
CloudBruno: A Low-Overhead Online Workload Prediction
Framework for Cloud Computing

Vinodh Kumaran Jayakumar∗, Shivani Arbat†, In Kee Kim†, and Wei Wang∗
∗The University of Texas at San Antonio, Computer Science, rvn028@my.utsa.edu, wei.wang@utsa.edu

†University of Georgia, Computer Science, {sga64681, inkee.kim}@uga.edu

Abstract—Accurate prediction of future incoming workloads to
cloud applications, such as future user request count, is critical
to proactive auto-scaling, and in general, critical to the cost-
effectiveness of cloud deployments. However, designing a generic
predictive framework that can accurately predict for any types of
workloads is difficult, especially when the workload is dynamic
and can change to a pattern that has not been observed in
the training data sets. However, existing workload prediction
solutions typically rely on complex machine learning models,
which require comprehensive training data, making it difficult
for them to handle dynamic workloads. Moreover, the training
of existing workload prediction solutions are also expensive in
terms of both time and computing resources.

This paper presents a generic and low-cost online workload
prediction framework, called CloudBruno, which combines the
more accurate LSTM models with less expensive but fast SVM
models to achieve high accuracy and low training overhead.
When compared to existing predictors, CloudBruno had at least
8.8% lower error than existing deep learning-based predictors
for a highly-dynamic workload that does not have comprehensive
training data (i.e., has changes unknown to training data).
For workloads with comprehensive training data, CloudBruno’s
error was at most 2.5% higher than optimized deep learning-
based predictors. More importantly, CloudBruno can effectively
execute on a free cloud CPU, allowing it to be used as an online
workload predictor without additional cost.

Index Terms—Cloud Workload Prediction, Long Short-Term
Memory, Support Vector Machine, Online Prediction Frame-
work, Auto-Scaling

I. INTRODUCTION

Auto-scaling is the key technology used to realize the full
potential of cloud computing’s cost-effectiveness [1]–[3]. With
auto-scaling, a cloud deployment can dynamically increase
or reduce its resource allocations to handle the increased or
reduced workload with both satisfying performance and low
cloud usage costs. Therefore, proactive auto-scaling is usually
a more desirable solution, as it can scale the virtual machine
(VM) or container allocation before the workload change
actually happens, avoiding the performance degradation that
may be experienced in reactive auto-scaling [3], [4].

A key requirement for proactive auto-scaling is the ability
to predict the future incoming workloads, such as the number
of jobs or the number of user requests that will arrive in
the next hour [5]. The accuracy of this prediction, in turn,
determines the effectiveness of proactive auto-scaling. That is,
the inaccurate prediction may lead to resource over- or under-
provisioning, which either incurs unnecessary cloud usage
costs or causes performance degradation [6].

0 100 200 300 400 500

3 · 106

5 · 106

7 · 106

Intervals

R
eq

ue
st

s

(a) Wikipedia: user request count every 30 min.

0 200 400 600 800 1,000 1,200
0

1 · 106
2 · 106
3 · 106

Intervals

Jo
bs

(b) Google Cluster: job count every 30 min.

Fig. 1. Traces of two workloads with different patterns.

However, creating accurate workload predictors (or predic-
tive models) for cloud computing is challenging. The main
difficulties lie in the large variety of cloud workloads and
the various workload changes within a workload. Fig. 1
shows the workload traces for Wikipedia [7] and Google’s
cluster [8]. The two workloads shown in Fig. 1 are drastically
different – although the Wikipedia workload is seasonal and
more stable, the Google cluster workload is more random
and has a sharp increase (e.g., traffic spike) in jobs numbers
in the middle of the trace. To handle these two difficulties,
existing cloud workload prediction approaches typically rely
on complex neural networks (NN), such as Long Short-Term
Memory (LSTM) [9]–[12] and Transformer [13]–[15], to build
and optimize predictive models for each workload to handle
various workload changes. However, the use of complex NN
models has three limitations,

1) The first limitation is the requirement of comprehensive
training data sets. Due to the nature of NNs, training
accurate NN models requires a comprehensive workload
history that contains most of the potential workload
patterns/changes as training data. That is, the potential
workload changes after deployment should be (mostly)
known at the training time. This requirement, however, is
difficult to meet in practice. To address this limitation,

1

prediction models usually need to be retrained online
(i.e., after deployments) once workload changes are
observed [6].

2) The second limitation is the long training time. Complex
NN models and large training data sets imply a long
training time. Moreover, to achieve high accuracy for
various types of workloads, existing predictive frame-
works also require extensive model optimization (e.g.,
hyperparameter tuning) to find the best model for a
workload, which further prolongs the training time.
This extended training time makes existing frameworks
impractical for online retraining. This is especially true
for frequently-changing workloads, where a model may
become obsolete before it finishes retraining if another
workload change happens during this retraining.

3) The last limitation is the expensive hardware required
to train complex NN models. Modern complex NN
models typically require powerful CPUs, or even GPUs,
to train. However, powerful CPUs and GPUs can be
expensive to rent in the cloud. Hence, online retraining
with expensive cloud CPUs/GPUs will increase cloud
deployment costs.

This work aims to build a cloud workload prediction
framework with the following characteristics: 1) generic, the
framework can generate predictors for various workloads with
comparable accuracy than optimized NN models with compre-
hensive training data; 2) dynamic, the framework can retrain its
models online after deployments to adapt to workload changes
that are unknown before deployment; 3) low-overhead, the re-
training can be done in a short amount of time to accommodate
frequent workload changes; 4) low-cost, the retraining should
execute effectively with cheaper cloud resources.

This paper presents the design of CloudBruno1, a generic
online workload prediction framework. CloudBruno combines
two prediction models with different characteristics, LSTM
and Support Vector Machine (SVM) [16]. LSTM models have
higher accuracy for cloud workload prediction than SVM
models. However, LSTM is also more expensive and slow to
train. By combining the predictions of LSTM and SVM, and
by properly selecting their retraining frequencies, CloudBruno
can achieve high accuracy, low overhead, and low cost.

More specifically, in CloudBruno, both LSTM and SVM
models are periodically retrained to adapt to workload
changes. However, they are retrained at different frequencies
– the faster SVM model is retrained more frequently, whereas
the LSTM model is retrained less frequently. Moreover, a third
tournament predictor is trained to predict whether the SVM
model or LSTM model will be more accurate based on their
past accuracy, and the predicted more-accurate model will then
be used to make predictions for the future workload. This third
classifier is retrained at the same frequency of the SVM model.
By combining SVM and LSTM, CloudBruno can enjoy the
high accuracy of LSTM for workloads during their (relatively)

1We use this name from Bruno (Madrigal), a character in the Disney movie
“Encanto”. He has the ability to foresee the future.

stable phases but can also quickly adapt to workload changes
through the use of SVM.

The retraining process of CloudBruno includes hyperpa-
rameter optimization (search), which allows CloudBruno to
be generic (i.e., predicting various types of workloads with
high accuracy). The hyperparameter search space and search
iterations are also selected in a way to balance the accuracy
and retraining time/cost.

We first evaluated CloudBruno with 14 workload configura-
tions from five different (representative) application models in
clouds. The evaluation results show that CloudBruno had an
average error of 20.5%, which was only 2.5% higher than ex-
isting more complex workload prediction frameworks trained
with extensive and comprehensive data sets. Furthermore,
when applied to a highly-dynamic workload, CloudBruno had
at least 8.8% less error than other NN frameworks and 5% less
error than another online prediction framework. When applied
in Google Compute Engine, CloudBruno managed proactive
auto-scaling reduced average job turnaround time by up to
7% than complex NN frameworks, showing that CloudBruno’s
better accuracy can translate into real performance benefits.

CloudBruno could also quickly retrain its models even using
a free cloud CPU. On average, CloudBruno could retrain an
SVM model every 3.4 seconds and an LSTM model every
23.5 minutes, which was at least 4.0× faster than existing NN
frameworks. This fast retraining on a free cloud CPU allows
CloudBruno to be applied with limited or even no additional
monetary cost.

The contributions of this paper include:
1) The design of CloudBruno, a generic online work-

load prediction framework that combines automatically
optimized LSTM and SVM models to provide high
accuracy, low overhead, and low cost predictions for a
variety of workloads with dynamic changes.

2) A thorough evaluation of CloudBruno with 15 work-
load configurations to demonstrate that CloudBruno can
indeed provide high accurate predictions for various
workloads with low training cost.

3) A case study to demonstrate that the highly-accurate
predictions from CloudBruno can further improve the
performance of auto-scaling on real public clouds.

The rest of this paper is organized as follows: Section II
formally formulates the workload prediction problem and
presents our motivation. Section III presents the detailed
design of CloudBruno. Section IV evaluates the accuracy and
training time of CloudBruno. Section V presents a case study
of auto-scaling with CloudBruno. Section VI discusses the
related work. and Section VII concludes the paper.

II. PROBLEM DEFINITION AND MOTIVATION

A. Problem Definition

In this work, we define the workload to a cloud application
as the number of incoming jobs or user requests within an
interval. For example, for a website deployed to the cloud,
if the number of user requests that access this website every

2

TABLE I
TRAINING TIME AND PROCESSORS USED FOR TRAINING BY PRIOR NN
STUDIES. THE LSTM AND BILSTM TIMES WERE REPORTED BY THEIR

ORIGINAL PAPERS. WGAN-GP TIMES WERE MEASURED BY US.

Prior work Type of
Model

Reported
Training Time

Training
Processor

LoadDynamics [10]
(2020) LSTM about 3 hours 16-core Intel

Xeon 8153
Bi et. al [17]
(2021) BiLSTM 70 to 100 mins Unknown

Arbat et. al [13]
(2022)

WGAN-gp
Transformer 1 to 5 hours GTX 2080 Ti

second is 30, then its workload is 30 requests/sec. As a second
example, for a high-performance computing (HPC) cluster
deployed to the cloud, if the number of jobs arriving at the
cluster is 50 per hour, then its workload is 50 jobs/hr. For
simplicity, we refer to the number of jobs/requests during an
interval as request rate.

For a deployed cloud application, there will be a trace of
request rates observed in the intervals during which it executes.
Without loss of generality, let the real request rate at time
interval t be wt, and the predicted request rate at time interval
t be pt. After executing for some time, there will be a trace
of request rates starting from time interval 0 to interval t− 1,
i.e., {w0, w1, . . . , wt−1}. Our prediction problem then can be
determined as,

Workload Prediction Problem Definition
Input: Past request rates: w0, w1, . . . , wt−1

Output: Prediction for request rate at interval t: pt

The core issue of this prediction problem is to determine
the predictive model, M , that takes the past request rates and
produces an estimation pt. Our framework, CloudBruno, is
designed to generate the model M for various workloads at
each new interval. Note that, to ensure high generality over
various cloud applications, the feature used in our prediction
problem is only the past request rates. Moreover, although
the input can contain all past request rates, real models may
only use a fraction of these rates. That is, only n records of
past request rates, {wt−n, wt−n+1, . . . , wt−1}, will be actively
used for prediction. The value of n also needs to be determined
as part of model training and optimization.

B. Motivation

Because of the large variety of workload patterns and
potential workload changes, prior work typically employed
complex NN models. Table I lists several recent workload
prediction methodologies from prior studies with various NN
models, including LSTM [10], Bidirectional (BiLSTM) [18].
and WGAN-gp Transformers [13]. Table I also provides the
longest training time and the processor used for training
for some of these models, which shows that these models
typically require hours to train on powerful CPUs or GPUs.
Such long training times make these models impractical for
real-world cloud applications because online model retraining
should quickly adapt to workload changes. The requirement of

powerful CPUs/GPUs can also increase the deployment cost.
To overcome these limitations, in this work, we explore the
possibility of designing a workload prediction framework that
can retrain its models every few seconds/minutes on the least
expensive cloud CPUs.

III. THE DESIGN OF CloudBruno
This section presents the design of the CloudBruno frame-

work. The main idea of CloudBruno is the tournament pre-
diction of two types of machine learning (ML) models, one
fast and one slow. The fast-training model provides quick
adaptation to (sudden) workload changes, whereas the slow-
training model provides higher accuracy predictions when the
workload is in a (more) stable phase.

A. Machine Learning Background

Machine Learning Models. CloudBruno includes two
types of ML models, the SVM and LSTM models. Cloud-
Bruno employs SVM [16] to quickly adapt to a workload
change. SVM is a statistical learning model that is primarily
used for classification by determining a decision boundary
(hyperplane) within a set of data. SVM is also frequently
adapted to do regression, where the decision boundary is used
to approximate the regression curve. Although SVM is not
designed specifically for time series regression, prior work has
shown that it is very effective for single workloads [6], [19].

However, despite SVM’s reasonable accuracy for cloud
workload prediction, its accuracy is still lower than complex
NN models when training workload can better represent the
workload during deployment. Therefore, to achieve high ac-
curacy for workloads in their stable phases, CloudBruno also
employs LSTM models. LSTM is a type of NN, designed
for sequential data, such as the time series data observed in
cloud workloads. For each inference, a LSTM model not only
produces a prediction but also produces hidden states, which
are passed back to the LSTM model for the next prediction [9].
These hidden states keep track of additional information in a
sequence of data that is useful for interference, such as its
long-term or short-term trends in time series. Note that prior
work has also shown that LSTM is usually more accurate
than SVM, although its training time is considerably longer,
especially when model optimization is required [10].

Hyperparameter Optimization. A key step in model train-
ing is hyperparameter optimization [20], [21], which signifi-
cantly affects a model’s accuracy. For LSTM, the hyperpa-
rameters may include the number of NN layers, the batch
size, the history length (n as discussed in Section II-A),
and the size of the internal cell activation vector (c size).
For SVM, the hyperparameters may include the regularization
value and kernel coefficient. Prior work has shown that proper
hyperparameters are critical to the accuracy and generality of
cloud workload prediction framework. That is, the predictive
model for workload requires its own set of parameters and
tuning [10].

Hyperparameter optimization is essentially a search process
where different sets of hyperparameters are evaluated to find

3

ns intervals passed?
start

No

1. Train & HyperOpt
SVM Model

Yes

Training Data
SVM
model

SVM Training

nl intervals passed?
start

No

2. Train & HyperOpt
LSTM Model

Yes

Training Data
LSTM
model

LSTM Training
3. Train

Tournament
Predictor

Current SVM Model

Current LSTM Model

Predictor Selection

4. Predict

Input request
rates:

wt−n . . . wt−1

pt
Tournament
Predictor

Prediction

Fig. 2. The overall workflow of building a new predictor and making predictions with CloudBruno.

PtWt-1Wt-2Wt-151

training
(size 150)

V
a
lid

a
-

tio
n

P
re

d
ict

Fig. 3. The training and validation data sets, as well as the predictions for
the SVM model.

PtWt-1Wt-10Wt-11Wt-160 Pt+1 Pt+2 Pt+3 Pt+4

training
(size 150)

Validation
(size 10)

Predict
(size 5)

Fig. 4. The training and validation data sets, as well as the predictions for
the LSTM model.

SPtSt-1St-2St-151

training
(size 150)

V
a
lid

a
-

tio
n

P
re

d
ict

Fig. 5. The training and validation data sets, as well as the predictions for
the tournament predictor model.

the best set. To reduce the search time on a large search space,
contemporary research typically employs Bayesian Optimiza-
tion (BO) [22] or Random Search [23] in this optimization.
Nonetheless, even with better searching algorithms, the large
hyperparameter search space is still one of the main reasons
why some of the state-the-art cloud workload predictors are
time-consuming to train. CloudBruno also employs BO-based
hyperparameter optimization to (re)train individual models
for each workload. However, we reduced the search space
(i.e., potential values for hyperparameters) to bring down the
retraining time. In fact, there is also no need for exploring a
large hyperparameter configuration space, as the models only
need to “learn” from the recent workload patterns.

B. Combining Two Models in CloudBruno
The predictions of SVM and LSTM models are eventually

combined in CloudBruno. That is, a third classifier that works
as an tournament predictor, which determines whether SVM
or LSTM is more accurate for the current workload, and a
predicted more-accurate model will then be used to predict
the workload for the next interval.

The SVM, LSTM, and tournament predictor all need to be
retrained periodically to handle workload changes. As LSTM
models have a longer training time, they will be retrained
less frequently in CloudBruno. On the other hand, SVM
models can be retrained more often due to their lightweight
nature [19]. As the tournament predictor also needs to be
retrained every time the SVM model is updated (i.e., retrained

with the same frequency as the SVM model), the tournament
predictor is also configured to be an SVM classifier in Cloud-
Bruno for fast retraining. Moreover, as the prediction models
are online and focused on making predictions based on the
recently-seen workload patterns, there is no need to employ a
large training data set.

C. The Workflow of CloudBruno
Fig. 2 illustrates the overall workflow of CloudBruno. As

Fig. 2 shows, for every nS interval, a SVM model will be
retrained (Step 1). In the current CloudBruno, ns is set to be
1, indicating that, for every interval, a new SVM model is
trained (to ensure every workload change is captured). Fig. 3
shows the training, cross-valuation data sets and the prediction
of a SVM model in CloudBruno. As Fig. 3 shows, the training
data include 150 (intervals of) most-recent request rates. As
stated previously, the training also includes hyperparameter
optimization, which is conducted with one data point for
validation. Because the SVM model is retrained for every
interval, a trained model is only make one predictions (i.e.,
the Pt in Fig. 3).

For the LSTM model, it will be retrained every nl interval
(Step 2). Please note that nl should be long enough for the
LSTM models to finish training. In the current CloudBruno,
nl is set to be 5 (intervals). The smallest interval used in our
evaluation is 5 minutes, so five 5-minute intervals are slightly
longer than the training time of CloudBruno’s LSTM model.
Fig. 4 illustrates the training, cross-valuation data sets and the
prediction of a LSTM model in CloudBruno. Similar to the
SVM model, the training sets have a size of 150. However, the
validation set has a size of 10 for LSTM because the complex
LSTM model requires more tuning for better accuracy as well
as the LSTM models do not need to be retrained at each
interval like SVM. Moreover, because a LSTM is retrained
every five intervals, it will be used to make five continuous
predictions consecutively.

4

TABLE II
WORKLOADS USED FOR EVALUATION.

Workload Trace Type Interval length (mins)
Wikipedia (Wiki) [7] Web 5, 10, 30
Grid (LCG) [24] Scientific 5, 10, 30
Azure (AZ) [25] IaaS Cloud 10, 30, 60
Google (GL) [8] Data Center 5, 10, 30
Facebook (FB) [26] MapReduce 5, 10
Combined Synthetic All of above at 10-min intervals

After each time a new SVM/LSTM model is trained, the
tournament predictor will also be retrained using the past
model’s errors to determine which model is more accurate
(Step 3). Here, the errors of the past 150 request rates are
used, as shown in Fig. 5. In Fig. 5, Si is a tuple denotes
which model was used in the time i. That is, if Si is {0, 1}
then the SVM is used at time i. If Si is {1, 0} then the LSTM
is used at time i. Once the tournament predictor is built, it is
then used to predict either SVM or LSTM should be used at
time t as a tuple, SPt. For hyperparameter optimization of the
SVM and LSTM models, only 10 iterations of optimization
are performed in CloudBruno for faster training time.

It is worth noting that it may appear that the tournament
predictor can be simply built by comparing the errors of the
past SVM and LSTM models and then picking the one with
the lower average error. However, during the development of
CloudBruno, we learned that this simple method does not
work. We suspect there are two reasons. First, because the
SVM models are frequently retrained, the past errors are not
from the same model, making it mathematically less correct
to compute the average. Second, in some cases, the trend and
variation of the errors as usually as average prediction errors.
Therefore, we eventually employed SVM classifiers to build
the tournament predictor.

IV. EVALUATION

This section reports the evaluation results of CloudBruno.
This evaluation focused on the prediction accuracy and train-
ing time of CloudBruno.

A. Experiment Setup

Workload Traces. Five real workload traces were employed
in this evaluation, representing different cloud use cases, such
as web applications [7], data analytics [8], [26], data center
applications [25], and scientific computing [24]. Table II
describes the detailed information of these workloads. For each
workload, two or three interval lengths were used, ranging
from 5 minutes to 1 hour. That is, a workload’s request rate
may represent the number of jobs/requests every 5 minutes to
every hour. In total, 14 real workload traces were used in this
evaluation. The large number of workloads ensured a thorough
evaluation and also allowed us to examine the generality of
CloudBruno. Fig. 1 and Fig. 6 visualize these workloads.

In addition to these 14 real-world workloads, we also
devised a synthetic workload by combining the five workload

0 50 100 150 200 250
0 · 100
5 · 102
1 · 103

1.5 · 103
2 · 103

Intervals

Jo
bs

(a) LCG Grid workload job count every hour.

0 100 200 300 400 500 600 700
0 · 100
2 · 103
4 · 103
6 · 103

Intervals

Jo
bs

(b) Azure Cloud workload job count every hour.

0 50 100
0

50

100

150

Intervals
Jo

bs

(c) Facebook workload job count every 10 minutes.

Fig. 6. Traces of the LCG, Azure, and Facebook workloads used in the
evaluation.

traces. This combined workload is used to evaluate Cloud-
Bruno at the worst-case scenario – a workload with extremely
varying request rates.

Baselines. We compared CloudBruno with four state-of-
the-art workload predicting frameworks. The first framework
is LoadDynamics [10], which employs LSTM and hyperpa-
rameter tuning to build predictive models for each workload.
The second framework is WGAN-gp transformer [13], which
employed (hyperparameter-) optimized Wasserstein Genera-
tive Adversarial Network with gradient penalty (WGAN-gp)
to train transformer models for workload prediction. The third
framework employs Hybrid Bidirectional LSTM (BiLSTM)
models [17], [18]. The fourth framework is CloudInsight [19],
[27], which is also an online prediction framework based on
various statistical learning models to build predictors. These
four frameworks allow us to compare with both complex
offline deep learning frameworks as well as faster online
framework from the literature.

Metrics. We employed mean absolute percentage error
(MAPE) to evaluate the accuracy of all prediction frameworks.
MAPE is calculated as average percentage differences between
real request rate wi and its predicted request rate pi for all n
predictions. MAPE is expressed as:

MAPE =
100

n

∑
|pi − wi

pi
| (1)

5

For training overhead, the wall-clock time training is reported.
Hardware Platforms. For CloudBruno’s training and work-

load prediction, we employed the free VM provided by Google
Colaboratory2. This VM has a generic Intel 2GHz Xeon
processor with two cores. We intentionally chose this VM
as it has an even less powerful CPU than Google cloud’s
free-tier e2-micro VMs, which have a 2.3GHz generic Intel
Xeon processor3. With such a low-end CPU, we could more
strictly evaluate the training time of CloudBruno when it is
used on free cloud resources. The baseline models require a
longer training time. Therefore, they were trained using more
powerful CPUs and GPUs in our labs – LoadDynamics and
WGAN-gp models were trained on NVIDIA GTX 2080 Ti
GPU, BiLSTM models were trained on NVIDIA Tesla T4
GPU, and CloudInsight was trained on eight AMD Opteron
4386 CPUs.

Hyperparameter Search. The hyperparameter search space
for CloudBruno’s LSTM models is shown in Table III. The
Facebook workload is smaller than all other workloads. There-
fore, the hyperparameter search space for it was also smaller
(i.e., it is not long enough for a long history size). To reduce
training time, we set the number of hyperparameter optimiza-
tion iterations to 10. That is, 10 sets of hyperparameters were
used in BO for CloudBruno’s LSTM model. For the SVM
model, the hyperparameter search space consists of different
values of C (regularization parameter) and gamma (rbf kernel
coefficient), where both values range from 1 to 5.

For the baseline frameworks, the hyperparameter search
spaces reported in their original papers were used.

B. Evaluation of Accuracy with Real Workloads
1) Accuracy of CloudBruno: Fig. 7 reports the accuracy

(MAPE) of CloudBruno (the “green” bar) for the 14 workloads
described in Table II. As Fig. 7 shows, CloudBruno had
high accuracy for the Wikipedia (Wiki) workloads, where the
maximum error (MAPE) was only 1.3%. CloudBruno also
had less than 12% error for the Google (GL) workloads.
CloudBruno’s errors for the Grid (LCG), Azure (AZ), and
Facebook (FB) workloads were relatively higher and were
mostly in the range of 20% to 40%. These relatively higher
errors were partially due to the way MAPE was computed
(Equation-1). That is, when the actual request rate wi is too
small, even a small absolute error may lead to a very large
percentage error. As we show later with the case study, these
predictions with high MAPE but small absolute errors would
still yield overall system performance improvements for cloud
deployments. The average error for CloudBruno for all 14
workloads was only 20.5%.

To illustrate the impact of the SVM predictor, we also
evaluated CloudBruno with only LSTM models. That is, only
using the LSTM models in CloudBruno without the SVM and
the tournament predictor. The results were also reported in
Fig. 7 (“CloudBruno-LSTM-Only”, the “orange” bar), which
showed that without SVM, LSTM-only CloudBruno had high

2https://colab.research.google.com
3https://cloud.google.com/compute/docs/machine-types

TABLE III
HYPERPARAMETER SEARCH SPACE FOR THE LSTM MODELS IN

CloudBruno.

Workload Hist Len (n) Cell Input size Layers # Batch #
Wiki

[1-99] [1-100] [1-5] [16-256]LCG
Azure
Google
Facebook [1-50] [1-50] [8-64]

errors. In particular, for FB-5m, the MAPE was 96%. The
average error of LSTM-only CloudBruno was 33.1%, which
was also considerably higher than that of CloudBruno (the
average error was 20.5%). The main issue with LSTM-only
CloudBruno was because the LSTM model was retrained
every 5 intervals, it could not adapt to workload changes that
happened within those 5 intervals. However, the faster SVM
models in the complete CloudBruno are retrained after every
interval, allowing CloudBruno to adapt to every workload
change. These results also suggest that, for better accuracy, it is
crucial that online workload predictor can adapt immediately
after a workload change.

2) Accuracy Comparison with Baselines: Three of the
baselines, LoadDynamics, WGAN-gp, and BiLSTM, em-
ployed complex NN models. Following the common practice
in deep learning and their original papers, these three baselines
were trained using 60% of the workloads, and their accuracy
were also reported in Fig. 7. As Fig. 7 shows, CloudBruno
(“green” bar in the figure) had higher accuracy than the
BiLSTM model (“gray” bar) for all workloads. Fig. 8 reports
the differences of the overall average MAPEs of CloudBruno
and the baselines. Here, the overall average of a predicting
framework refers to the average MAPE of all 14 workloads
for this framework. As shown in Fig. 8, BiLSTM’s error
was 7.6% higher than CloudBruno. The main issue with
BiLSTM model is that its hyperparameters were selected for
the Google workload [17], making it difficult to handle all
other workloads.

Fig. 7 also shows that the accuracy of CloudBruno was
similar to LoadDynamics and WGAN-gp. In one case, Azure
workload with 10-minute intervals (AZ-10m), CloudBruno’s
error was more than 11% lower than both LoadDynamics and
WGAN-gp. It’s worth noting that in some cases (e.g., FB-5m),
CloudBruno may be worse than LoadDynamics and WGAN-
gp, mainly because of the smaller hyperparameter search space
in CloudBruno. Fig. 8 shows that CloudBruno’s error was
only 2.5% (“white” bar) higher than LoadDynamics and 0.5%
(“black” bar) higher than WGAN-gp. CloudBruno’s compa-
rable accuracy to complex NN models of LoadDynamics and
WGAN-gp shows the first main benefit of CloudBruno –
it does not require prior knowledge of the workload and large
training sets to provide high accuracy comparable to optimized
complex NN models.

The fourth baseline, CloudInsight, was also an online pre-
diction framework that employed multiple statistical learning
models. As Fig. 7 shows, CloudBruno had better performance

6

https://colab.research.google.com
https://cloud.google.com/compute/docs/machine-types

 0

 10

 20

 30

 40

 50

 60

FB-5m

FB-10m

LCG-5m

LCG-10m

LCG-30m

AZ-10m

AZ-30m

AZ-60m

Wiki-5
m

Wiki-1
0m

Wiki-3
0m

GL-5m

GL-10m

GL-30m

93 7496
M

A
P

E
 (

%
)

CloudBruno
Bruno-LSTM-Only

LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 7. Prediction errors (MAPE) of CloudBruno for 14 real workloads. Note that, WGAN-gp does not have MAPE for grid (LCG) and Wiki-5m workloads,
due to insufficient memory error when training on the GPU.

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

Overall Avg

M
A

P
E

 D
iff

 (
%

)

CloudBruno-LSTM-Only
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 8. The differences of the overall average MAPE between the baselines
and CloudBruno. Negative differences mean lower MAPE than CloudBruno,
while positive differences mean higher MAPE than CloudBruno.

 0

 10

 20

 30

 40

 50

 60

 70

Combined Synthetic Workload

M
A

P
E

 (
%

)

CloudBruno
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 9. Predication errors (MAPE) of the combined workload.

than CloudInsight (“violet” bar) for all workloads. On average,
CloudBruno’s error was 6.1% lower than CloudInsight. As an
online prediction framework, CloudInsight was also optimized
for low train time by employing faster statistical models, such
as ARIMA and Random Forest. However, these models have
lower accuracy for complex workloads with low seasonality.

C. Evaluation of Accuracy with Highly-dynamic Workload

One of the main design goals of CloudBruno is to provide
accurate predictions for workloads that experience dynamic
changes after deployment, i.e., for workloads with patterns
that are not included in the training data sets. To evalu-
ate CloudBruno’s accuracy with such highly-dynamic work-
loads, we also generated a synthetic workload by concatenat-
ing/combining the five 10-minute-interval traces in Table II. As
these workloads are from five different use cases, the variation
in this synthetic workload is extremely high, which allowed
us to evaluate CloudBruno in this extreme scenario.

Fig. 9 reports the MAPE of CloudBruno and the four
baselines with this synthetic workload. As Fig. 9 shows,
CloudBruno had lower error than all four baselines. Within
the four baselines, CloudInsight had the lowest error. Cloud-
Bruno’s and CloudInsight’s better accuracy was the result of
their online prediction nature. For this combined workload,

TABLE IV
THE (RE-)TRAINING TIME OF THE ONLINE MODELS IN CloudBruno.

Workload Interval
(min.)

SVM
(sec.)

LSTM
(min.)

Tournament predictor
(msec.)

Facebook 5 min. 3.7 4 13
10 min. 1.5 6 13

LCG
5 min. 1.4 21 13
10 min. 3.2 38 15
30 min. 3.5 26 15

Azure
10 min. 2.3 34 17
30 min. 5.0 19 13
60 min. 5.9 36 17

Wiki
5 min. 4.6 20 20
10 min. 5.0 18 19
30 min. 1.7 17 16

Google
5 min. 1.7 18 19
10 min. 2.8 36 18
30 min. 5 36 22

Average 3.4 23.5 16.43

there is little correlation between concatenated workloads.
Therefore, the training data set used by the NN baselines
(LoadDynamics, WGAN-gp, and BiLSTM) cannot represent
the later workloads. Therefore, the NN baselines all had high
errors. On the contrary, both CloudBruno and CloudInsight
dynamically retrain their models to adapt to each concatenated
workload, allowing them to enjoy lower prediction error. More
specifically, as shown in Fig. 9, CloudBruno’s error was at
least 8.8% lower than the NN baselines (8.8% lower than
WGAN-gp).

Moreover, CloudBruno’s error was also 5% lower than
CloudInsight, mainly due to its use of SVM and LSTM, which
can better handle workloads with little seasonality. These
results illustrate the second main benefit of CloudBruno –
it can provide high accuracy prediction for unknown workload
changes before deployment.

D. Evaluation of CloudBruno’s Training Time

1) Training Time of CloudBruno: Table IV reports the
detailed training time of all the components in CloudBruno
for each workload configuration. As reported in the table, the
training of the SVM prediction models was very fast, with a
maximum training time of only 5.9 seconds and an overall
average training time of only 3.4 seconds. Similarly, because
the tournament predictor is also an SVM model internally, its

7

 0

 50

 100

 150

 200

 250

 300

Facebook LCG Azure Wiki Google

T
ra

in
in

g
 T

im
e

(m
in

.)

CloudBruno (LSTM)
LoadDynamics

 WGAN-gp
 BiLSTM

Fig. 10. Training time of CloudBruno and NN baselines. Note that, the
hardware used for training is reported in Section IV-A

 0
 1
 2
 3
 4
 5
 6
 7
 8

Average

N
o

rm
al

iz
ed

 T
im

e CloudBruno (LSTM)
LoadDynamics

WGAN-gp
BiLSTM

Fig. 11. Overall average training time of CloudBruno and NN baselines.
Averaged over all 14 workloads and normalized to CloudBruno

training is also fast – the maximum training time was only 22
microseconds, and the overall average training time was 16.4
microseconds. These fast training times show that it is feasible
to retrain a new SVM model for every interval, as long as the
interval length is longer than 5.9 seconds.

The training of the online LSTM models took longer,
compared to the SVM models, as expected. The maximum
training time of the online LSTM models was 38 minutes, and
the overall average training time was 23.5 minutes. Although
these training times were considerably longer than the SVM
models, they were still fast enough to retrain new online LSTM
models within 5 intervals for each workload configuration. For
example, the longest training time, 38 minutes, was observed
with LCG workload at 10-minute intervals. Five 10-minute
intervals (i.e., 50 minutes) were still longer than the 38-minute
training time.

Although the training data set size and hyperparameter
optimization iteration count were the same for all workload
configurations, the actual training times for each workload
configuration were still different. This difference in training
time was due to the hyperparameter optimization process.
Difference workloads have different optimal sets of hyperpa-
rameters. Hence, the hyperparameter optimization under BO
searched different parameter sets for different workloads – if
more complex LSTM model hyperparameters were searched
during the optimization, then the training time would increase.

It is worth noting that the low training time of CloudBruno
was achieved with a free cloud CPU. These results illustrate
the third benefit of CloudBruno – it can be used as an online
workload predictor without additional cloud usage cost.

2) Training Time Comparison with Baselines: Fig. 10 re-
ports the training time for CloudBruno and the three NN
baselines. Due to space limitation, only the average training
times for each of the five workload traces are shown. For ex-
ample, for the Google workload, the average training time for
the 5-min., 10-min., and 30-min. intervals is shown for each
predicting framework. Moreover, only the LSTM component’s

 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90

Jo
b

 T
im

e
(s

ec
)

CloudBruno
LoadDynamics

WGAN-gp
BiLSTM

CloudInsight

Fig. 12. Average job turn-around time for Google Cloud auto-scaling case
study.

 0

 20

 40

 60

 80

 100

CloudBruno

LoadDynamics

WGAN-gp

BiLSTM

CloudInsig
ht

P
er

c
(%

)

Over-prov
Under-prov

Fig. 13. Under-provisioning and over-provisioning rates for the proactive
auto-scaling case study.

training time of CloudBruno was shown, and the faster SVM
training time (shown in Table IV) is omitted due to the y-axis
scale.

Fig. 10 shows that CloudBruno had a significant train-
ing time reduction against the baselines for every workload.
Fig. 11 shows that CloudBruno’s overall average training time
was 4.0× faster than LoadDynamics, 7.4× faster than WGAN-
gp, and 5.7× faster than BiLSTM. This significant training
time reduction is because CloudBruno employs efficient train-
ing data set size, space-efficient hyperparameter optimization,
and the use of faster SVM and tournament predictor. More-
over, it is worth noting that CloudBruno achieved similar
accuracy to these NN baselines even with such high training
time reduction.

The fourth baseline, CloudInsight, employed fast statistical
learning models. Therefore, CloudInsight also have low train-
ing time comparable to the SVM component of CloudBruno.
However, as shown in Fig. 7, CloudInsight had higher errors
than CloudBruno.

V. CASE STUDY

To demonstrate the benefit of CloudBruno for predictive
auto-scaling, we also conducted a case study on Google
Compute Engine (GCE) with an auto-scaling policy. We used
the Azure-30m workload in this case study as it was from
an IaaS cloud (Azure VMs), which fits the IaaS cloud GCE.
The 30-minute interval was chosen (instead of 10-minute or
60-minute intervals) to balance the workload length and the
number of requested VMs per interval. Moreover, Azure-30m
is also chosen because CloudBruno’s MAPE for this workload
is close to the overall average MAPE for CloudBruno for all
14 workloads.

The auto-scaling policy for this case study works as follows.
Near the end of each time interval, CloudBruno is used to
predict the number of jobs that will arrive in the next interval.
Then, a group of VMs will be created proactively for the
incoming jobs. The number of VMs in this group is the same

8

as the predicted job count. When the next interval starts, the
incoming jobs are assigned to the proactively created VMs. If
there are more jobs than predicted, then additional VMs are
created on-demand to execute these jobs. This process repeats
for every interval until the whole workload is processed.

We used the In-Memory Analytics benchmark from Cloud
Suite [28] as the job. General-purpose e2-medium VMs were
also used execute the jobs. Besides CloudBruno, we also
evaluated the four baselines in this case study.

Fig. 12 reports the average turnaround time for each pre-
dictive framework in this case study. The turnaround time
refers to the time between the job arrives and the job finishes
execution. As Fig. 12 shows, CloudBruno had the lowest
job turnaround time, whereas the BiLSTM framework had
the longest turnaround time. More specifically, CloudBruno’s
average turnaround time was 3% faster than the best baseline
WGAN-gp and 7% faster than the worst baseline BiLSTM.
These turnaround time results are generally in-line with the
prediction errors reported in Fig. 7, where CloudBruno has
the lowest error, whereas BiLSTM has the highest error.

To further analyze the VM scaling behaviors of differ-
ent prediction frameworks, we also collected the under-
provisioning and over-provisioning rates for this case study,
which are reported in Fig. 13. Here, the under-provisioning
and over-provisioning rates refer to the percentages of intervals
that experienced under- or over-provisioning (i.e., fewer than
or more than required VMs). Fig. 13 shows that the total (sum)
of under- and over-provisioning rates were the lowest for both
CloudBruno and WGAN-gp, which corroborates the results
in Fig. 12 where CloudBruno and WGAN-gp had the two
lowest average turnaround times. Nonetheless, CloudBruno
had a lower under-provisioning rate than WGAN-gp. Hence,
CloudBruno had fewer on-demand VMs created, leading to a
better turnaround time than WGAN-gp.

VI. RELATED WORK

Many studies have been proposed for workload prediction
because of the benefit of predictive (proactive) auto-scaling.
This section provides a review of these models.

Time series models. As workloads are naturally time
series, various time series models have been employed in
this prediction. Mistral was a cloud management system that
employed a time series model, ARMA, to predict future
workload [29]. Roy et al. also employed ARMA in their
predictive auto-scaling solutions [5]. Another commonly used
time series model is ARIMA, which has been employed for
VM consolidation [30] and auto-scaling [31]. There is also
a group of studies that employed weight moving average
(WMA) models for workload prediction [32]–[36]. Woods
et al. employed Fast Fourier transform (FFT) model and a
discrete-time Markov chain for workload prediction [1]. As
shown by prior work [6], time series models are good at
predicting workloads with good seasonality and/or relatively
stable autocorrelation. However, they have high prediction er-
rors for non-seasonal workloads, which are typically for cloud
computing (such as the workloads used in our evaluation).

Statistical learning models. Cortez et al. presented work-
load traces from Microsoft Azure and employed Random
Forest and Extreme Gradient Boosting Tree models to predict
various characteristics in these traces [25]. There is also a
group of work employed Linear Regression (LR) for workload
prediction [2], [37]–[39]. Wrangler is a cloud management
system that aims at improving the performance of straggler
tasks, and it employs SVM models to predict if a task with
straggle [40]. Similarly, Khan et al. employed Hidden Markov
Model [41]. Similar to the time series models, these statistical
learning models are usually not generic and cannot handle all
types of workloads [6]. Moreover, similar to all other machine
learning models, these statistical learning models also require
representative workloads as training data sets, and hence, may
have trouble handling unknown workload patterns.

Multi-predictor and ensemble models. As a single type
of time series and statistical learning model has difficulty
achieving generality, prior workload also considered employ-
ing multiple types of predictive models. Baig et al. employed
Random Forest to predict the best models from LR, SVM, Gra-
dient Boosting, and Gaussian Process [42]. Similarly, Loff and
Garcia proposed to use k-Nearest Neighbors to select the best
predictor [43]. Jiang et al. employed a mixture of time series
(AR/MA), SVM, neural network, and genetic programming in
their prediction [44]. Herbst et al. also employed four groups
of time series models, such as moving average, ARIMA,
and exponential smoothing [45]. Liu et al. proposed to first
classify workload types and then employ different predictors
based on the classification [46]. CloudInsight is an ensemble
framework that can combine the prediction results of any type
of models [27] and can be viewed as a generic extension
of prior multi-predictor/ensemble solutions. CloudBruno is
inspired by these prior studies. However, as shown in our
evaluation, the use of only time series and statistical learning
models provided lower accuracy than CloudBruno.

Deep learning models. The rise of deep learning has
also inspired many studies to employ neural network (NN)
models. Several studies have employed various types of LSTM
models, such as ANN [47], multivariate LSTM [11], parallel
LSTM [12], BiLSTM [18], LSTM Encoder-Decoder [48],
LSTM with Savitzky-Golay (S-G) filter [49], and Bi-
directional and Grid LSTM [17]. Jayakumar et al. also em-
ployed LSTM for workload prediction [10]. However, they
showed that hyperparameter optimization is a key to achieving
generality and high accuracy across various workloads for
LSTM models. Zhang et al. employed a stacked autoencoder
for workload prediction [50]. Kumar et al. employed offline-
trained multi-layer NN models, whose prediction results were
adjusted based on online feedback [47]. Arbat et al. employed
transformers trained with WGAN-gp for workload prediction,
which was shown to be more accurate than LSTM models [13].
Although deep learning models can provide high accuracy for
a large variety of workloads, they usually require representa-
tive training data sets, making it difficult to handle unknown
workload patterns, as shown in our evaluation. Moreover, our
evaluation results also illustrated that our online model, Cloud-

9

Bruno, has similar accuracy to NN models even when they had
enough training data. At last, many complex NN models are
usually time-consuming and require more expensive hardware
to train, while CloudBruno can be trained with low-cost CPUs.

VII. CONCLUSION

In this paper, we presented the design of CloudBruno, an
online workload predictor for cloud auto-scaling. CloudBruno
combines the predictions of the more accurate LSTM models
and the less expensive SVM models to achieve both high
accuracy and low cost. CloudBruno has at least 8.8% lower
error than the existing complex neural network (NN) based
framework for highly-dynamic workloads whose future work-
load changes are unseen in training data. CloudBruno also had
comparable accuracy as NN frameworks for workloads with
comprehensive training data. More importantly, CloudBruno
can effectively execute on a free cloud CPU, allowing it to be
used as an online workload predictor without additional cost.

ACKNOWLEDGMENT

This research was in part supported by the U.S. Department
of Agriculture (USDA), under award number 2021-67019-
34342, as well as by National Science Foundation (NSF),
under grants, 2155096, 2202632, 2221843, and 2215359. Any
opinions, findings, conclusions, or recommendations expressed
in this publication are those of the authors and do not necessar-
ily reflect the view of the USDA and NSF. The authors would
like to thank the anonymous reviewers for their insightful
comments.

REFERENCES

[1] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems.
In ACM Symposium on Cloud Computing (SoCC), Cascais, Portugal,
October, 2011.

[2] Timothy Wood, Ludmila Cherkasova, Kivanc M. Ozonat, and Prashant J.
Shenoy. Profiling and Modeling Resource Usage of Virtualized Applica-
tions. In ACM/IFIP/USENIX 9th International Middleware Conference
(Middleware), Leuven, Belgium, December, 2008.

[3] Marco A.S. Netto, Carlos Cardonha, Renato L.F. Cunha, and Marcos D.
Assuncao. Evaluating Auto-scaling Strategies for Cloud Computing
Environments. In 2014 IEEE 22nd International Symposium on Mod-
elling, Analysis Simulation of Computer and Telecommunication Systems
(MASCOTS), Paris, France, September, 2014.

[4] Laura R. Moore, Kathryn Bean, and Tariq Ellahi. Transforming Reactive
Auto-Scaling into Proactive Auto-Scaling. In The 3rd International
Workshop on Cloud Data and Platforms (CloudDP), Prague, Czech
Republic, April, 2013.

[5] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Au-
toscaling in the Cloud using Predictive Models for Workload Forecast-
ing. In IEEE International Conference on Cloud Computing (CLOUD),
Washington DC, USA, July, 2011.

[6] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Empirical
Evaluation of Workload Forecasting Techniques for Predictive Cloud Re-
source Scaling. In IEEE International Conference on Cloud Computing
(CLOUD), San Francisco, CA, USA, June, 2016.

[7] Erik-Jan van Baaren. Wikibench: A Distributed, Wikipedia-based Web
Application Benchmark. VU University Amsterdam, 2009.

[8] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and
Michael Kozuch. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In ACM Symposium on Cloud Computing
(SoCC), San Jose, CA, USA, October, 2012.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8), 1997.

[10] Vinodh Kumaran Jayakumar, Jaewoo Lee, In Kee Kim, and Wei Wang.
A Self-Optimized Generic Workload Prediction Framework for Cloud
Computing. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Virtual Event, May, 2020.

[11] Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate LSTM-
Based Location-Aware Workload Prediction for Edge Data Centers.
In IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Larnaca, Cyprus, May, 2019.

[12] Xiaoyong Tang. Large-Scale Computing Systems Workload Prediction
Using Parallel Improved LSTM Neural Network. IEEE Access, 7, 2019.

[13] Shivani Arbat, Vinodh Kumaran Jayakumar, Jaewoo Lee, Wei Wang, and
In Kee Kim. Wasserstein Adversarial Transformer for Cloud Workload
Prediction. In The Thirty-Fourth Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-22), Vancouver, BC, Canada,
February, 2022.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is All You Need. In 31st International Conference on Neural Information
Processing Systems (NIPS), Long Beach, CA, USA, 2017.

[15] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved Training of Wasserstein GANs.
In Advances in Neural Information Processing Systems (NIPS), Long
Beach, CA, USA, December, 2017.

[16] William S Noble. What is A Support Vector Machine? Nature
biotechnology, 24(12):1565–1567, 2006.

[17] Jing Bi, Shuang Li, Haitao Yuan, and MengChu Zhou. Integrated
Deep Learning Method for Workload and Resource Prediction in Cloud
Systems. Neurocomputing, 424:35–48, 2021.

[18] Siddhant Kumar, Neha Muthiyan, Shaifu Gupta, Dileep A.D., and Aditya
Nigam. Association Learning based Hybrid Model for Cloud Workload
Prediction. In International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, July, 2018.

[19] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Forecasting
Cloud Application Workloads with CloudInsight for Predictive Resource
Management. IEEE Transactions on Cloud Computing, 2020.

[20] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink,
and Jürgen Schmidhuber. LSTM: A Search Space Odyssey. IEEE
Transactions on Neural Networks Learning Systems, 28(10):2222–2232,
2017.

[21] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing
and Optimizing LSTM Language Models. In International Conference
on Learning Representations (ICLR), Vancouver, BC, Canada, April,
2018.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. In Annual Conference
on Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
USA, December, 2012.

[23] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. of Machine Learning Research, 13(Feb):281–305, 2012.

[24] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Du-
mitrescu, Lex Wolters, and Dick H.J. Epema. The Grid Workloads
Archive. Future Generation Computer Systems, 24(7), 2008.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource Central: Understanding and
Predicting Workloads for Improved Resource Management in Large
Cloud Platforms. In ACM Symposium on Operating Systems Principles
(SOSP), Shanghai, China, October, 2017.

[26] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The
Case for Evaluating MapReduce Performance Using Workload Suites.
In IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Singapore, July, 2011.

[27] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. CloudInsight:
Utilizing a Council of Experts to Predict Future Cloud Application
Workloads. In IEEE International Conference on Cloud Computing
(CLOUD), San Francisco, CA, USA, July, 2018.

[28] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), London, U.K., March,
2012.

10

[29] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D.
Schlichting, and Calton Pu. Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud Infrastructures. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), Genova,
Italy, June, 2010.

[30] Hao Lin, Xin Qi, Shuo Yang, and Samuel P. Midkiff. Workload-
Driven VM Consolidation in Cloud Data Center. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Hyderabad,
India, May, 2015.

[31] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Transactions on Cloud Computing,
3(4), 2015.

[32] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement
of Virtual Machines for Managing SLA Violations. In IFIP/IEEE
International Symposium on Integrated Network Management (IM),
Munich, Germany, May, 2007.

[33] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. Online Self-reconfiguration with Performance Guarantee for
Energy-efficient Large-scale Cloud Computing Data Centers. In IEEE
International Conference on Services Computing (SCC), Miami, FL,
USA, July, 2010.

[34] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys,
David E. Culler, and Randy H. Katz. NapSAC: Design and Im-
plementation of a Power-Proportional Web Cluster. ACM Computer
Communication Review, 41(1), 2011.

[35] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. AutoScale: Dynamic, Robust Capacity Management for Multi-
Tier Data Centers. ACM Transactions on Computer Systems, 30(4),
2012.

[36] Eyal Zohar, Israel Cidon, and Osnat Mokryn. The Power of Prediction:
Cloud Bandwidth and Cost Reduction. In ACM SIGCOMM 2011
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), Toronto, ON, Canada,
August, 2011.

[37] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical
Prediction models for Adaptive Resource Provisioning in the Cloud.
Future Generation Computer Systems, 28(1), 2012.

[38] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Zexiang Mao, and Junliang
Chen. Workload Predicting-Based Automatic Scaling in Service Clouds.
In IEEE International Conference on Cloud Computing (CLOUD), Santa
Clara, CA, USA, June, 2013.

[39] Peter Bodik, Rean Griffith, Charles A. Sutton, Armando Fox, Michael I.
Jordan, and David A. Patterson. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. In USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), San Diego,
CA, USA, June, 2009.

[40] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
Wrangler: Predictable and Faster Jobs using Fewer Resources. In ACM
Symposium on Cloud Computing (SoCC), Seattle, WA, USA, November,
2014.

[41] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
Characterization and Prediction in the Cloud: A Multiple Time Series
Approach. In IEEE International Symposium on Network Operations
and Management (NOMS), Maui, HI, USA, April, 2012.

[42] Shuja ur Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim
Erradi, and David Carrera. Adaptive Prediction Models for Data Center
Resources Utilization Estimation. IEEE Transactions on Network and
Service Management, 2019.

[43] Joao Loff and Joao Garcia. Vadara: Predictive Elasticity for Cloud
Applications. In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Singapore, December, 2014.

[44] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. ASAP: A
Self-Adaptive Prediction System for Instant Cloud Resource Demand
Provisioning. In IEEE International Conference on Data Mining
(ICDM), Vancouver, BC, Canada, December, 2011.

[45] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. In ACM/SPEC International Con-
ference on Performance Engineering (ICPE), Prague, Czech Republic,
April, 2013.

[46] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen,
Bo Cheng, and Junliang Chen. An Adaptive Prediction Approach based

on Workload Pattern Discrimination in the Cloud. Journal of Network
and Computer Applications, 80, 2017.

[47] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya. Self Di-
rected Learning Based Workload Forecasting Model for Cloud Resource
Management. Information Sciences, 543:345–366, 2021.

[48] Hoang Minh Nguyen, Gaurav Kalra, and Daeyoung Kim. Host load
prediction in cloud computing using Long Short-Term Memory En-
coder–Decoder. Journal of Super Computing, 2019.

[49] Jing Bi, Shuang Li, Haitao Yuan, Ziyan Zhao, and Haoyue Liu. Deep
Neural Networks for Predicting Task Time Series in Cloud Computing
Systems. In IEEE International Conference on Networking, Sensing and
Control (ICNSC), Banff, AB, Canada, May, 2019.

[50] Qingchen Zhang, Laurence T. Yang, Zheng Yan, Zhikui Chen, and Peng
Li. An Efficient Deep Learning Model to PredictCloud Workload for
Industry Informatics. IEEE Transactions on Industrial Informatics, 14,
2018.

11

	Introduction
	Problem Definition and Motivation
	Problem Definition
	Motivation

	The Design of CloudBruno
	Machine Learning Background
	Combining Two Models in CloudBruno
	The Workflow of CloudBruno

	Evaluation
	Experiment Setup
	Evaluation of Accuracy with Real Workloads
	Accuracy of CloudBruno
	Accuracy Comparison with Baselines

	Evaluation of Accuracy with Highly-dynamic Workload
	Evaluation of CloudBruno's Training Time
	Training Time of CloudBruno
	Training Time Comparison with Baselines

	Case Study
	Related Work
	Conclusion
	References

