data.

Then, the collected performance data will be provided to

the machine learning algorithm for model training. Using the

trained model, future predictions can be made by providing the

profiling results ({p1vm, p2vm, · · · , pivm, · · · , pnvm}) to the model

as inputs for performance prediction ({tapp}). The performance

model described above can be built using different techniques

described in the following sections.

B. Predictive Models

Centralized Neural Network: Feed-forward Neural Networks

(NN) have been shown to have great accuracy in modeling

polynomial and non-polynomial behaviors of cloud running

applications [14, 33]. Using NN, parameters for function f
presented in Equation (2) can be found to model the applica-

tion’s performance for later predictions.

tapp = f(p1vm, p2vm, · · · , pnvm) (2)

However, to train a NN it is required to send all the profiling

information collected on all the collaborating VMs to a central

VM for modeling and prediction. Figure 2.a shows a NN with

profiling information collected from all the collaborating VMs

as inputs. The number of neurons in the first layer is equal

to the number of profiled resources in all the collaborating

VMs. Due to the sensitivity of NN to hyper-parameters (e.g.,

layers, neurons, dropout, etc.), we utilized HyperOpt [25],

a hyperparameter optimization library, which will find the

optimal parameters using a Tree-structured Parzen Estimator

(TPE) algorithm [43]

Distributed and Hierarchical Clustering: To distribute the

required processing for model training among the collaborating

VMs, and to reduce the large volume of data transfer to a

central location for model training and prediction, we use

hierarchical models [51]. As shown in Figure 2.b each VM will

independently extract the information from the unprocessed

profiling data, preprocess the data by normalization, and feed

the normalized data to an unsupervised clustering algorithm.

Then, instead of sending unprocessed profiling data, the output

of clustering algorithm will be sent to the managing VM for

aggregation and final modeling or prediction. In the modeling

phase, the clustering algorithm gi on ith VM , as shown in the

equation 3, will assign a group number to each local profiling

data tuple in such a way that data tuples in each group will

be more similar to each other. The group numbers assigned

represent the contention levels experienced by ith VM for the

profiled duration of time.

cli = gi(pivm) (3)

Then, group numbers, instead of actual profiling data, will

be sent to the managing VM for final performance modeling

using NN, as shown in equation 4. Here, the NN will model the

correlation between the contention level experienced by each

collaborating VM and the overall application performance.
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tapp = f(cl1, cl2, · · · , cln) (4)

In the prediction phase, the contention in resources of

each collaborating VM (i.e. ith VM) will be profiled by

the execution of the micro-benchmarks. Then, the tuple of

profiled information for different resources will be fed to the

locally trained clustering algorithm (gi) which will output the

experienced contention level (cli) by the VM. Finally, the

experienced contention levels by all the VMs need to be sent to

the managing VM for aggregation and performance prediction

using the previously trained NN model (f ).

For our hierarchical model, four clustering algorithms

have been considered to evaluate their effects on the final

models’ accuracy. The considered clustering algorithms are

KMeans [22], Affinity Propagation [18], Mean Shift [49], and

Birch [53] clustering. Each clustering algorithm uses different

techniques to group the data points. KMeans assigns the points

to different clusters with the goal of minimizing variance

within the cluster, Affinity Propagation identifies a subset of

representative examples using message passing concept, Mean

Shift uses the density of data points in feature space to identify

clusters, and Birch uses the tree structure for forming the

clusters. Similarly here, NN and clustering algorithms have

been optimized using HyperOpt hyper-parameters optimization

library to find the best parameters for modeling.

Single-VM Model with Hierarchical Framework: We have

also considered the approach of adopting the existing single-

VM performance models by incorporating into the hierarchical

framework. Incorporating single-VM models help aggregate

the contention experienced in local VM resources with almost

no training in lower-level VMs. For details of the steps in-

volved to generate a single-VM model, we refer the readers to

uPredict framework [33]. In the modeling phase, first, micro-

benchmarks will be executed on all the collaborating VMs.

Then, the normalized profiling results of the local resources

will be fed as inputs to the single-VM model on each VM.

Here, the output will represent the contention level experi-

enced in the system local resources without the consideration

of contention in intra-VM communications (Network band-

width/latency). However, the experienced contentions in intra-

VM communications are required for accurate performance

modeling and prediction of multi-VM applications. For this

reason, in addition to the contention level estimated in local

resources by the single-VM model, the measured contention

of inter-VM communications will be sent to the managing

VM for final aggregation and modeling using NN. In the

prediction phase, profiling results of local resources will be

fed into the single-VM model for aggregation. Then, the output

along with the measured network contention will be sent to the

managing VM for performance prediction. Figure 2.c shows

the hierarchical performance modeling and prediction by re-

utilizing pre-existing single-VM model.

V. EVALUATIONS AND DISCUSSIONS

We have conducted extensive experiments to evaluate the

feasibility of using DiHi framework for performance modeling

and prediction of multi-VM cloud running applications. First,

we provide our experimental setups. Then, we discuss the

models’ accuracy in predicting the performance of applications

running on a group of 2 VMs. Finally, the scalability of DiHi
framework is evaluated considering its accuracy in predicting

the performance of applications running on a group of 4 VMs.

A. Experiments Setup

Representative Benchmarks: We considered a total of six

benchmark applications from Intel HiBench [24], Cloud-

Suite [16], and NAS Parallel Benchmarks (NPB) [3]. It in-

cludes Bayesian classification (bayes) and K-means clustering
(kmeans) with small inputs from Intel HiBench. In-Memory
analytics (inMem) and Graph analytics (graph) are selected

from CloudSuite. For Graph analytics benchmark, the only

default data input, and for the In-Memory analytic, the largest

data input were used. From NPB, lu and ep with class C

input size were considered. These benchmark applications

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 27,2021 at 22:57:17 UTC from IEEE Xplore.  Restrictions apply. 



have been selected to representing a wide range of Multi-

VM cloud running applications. HiBench benchmarks are

selected to represent Hadoop workload requiring many disk

operations, CloudSuite benchmarks are selected to represent

Spark inMemory operations used in businesses for many data

analytic workloads, and NPB benchmarks as HPC applications

utilizing CPU heavily. Note that all the selected benchmarks

are setup to run on a group of VMs.

VM Configurations: We have conducted experiments on three

different clouds: private, Chameleon and Google Compute

Engine (GCE). For the private cloud, OpenStack Ocata was

installed on two servers, each with two Intel Xeon E5-2630

processors (with a total of 16 cores on each server) and 128GB

memory. For experiments conducted on the private cloud, due

to the limited number of available servers, only a group of 2

VMs are utilized to execute the applications with each VM

hosted on one of the servers. This setup enables the control of

background interference experienced by each VM separately.

Each VM will utilize 8 vCPUs and 16 GB of memory to run the

selected applications (total of 16 vCPUs and 32 GB of memory

on both VMs). Resource contention is introduced to the system

by launching up to seven background VMs with the same

configuration on each server. Interference configuration will

be chosen randomly at run-time, and 100 data points will be

collected, then the interference configuration will change. This

process will repeat for 10 iterations to collect a total of 1000

data points. The interfering VMs will be chosen randomly at

runtime to execute one of the CPU, Memory, I/O, and network

intensive applications from iBench [11], FIO [27], and GNU

Wget [19]. Wget will download a 1GB Linux Mint iso image

from a host that is directly connected to the same network

switch. For Chameleon and GCE, two sets of experiments have

been conducted with 2 and 4 VMs group sizes. On Chameleon

as a scientific cloud [7], for group of 2 VMs m1.xlarge instance

has been considered with 8 cores and 16GB of RAM, and

m1.large VM instances with 4 cores and 8 GB of RAM has

been selected for a cluster of 4 VMs, with both instances

having 40GB of disk drive. For GCE, e2-standard-8 and e2-
standard-4 instances with 8 and 4 cores and 16 and 8 GB RAM

with 60 GB of disk drive are considered for cluster sizes of

2 and 4 VMs, respectively. These instances are chosen as the

closest configuration to our private cloud experiment. For all

the experiments Ubuntu Server 16.04 is used as the OS for the

VMs.

Data Collection: We chose 0.4 second profiling duration as

our experiments indicate that increasing the profiling dura-

tion up to 3 seconds has a negligible effect on the models’

accuracy. For the chosen profiling duration, all the micro-

benchmarks will execute prior to the execution of the target

application in all collaborating VMs in parallel, except the

network bandwidth and latency micro-benchmarks. The exe-

cution of network-related micro-benchmarks will initiate from

each VM one by one to prevent the interference generated by

the concurrent execution. In this way, the profiling information

will provide us the in-situ contention level experienced by each

collaborating VM, followed by the application’s performance

executed on all the VMs in the group. This process will repeat

to collect 1,000 data points for each application, which was

ran over the course of 3 months on the private cloud and a

month on Chameleon and CGE.

For each benchmark application, 80% of the collected data

points are randomly selected to train the model (60% for

training and 20% for validation), and 20% have been used

for model testing.

Model Implementation: To implement the predictive mod-

els we used existing open-source libraries. For clustering

algorithms, scikit-learn version 0.19.2 [41] was used, and

the NN models were implemented using TensorFlow version

1.12 [1]. Due to the sensitivity of the models to the hyper-

parameters, HyperOpt optimization library version 0.1.1 [25] -

was employed, where 100 iterations were used to find the best

configurations from the provided search space.

B. Evaluation of DiHi with 2 VMs:

We have evaluated the DiHi framework in a private cloud,

Chameleon and GCE with 2 VMs to run the specified bench-

marks. Figure 3 shows the prediction error of the considered

predictive models in DiHi for six benchmarks. Here, for each

benchmark, 80% of the collected data is randomly selected for

model training and evaluation, and the remaining 20% is used

for testing the model’s accuracy.

By comparing Figure 3 part a, b, and c, it can be observed

that the most intuitive approach, collecting all the performance

data from collaborating VMs and feeding as inputs at the same

time to a NN with hyper-parameter optimization, performs the

best on average for the data collected in all three different

clouds. A possible reason for the better accuracy, compared

to other predictive schemes, can be the ability to better tune

the model in a central location with all available training

data. However, the other five predictive models based on DiHi
show very close accuracy. In addition, DiHi-based models

reduce the load of transferring unprocessed data to a central

location and distribute the required processing power among

all collaborating VMs.

A closer look at the accuracy of predictive models in Fig-

ure 3 show that the clustering algorithms employed in DiHi, to

group similar data points in each VM, have a quite large effect

on the final model’s accuracy. In particular, Figure 3.a shows

a 6.5% increase in the model’s accuracy by employing the

KMeans clustering algorithm instead of Affinity Propagation,

with KMeans clustering performing as the best algorithm

that can be incorporated into DiHi framework. Moreover, by

comparing the accuracy of the models in private (Fig 3.a) and

public clouds (Fig 3.b and c), more stable results in a narrow

fluctuation range can be noticed for public clouds. Lower

contention experienced in public clouds can be the reason for

better prediction accuracy of performance by all considered
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Fig. 3: Prediction errors for different models with 2VMs of 8-core and 0.4-second profiling
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Fig. 4: Prediction errors for different models with 4VMs of 4-core and 0.4-second profiling

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 27,2021 at 22:57:17 UTC from IEEE Xplore.  Restrictions apply. 



algorithms. Resource contention in public clouds accounts for

an average of 20% to 25% performance fluctuation, however,

in private cloud experiments contention rises to almost 300%.

It should be noted that higher contention in private cloud is

considered mainly to test the predictive models in a highly con-

tentious cloud environment. In a high contention environment,

more accurate predictive models and algorithms better show

their effectiveness in modeling the performance. However, in

low levels of contentions, even less sophisticated models can

be found beneficial to model the applications’ performance.

Figure 3 shows that DiHi framework employed with the

single-VM model provides acceptable accuracy for perfor-

mance modeling and prediction of multi-VM applications. The

idea behind incorporating a single-VM model is to evaluate

the possibility of re-utilizing the existing models trained on a

single-VM execution data to provide a notion of experienced

contention in local resources. Here, the single-VM model will

aggregate the result of experienced contention in the local

resources with almost no training, reducing the training time

and required amount of data transfer to the managing VM.

Figure 3.a shows that in private cloud, incorporating the single-

VM model into DiHi results in 14.5% error on average,

which is close to the results of DiHi with KMeans clustering

algorithm, with less than a 2% increase in the error. Moreover,

the performance of DiHi with the single-VM model is very

close to other algorithms in a low contentious environment.

Figure 3, part b, and c show only a 0.3% and 0.1% increase

in the error for DiHi with Single-VM model, compared to the

best achievable accuracy.

In the private cloud, most of the applications will experience

similar intensity of contention in different resources during

their execution time, resulting in comparable accuracy of the

models for different applications. However, in public clouds,

there is a probability of a high contention level for a long

duration of time in a specific set of resources, increasing the

prediction error for specific applications heavily utilizing the

resources. This can be considered as the reason for lower accu-

racy for the Spark in-memory analytic applications (CloudSuite

graph and inMem). However, the prediction error is in an

acceptable range with around 5% error.

C. Evaluation of DiHi with 4 VMs:

Due to resource limitations, experiments on a group of

4 VMs were conducted only on Chameleon and GCE, as

presented in Figure 4. DiHi predictive models show accurate

performance prediction with all clustering algorithms and in-

corporated single-VM model with less than 5% and 4% average

error on Chameleon and GCE, respectively (Figure 4 a and b).

This demonstrates accurate contention level estimation of each

collaborating VM and final performance prediction. Moreover,

the performance of all the models are very close to each

other in public clouds for each specific application (Figure

4), however, DiHi with KMeans clustering algorithm shows

more robust performance and higher accuracy compared to the

centralized NN model.

Comparing the accuracy of the results for the execution of

the considered applications on 2 and 4 VM group sizes on both

Chameleon and GCE, Figures 3 and 4, show that there is less

than a 2% increase in the models’ average error for larger

cluster size. This represents that, with increasing the number

of VMs in the group the models are still very accurate with a

maximum of 7% prediction error and an average of less than

5% for the considered applications and algorithms.

Based on the results, as presented in Figure 3 and 4 for

Chameleon and GCE, the performance of HiBench applications

running on Hadoop with disk-intensive operations are more

difficult to model in larger cluster sizes, and show more

unpredictable behaviours. However, other benchmark appli-

cations show very similar accuracy on different clouds and

cluster sizes. This can stem from very high and sporadic disk

utilization of Chameleon, which has been resulted in limiting

their main disk size to 40GB for all instances in recent updates

to reduce the disproportionate disk contention.

VI. CONCLUSIONS

We proposed DiHi, a distributed and hierarchical perfor-

mance modeling and prediction framework, for multi-VM

applications running on contentious cloud environment. In

DiHi, to probe the resource contention in a wide range of

system resources, a comprehensive set of micro-benchmarks

is considered. Our evaluation results show that the proposed

DiHi framework can accurately estimate the contention level

experienced by collaborating VMs for hierarchical performance

modeling with different clustering algorithms and existing

single-VM models. Although the traditional approach to collect

all performance data in a central location for model tuning

seems more accurate in a high contentious cloud environment,

DiHi framework provides comparable performance in the same

environment and better accuracy in low levels of contention.

Finally, DiHi has acceptable prediction accuracy with different

cluster sizes, and an increase in the size of the cluster won’t

considerably affect the performance.
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