
Adaptive Performance Modeling and Prediction of
Applications in Multi-Tenant Clouds

Hamidreza Moradi, Wei Wang and Dakai Zhu
The University of Texas at San Antonio

San Antonio, Texas, 78249

{hamidreza.moradi, wei.wang, dakai.zhu}@utsa.edu

Abstract—Clouds have been adopted by many organizations as
their computing infrastructure due to the support for flexible re-
source demands and low cost, which is normally achieved through
sharing the underlying hardware among multiple cloud tenants.
However, such sharing can result in large variations for the
performance of applications running in virtual machines (VMs)
on same hosts. In this paper, we propose User-APMP, a user-
level application performance modeling and prediction frame-
work, based on micro-benchmarks and regression techniques for
applications that run repetitively in clouds (such as on-line data
analytics). Specifically, a few micro-benchmarks are devised to
probe the in-situ perceivable performance of CPU, memory and
I/O components of the target VM. Then, based on such probe
information and in-place measured performance of applications,
the performance model can be adaptively developed and refined
at runtime with regression techniques. Moreover, sliding-windows
are exploited to control the number of historical data items to
retrain the model. We evaluate the prediction accuracy for the
considered benchmark applications. The evaluation results show
that, the prediction error of User-APMP generally decreases with
higher adaptation frequencies and more historical data points,
which however leads to higher runtime overhead. With only 100
data points, the average prediction errors can reach 25%.

I. INTRODUCTION

Due to the low cost-of-ownership, clouds have been in-

creasingly adopted by many organizations to serve as their

main computing infrastructures. However, this low cost is

generally achieved through sharing hardware resources by

multiple virtual machines (VMs) on the same host with multi-
tenancy of different users. Such sharing of hardware may

lead to resource contention, which in turn will negatively

affect the performance of the applications running in the

VMs [1]. The impacts of such contention on the performance

can be application specific with their resource requirements.

Moreover, as the number of VMs on the same host and

applications running in different VMs change over time, the

severity of such contention can vary significantly, causing the

performance of an application fluctuates in a quite large range.

Such performance variation has made it very challenging to

predict the performance of an application running in clouds.

However, it is critical to obtain the accurate knowledge on

given applications’ performance for cloud users to select the

correct type and number of VMs and design efficient auto-

scaling policies to meet their performance and cost objectives.

This work was supported in part by US National Science Foundation award
CCF-1617390.

There have been several studies on the prediction of the

application’s performance under hardware resource contention.

However, many of these studies focus on system level tech-

niques that normally require extensive knowledge of the

applications (including their resource demands and detailed

memory behaviors) that share the hardware resources [2, 3, 4].

However, in public cloud environment, users typically do not

have control over which groups of applications and their asso-

ciated VMs will share the hardware, nor do they have a-prior

knowledge of the behaviors of these applications. Although

Bubble-flux and ESP are two predictive techniques that do not

require prior knowledge of the co-running applications [5, 6],

they would require access to low level hardware performance

monitoring units (PMU), which are not always available to the

ordinary users in public clouds.

To predict the performance of applications in cloud environ-

ments, PARIS has been designed as a predictive model that

exploits resource profiling information obtained from the OS

on different public cloud services [7]. Similar, Scheuner and

Leitner used micro-benchmark profiles to predict application’s

performance on various VMs in different clouds [8]. However,

both approaches can only predict an application’s average

performance on various clouds. In particular, they cannot

be utilized to predict the instantaneous performance of an

application running on clouds. Such runtime performance

information can be important for cloud users to make proper

decisions on when to trigger auto-scaling operations [9] and

for time-sensitive applications to satisfy their timeliness re-

quirements [10, 11].

Therefore, for ordinary cloud users who usually do not

have prior knowledge of colocated VMs with the contending

applications and have no access to special hardware registers

or counters about the underlying host machines, a new user-
level prediction framework is desired. In this paper, we propose

User-APMP: a User-level Adaptive Performance Modeling
and Prediction framework. User-APMP only utilizes user-

perceivable information in the cloud environment to build

the predictive models and hence to predict the instantaneous

performance of applications running in VMs at runtime.

Specifically, based on the profiling technique, User-APMP

exploits several micro-benchmarks to assess the level (severity)

of the resource contention for CPU, memory and I/O com-

ponents, respectively, caused by colocated VMs on the same

host as well as their running applications. Combining such

contention information with the in-situ measured performance

of a give application, a regression based predictive model

can be trained at runtime to learn the application’s sensitivity

to the levels of resource contention. Once the application-

specific model is obtained, it can be utilized to predict the

application’s instantaneous performance based on the in-place

profiling information of the micro-benchmarks.

For such an online adaptive predictive model in User-

APMP, there are two major affecting factors: the adaptation
frequency (i.e., how often the model is refined/re-trained)

and the length of historical data (i.e., the number of data

points regarding to the measured application performance with

the correlated contention level utilized to train the model).

Here, the adaptation frequency is controlled by a batch size,

which indicates the number of correlated data points to be

predicted/collected before the model is refined/re-trained at

runtime. Moreover, based on the concept of sliding-window,

the length of historical data will be determined by a window-
size, which denotes the number of batches (of data points) to

be utilized to re-train the model.

The proposed User-APMP has been evaluated by running

PARSEC benchmark applications [12] in a target VM on a

cluster with the OpenStack environment. Here, to emulate the

different levels of resource contention from the colocated VMs

on the same host, different number of background VMs are

randomly introduced at runtime periodically to execute either

CPU or I/O intensive applications. For different batch and win-

dow sizes, both the accuracy of the predictive model in User-

APMP and their associated runtime overheads are evaluated.

The results show that larger window sizes (i.e., more historical

data points) can generally reduce the prediction errors of the

predictive model for all the considered benchmarks. Moreover,

smaller batch sizes (i.e., higher adaptation frequencies) may

lead to more accurate model. However, smaller batch sizes and

large window sizes can result in higher runtime overheads.

For the considered benchmarks, the batch size of 10 with the

window size of 10 (i.e., the total of 100 data points) enables

User-APMP achieve 25% average prediction error.

The reminder of this paper is organized as follows. Sec-

tion II presents the proposed User-APMP framework and

the detailed online adaptation approach to obtain the predic-

tive models based on regression techniques. The evaluation

methodology, experiment setups and evaluation results are

discussed in Section III. Section IV concludes the paper.

II. USER-APMP: USER-LEVEL ADAPTIVE PERFORMANCE

MODELING AND PREDICTION IN CLOUDS

In this work, we focus on applications (such as data and

graph analytics that deployed in online machine learning

applications [3, 13]) that run repeatedly on a given VM at

the request of users in the cloud environment. In general, the

computation demand of such applications is linearly related

to the size of data to be processed. Hence, for simplicity,

we assume that their execution times are affected only by

the interference (i.e., resource contention) from the collocated

VMs on the same host machine (i.e., the data to be processed

�������	
��	���

����������
��

���	��	����
�
�

��������	
��	�	�����	 �

�
�	
�
��
���

��������	
��	�	�	�����	�����	�	�����	�

����� �

!	�

���
��"#$������%	

�����	�	�����	�

&

'

(

) *

+

,

Fig. 1: Overview and workflow of User-APMP.

in each iteration is assumed to have a fixed size). However, we

would like to point out that, the developed predictive model

can be easily extended to incorporate the data size, especially

when such a size has a known (e.g., linear) relation with the

application’s execution time.

In what follows, we first present the overview of User-

APMP and the workflow for the proposed framework. The

micro-benchmarks that are used to assess the level of resource

contention in CPU, memory and I/O are discussed next.

Then, based on the correlated performance of these micro-

benchmarks and a target application, the performance predic-

tive model of the application in a given VM is developed.

At last, to address the tradeoff between model accuracy and

overhead, the adaptation of the predictive model at runtime is

discussed based on the sliding-window technique.

A. Overview of User-APMP

The overview of the proposed User-APMP framework is

shown in Fig. 1. Here, as the first step, a few specially designed

micro-benchmarks (see Section II-B) will run in the target VM

to assess the current level of resource contentions in CPU,

memory and I/O components due to other applications running

in VMs collocated on the same host machine. Then, the

application will run in the target VM in step 2. The measured

execution time of the application will be correlated with the

obtained performance of the micro-benchmarks in step 1 to

form a data tuple. Note that, the interference experienced

by the application may change during its execution due to

changes in collocated VMs and/or their applications. However,

exploring such changes is beyond the scope of this paper and

will be left for our future work.

Once enough (new) number of data tuples are collected,

the performance predictive model for the application can

be developed (or re-trained adaptively) based on regression

techniques (step 5; see Section II-C). As shown in the figure,

we use the batch size to control how frequently the model is

re-trained (see Section II-D for more details). Once the model

is obtained, based on the profiling information from running

the micro-benchmarks at the beginning of each iteration, the

application’s performance can be predicted at runtime (step 7).

B. Resource-Contention Profiling: Micro-benchmarks

As a user-level framework, we assume that User-APMP

does not have access to performance counters in the hypervisor

and special registers in the underlying hardware of the host

machine. Instead, User-APMP interacts only with the target

VM in which the user’s application will run. Note that, the

key components that affect the performance of a VM are its

(virtual) CPUs, memory and disks1. To perceive the actual

performance of these components for the user application at

runtime, we designed a few micro-benchmarks to estimate

their contention levels due to interference from the collo-

cated VMs and their applications on the same host machine.

Through experiments, we found that the prolonged (shortened)

execution of a micro-benchmark can be a indicator of in-

creased (decreased) contention level for the related resource,

respectively. In what follows, we explain the detailed design

for each micro-benchmark.

CPUs: For resource contention in CPUs, a multi-threaded

micro-benchmark is designed to stress the performance of the

virtual CPUs of a given VM. Here, each thread will loop

through and decrement an in-register counter that is initiated

with a given value. These in-register operations ensure that

this microbenchmark’s performance is not affected by memory

at runtime and thus examine the contention in CPUs to the

maximum extent. The amount of time for each thread to reach

zero for the in-register counter is recorded. The number of

created threads at runtime for this micro-benchmark will be

equal to the number of virtual CPUs of the target VM. In the

end, the longest execution time (tcpu) from all threads will

be used as the indicator of the contention level for the virtual

CPUs in the target VM.

Memory: Similarly, to stress the memory bandwidth of the

target VM, the memory micro-benchmark will access a 2GB

array with the stride size of 128 sequentially. The objective of

such a memory access pattern is to ensure that each data access

needs to go to the off-core memory rather than the on-chip

caches. Again, the number of threads in this micro-benchmark

is the same as the number of virtual CPUs in the VM and each

of them accesses the equal portion of the array. The execution

time of this micro-benchmark will provide us the insight into

the performance impact of the memory contention experienced

by the target VM in the system.

Disk I/Os: For the I/O performance of the target VM, we

design the disk micro-benchmark that reads 256MB data from

the disk with the page size of 4KB. During the execution of

this micro-benchmark, the OS file caching will be disabled

to prevent the data file being cached by the OS. The micro-

benchmark adopts four threads, which will introduce enough

I/O operations to stress the disk’s bandwidth while avoiding

too much inter-thread communication. Again, the execution

1As the initial study of this problem, we consider applications running only
on a single VM. Hence, we do not consider network issues, which will be
studied in our future work where applications may run on multiple VMs.

time for this micro-benchmark to access the required amount

of data in the file will be utilized to indicate the contention

level of the disk.

In each iteration, these micro-benchmarks will be first

invoked sequentially, followed by the execution of the user’s

application. In this work, we assume that the changes in the

contention level of the resources measured by the micro-

benchmarks will affect the execution of the application and

be reflected by corresponding changes in its execution time.

Here, the measured execution times of the micro-benchmarks

and the application in each iteration form a data tuple

{tCPU , tmem, tdisk, tapp}, which will be used to train or

retrain the performance predictive model for the application,

as discussed below.

C. Regression-based Performance Predictive Model

For a given set of available data tuples, the relationship

between the execution times of the target application and

the levels of resource contention measured by the micro-

benchmarks can be derived (or learned) with regression tech-

niques [14]. Then, based on such derived relationship, the

performance predictive model for the target application can be

developed. For our measured data tuples, we have conducted

extensive experiments with different degrees of polynomial

regression and found that the 2-degree polynomial regression

fit the relationship for the considered applications the best,

while the linear regression and 3-degree polynomial regression

can result in either under-fitting or over-fitting problems.

With the 2-degree polynomial regression being adopted in

this paper, the relationship between the execution times of the

application and the micro-benchmarks can be represented as:

tapp =f(tCPU , tmem, tdisk)

=α1 · t2CPU + α2 · t2mem + α3 · t2disk+
α4 · tCPU · tmem + α5 · tCPU · tdisk + α6 · tmem · tdisk
+ α7 · tcpu + α8 · tmem + α9 · tdisk + α10

(1)

There are many existing packages can be exploited to find

out the values of the coefficients in the above equation and

train the predictive model, such as Lasso, Elastic Net, Ridge

and Stochastic Gradient Decent regression techniques [15, 16,

17, 18], for a given set of data tuples. We have evaluated

the methodology with these different algorithms and similar

results have been obtained. In what follows, due to space

limitation, we focus on reporting the model training and

prediction results with the Lasso regression algorithm only.

D. Online Adaptation of the Predictive Model

Once the predictive model is developed by determining

the coefficients in Equation (1) with regression techniques,

it can be utilized to predict the performance of the given

application based on the profiling information obtained from

running the micro-benchmarks. However, due to the limitation

of the predictive model, the predicted execution time can

differ from the application’s actual execution time and result

��������	�
�	����

���

����	�	����	��� ��� !��������� �

��� �����������������

��� !��������� �

��� �����������������

��� !��������� �

����	�	����	���

����	�	����	���

Fig. 2: Sliding-window based adaptations for the predictive model with batch size of 10 and window size of 2.

in prediction errors. As the resource contention caused by

other collocated VMs and their applications can change over

time, which may not be captured in the predictive model,

the prediction errors may increase at runtime. To address this

problem, we can adaptively retrain the predictive model by

incorporating new data tuples that contain information related

to the recent resource contention levels.

For the online adaptation of the predictive model, two major

issues have to be considered. First is the adaptation frequency
(i.e., how often and when the model should be retrained). The

second issue is regarding to the number of historical data

tuples should be exploited to retrain the model. Intuitively,

more historical data tuples can improve the accuracy of the

predictive model, which however will introduce higher runtime

overheads. In this work, we consider a sliding-window based

adaptation approach, which is explained in details below to

address the aforementioned two issues.

Batch Size (i.e., Adaptation Frequency): After each iteration

of running the micro-benchmarks and an application in a given

VM, a new data tuple can be obtained from the in-place mea-

sured performance. In theory, the predictive model could be

retrained after each new data tuple is obtained to incorporate

the new information and, hopefully, to get a better model

for more accurate prediction of the application in the next

iteration. However, this would introduce significant runtime

overheads as shown in our evaluations (see Section III).

Therefore, to control the adaptation frequency and regulate

how often (and when) the predictive model should be adap-

tively retrained at runtime, a batch size is utilized. It denotes

the number of new data tuples accumulated in a batch before

the predictive model is retrained. Fig. 2 shows an example

with the batch size of 10. That is, once a predictive model

is obtained (after the 10th data point), it will be utilized

to predict the performance of the target application for its

execution in the next 10 iterations. At the meantime, 10 new

data tuples will be generated from the profiling information

of the micro-benchmarks and the measured performance of

the target application. Before the 21th iteration, the predictive

model will be retrained by utilizing the recent data tuples in

the training window.

Clearly, having smaller batch sizes will enforce the predic-

tive model be retrained more frequently at runtime, which may

improve the accuracy of the prediction results. On the other

hand, it will in turn lead to higher runtime overheads. For

the extreme case where the batch size equals 1, the predictive

model will be retrained after every iteration of running the

target application. The tradeoffs between the prediction accu-

racy and runtime overheads have been extensively evaluated

as reported in Section III.

Window Size (Historical Data Tuples): When it is the

time to retrain the predictive model, we have to decide which
part and how many historical data tuples should be exploited.

Intuitively, the most recent data tuples should be utilized as

they contain recent resource contention information that can

help the predictive model to get better prediction results for the

target application’s execution in future iterations. Moreover,

instead of utilizing all historical data tuples, which can lead

to prohibitive runtime overhead as well as excessive memory

space demand for model retraining, we adopt the sliding-
window technique to control the number of historical data

tuples to be utilized for retraining the model.

Specifically, a sliding-window contains a certain number

of the most recent batches (where the number is denoted as

window size). Only the data tuples in these batches will be

utilized to retrain the predictive model. At the beginning of the

execution, the first few sliding-windows may not have enough

batches and contain fewer number of data tuples for training.

For the example shown in Fig. 2, it has the window size of 2.

Here, the first sliding-window has only one batch of 10 data

tuples.

Once enough number of batches are accumulated, the

predictive model will be retrained with a certain number of

most recent data tuples that are determined by both batch and

window sizes. For the example in Fig. 2, it has the batch

size of 10 and window size of 2. Therefore, (up to) 20 most

recent data tuples in the training window will be utilized to

train/retrain the predictive model.

When the window size is set as ∞, this extreme case

will reduce to where all historical data tuples are needed

for retraining the predictive model. Moreover, when a given

number (e.g., 100) of historical data tuples are desired to

retrain the model, various combinations of batch and window

sizes can be adopted (e.g., batch and window sizes of being

20 and 5 vs. 10 and 10). Apparently, these settings will affect

the overall prediction accuracy and the runtime overheads (see

Section III for the detailed evaluation results).

a. Streamcluster b. Canneal

Fig. 3: Measured and predicted execution times for Streamcluster and Canneal with batch size of 10 and window size of ∞.

III. EVALUATIONS AND DISCUSSIONS

The proposed User-APMP has been evaluated extensively

regarding to its prediction accuracy and runtime overheads. In

this section, we first discuss the evaluation methodology and

experimental setups. Then, the evaluation results are presented

and discussed by considering varying batch and window sizes.

A. Evaluation Methodology and Setups
We consider eight (8) benchmark applications in PARSEC

suite [12], including streamcluster, blackscholes, bodytrack,
canneal, facesim, ferret, swaptions and dedup. These bench-

marks were chosen with the consideration to represent a wide

range of applications (such as CPU vs. memory intensive to

be the representative workloads of graph and data analytic

applications [3, 13]) and the duration of experiments.
These benchmark applications were compiled and run with

the Ubuntu 16.04 environment on a virtual machine (VM) with

16 vCPUs and 16GB memory. The VM was created under the

OpenStack installed on a server with dual Intel Xeon E5-2630

16-core processors and 128GB memory. Before the benchmark

applications run on the VM, each of the three designed micro-

benchmarks runs for around 3 seconds sequentially to probe

the resource contention levels of the VM on the host machine.

Then, the eight benchmark applications were executed on the

VM with 16 worker-threads and their native input sets.
To introduce interference and emulate resource contentions,

varying number of background VMs have been created on the

same host machine during the executions of the benchmark

applications. Specifically, after each 2-hour interval, a random

number (up to 7) is generated to indicate the number of

background VMs should be created for the next interval

of 2 hours. Moreover, each background VM will randomly

choose either a CPU or memory intensive synthetic application

from iBench suite [19] to introduce the different levels of

interference for the key components of the VM that runs the

target benchmark applications.

With the randomly introduced resource contention from the

background VMs and their applications, the micro-benchmarks

and the selected PARSEC benchmark applications run repeat-

edly until 1,000 data tuples are collected for each benchmark.

These data tuples will be utilized to train and evaluate User-

APMP for each benchmark application, respectively, on its

prediction accuracy and runtime overheads.

B. Exemplary Measured vs. Predicted Results

Before we present the evaluation results with varying batch

and window sizes, Fig. 3 shows the measured execution

times (the blue points) for two representative benchmarks,

Streamcluster and Cannel, respectively. From the figure, we

can see that their execution performance does change radically

at runtime due to varying levels of resource contention on the

host machine, where their execution times can vary up to 10

times! Therefore, to support cloud users for proper planning

of their operations, it is crucial to get reasonably accurate

performance prediction for the execution of their applications.

Note that, for Cannel, the execution times for some iterations

can be as low as around 30 seconds. This comes from the

fact that, at the beginning of each 2-hour interval when

the background VMs change, we stop the executions of the

interfering applications for the first 5 minutes.

The figure also shows the predicted execution times of

User-APMP with Lasso regression techniques for these two

benchmark applications with the batch size of 10 and window

size of ∞ (i.e., the predictive model is retrained after every

10 data points and each time all historical data tuples are

utilized for model adaptations). Although it is hard to associate

a predicated execution time of the benchmark applications with

its corresponding measured one in the figure, we can clearly

see that the predicted results have the same pattern (or trend) as

that of the measured execution times. This also validates our

hypothesis that the devised micro-benchmarks can properly

assess the level of resource contention at runtime.

a. Varying batch sizes with window size of 1. b. Varying window sizes for batch size of 10.

Fig. 4: Prediction errors of User-APMP for the benchmark applications with varying batch and window sizes.

a. Window size of 5 . b. Window size of 10.

Fig. 5: Prediction errors of User-APMP with different batch sizes and larger window sizes.

C. Accuracy of User-APMP vs. Varying Batch/Window Sizes

As discussed in Section II, we adopted 2-degree polynomial

regression technique for User-APMP. In particular, we train the

predictive model in User-APMP with the Lasso regression [16]

and have implemented it using the Scikit-learn library (version

0.19.2) [20]. We tuned the regression-based model with an

alpha of 1 and a tolerance value of 0.001. To quantify the

accuracy of the predicted results from the model, we define

the prediction error for each data point of an application as:

Prederr =
|timemeasured − timepredicted|

timemeasured
(2)

where timepredicted is the predicted execution time of the

application using User-APMP with the current profiling data

from the three micro-benchmarks and timemeasured denotes

the measured execution time. We report the average prediction

error all the data points that have a prediction result for each

benchmark application.

Fig. 4a first shows the average prediction errors of User-

PAMP for the benchmark applications with different batch

sizes (i.e., 10, 20, 30, 40 and 50). Here, the window size is

set as 1; that is, only the data tuples in the last batch are

utilized to retrain the predictive model at runtime to predict

the data tuples in the next batch. From the figure, we can see

that, although having larger batch sizes reduces the adaptation

frequency of the predictive model, more accurate model can

be re/trained with more historical data tuples being used in the

last batch, which generally results in smaller prediction errors.

In particular, for ferret, the average prediction error is reduced

from about 341% to 82% for the batch sizes of 10 and 50,

respectively. The overall average prediction errors for all the

benchmarks are reduced from 135% to 45% when the batch

size increases from 10 to 50.

When batch size is set as 10, Fig. 4b shows the effects

of varying window sizes on the accuracy of User-APMP for

the benchmark applications. Clearly, when the window size

increases from 1 to 5 (i.e., the number of historical data tuples

for retraining the model increases from 10 to 50), the average

Fig. 6: Prediction errors of User-APMP: window size of ∞.

prediction errors can be significantly reduced where the overall

average for all applications can reduce from 135% to 39%.

When the window size increases to 10, the prediction errors

can be further reduced, but with relatively less magnitude.

From the results, we can see that having more historical data

tuples for re/training can generally improve the accuracy of

the predictive model in User-APMP. However, such benefits

normally reduce as more data tuples are included with larger

window sizes.

Fig. 5 further shows the average prediction errors of User-

APMP with different batch sizes for the cases of window

sizes of 5 and 10, respectively. The results are inline with

our previous observations. That is, the benefits of increasing

window sizes diminish for larger batch sizes. In particular,

when the window size is 10, we can see that the overall

average prediction errors are almost the same (about 25%) for

all different batch sizes. That is, once the number of data tuples

in the training window reaches a certain number (e.g., 100),

the benefit of having even more data tuples is very limited.

For the case of window size being ∞ (i.e., where all

historical data tuples are used for re/training the predictive

model), Fig. 6 shows the average prediction errors of User-

APMP for the benchmark applications with different batch

sizes. In particular, we include the case with the batch size of

1 to illustrate the benefit limit for increasing the frequency of

adaptations. From the results, we can see that the prediction

errors do decrease compared to the cases of window sizes

being 5 or 10, but with very limited improvements. Moreover,

even when the model is retrained after each iteration of

executing the applications (for the case of batch size being 1),

the overall prediction errors reduce less than 5%. However,

as shown below, the overhead of User-APMP for the batch

size of 1 can be very prohibitive and prevent it from being

deployed at runtime.

D. Modeling and Prediction Overheads of User-APMP

In addition to its prediction accuracy, we report the runtime

overhead of User-APMP, which is also an important evaluation

metric for it being designed as an online predictor. First, Table

Fig. 7: Overhead for modeling/prediction per batch

TABLE I: Overall time (sec.) to model/predict all data.

Batch Size Win. of 1 Win. of 5 Win. of 10 Win of ∞
1 - - - 1325.7
10 12.2 21.8 31.1 129.8
20 7.6 15.8 24.8 64.0
30 5.5 13.4 21.3 40.8
40 4.5 12.2 19.9 31.3
50 3.8 10.8 17.2 22.9

I shows the overall time required for User-PAMP to train or

retrain the predictive models and to predict all 1000 data points

for the different settings of batch/window sizes at runtime.

Not surprisingly, with increased batch sizes, the adaptation

frequency decreases and it takes less overhead. On the other

hand, when window size increases, more historical data tuples

are utilized for model adaptation, which leads to higher

overheads. In particular, for the case of batch size being 1
and window size of ∞, it can take more than 1325 seconds to

process these 1000 data points. In comparison, for the case of

window size being 5 and batch size of 50, it takes only 10.8
seconds (a reduction of more than 120X), which however can

result in almost the same level of prediction errors (with only

up to 5% difference).

Fig. 7 further shows the average time used by User-APMP

to retrain the model and predict the data points within each

batch for different batch sizes. As the figure shows, the average

time to retrain the model using a new batch and predict the

execution time for the benchmark runs within a batch is every

small. Even with a windows size of 10 and batch size of 50,

the time to retrain and predict a new batch is less than 0.9

seconds. In the case of batch size 20 and window size 10, the

time to retrain and predict a batch is only 0.5 seconds. This

time is much smaller than the execution time of a PARSEC

benchmark, which is at least 20 seconds on our VM. This low

overhead demonstrates that User-APMP is efficient for online

prediction.

Furthermore, Fig. 7 also shows that the overhead does

increase with larger batch sizes and window sizes. In par-

ticular, when all past data are used to make predictions, the

overhead to retrain and predict a new batch increased to

more than 1 seconds. This overhead can be significant for

the PARSEC benchmarks with execution times less than 50

seconds. Consequently, the batch- and window-based approach

employed by User-APMP is important for this prediction to

be both accuracy and efficiency at runtime.

IV. CONCLUSIONS

Applications running in cloud environment may have per-

formance variations due to contention caused by collocated

VMs on the same host machine. Hence, it is important for

cloud users to have accurate predictions on the executions of

their application for them to make better planning of their

operations and expenditure. In this paper, User-APMP, a user-

level application performance modeling and prediction frame-

work, based on micro-benchmarks and regression techniques is

proposed. In User-APMP, a few micro-benchmarks are devised

to probe the perceivable performance of CPU, memory and

I/O components of a target VM. The predictive performance

model of User-APMP is adaptively retrained at runtime with

regression techniques based on such probe information from

micro-benchmarks and in-place measured performance of an

applications. In addition, the sliding-window technique is

utilized to control the adaptation frequency and the number

of historical data items to retrain the model. Our evaluation

results show that, the micro-benchmarks can properly assess

the resource contention levels of a VM in multi-tenant clouds.

The prediction error of User-APMP generally decreases with

higher adaptation frequencies and more historical data points,

which however leads to higher runtime overhead. With only

100 data points, the average prediction errors can reach 25%.

REFERENCES

[1] P. Leitner and J. Cito, “Patterns in the Chaos&Mdash;A

Study of Performance Variation and Predictability in

Public IaaS Clouds,” ACM Transactions on Internet
Technology (TOIT), vol. 16, no. 3, 2016.

[2] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.

Soffa, “Bubble-Up: Increasing Utilization in Modern

Warehouse Scale Computers via Sensible Co-locations,”

in Proc. of Annual IEEE/ACM Int’l Symposium on Mi-
croarchitecture, 2011.

[3] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware

Scheduling for Heterogeneous Datacenters,” in Proc.
of Int’l Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2013.

[4] F. Romero and C. Delimitrou, “Mage: Online and

Interference-Aware Scheduling for Multi-Scale Heteroge-

neous Systems,” in Proc. of Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), 2018.

[5] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:

Precise online qos management for increased utilization

in warehouse scale computers,” in Proc. of the 40th
Annual Int’l Symposium on Computer Architecture, 2013.

[6] N. Mishra, J. D. Lafferty, and H. Hoffmann, “ESP: A

Machine Learning Approach to Predicting Application

Interference,” in IEEE International Conference on Au-
tonomic Computing (ICAC), 2017.

[7] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith,

and R. H. Katz, “Selecting the Best VM Across Multiple

Public Clouds: A Data-driven Performance Modeling

Approach,” in Proc. of ACM Symposium on Cloud Com-
puting (SoCC), 2017.

[8] J. Scheuner and P. Leitner, “Estimating Cloud Applica-

tion Performance Based on Micro-Benchmark Profiling,”

in IEEE International Conference on Cloud Computing,

2018.

[9] M. Mao and M. Humphrey, “Auto-scaling to Minimize

Cost and Meet Application Deadlines in Cloud Work-

flows,” in Proc. of Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis, 2011.

[10] R. Begam, W. Wang, and D. Zhu, “Virtual machine

provisioning for applications with multiple deadlines

in resource-constrained clouds,” in Proc. of the IEEE
Int’l Conference on High Performance Computing and
Communications (HPCC), 2017.

[11] R. Begam, H. Moradi, W. Wang, and D. Zhu, “Flexi-

ble vm provisioning for time-sensitive applications with

multiple execution options,” in Proc. of the IEEE Int’l
Conference on Cloud Computing (CLOUD), 2018.

[12] C. Bienia, “Benchmarking modern multiprocessors,”

Ph.D. dissertation, Princeton University, January 2011.

[13] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa,

“Reqos: Reactive static/dynamic compilation for qos in

warehouse scale computers,” SIGARCH Comput. Archit.
News, vol. 41, no. 1, pp. 89–100, Mar. 2013. [Online].

Available: http://doi.acm.org/10.1145/2490301.2451126

[14] J. Kiefer, J.; Wolfowitz, “Stochastic Estimation of the

Maximum of a Regression Function,” The Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 462–466,

1952.

[15] H. Zou and T. Hastie, “Regularization and variable selec-

tion via the elastic net,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 67,

no. 2, pp. 301–320, 2005.

[16] R. Tibshirani, “Regression shrinkage and selection via

the lasso,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 267–288, 1996.

[17] A. E. Hoerl and R. W. Kennard, “Ridge regression:

applications to nonorthogonal problems,” Technometrics,

vol. 12, no. 1, pp. 69–82, 1970.

[18] T. Zhang, “Solving Large Scale Linear Prediction Prob-

lems Using Stochastic Gradient Descent Algorithms,” in

Proc. of Int’l Conference on Machine Learning, 2004.

[19] C. Delimitrou and C. Kozyrakis, “iBench: Quantifying

interference for datacenter applications,” in IEEE In-
ternational Symposium on Workload Characterization
(IISWC), 2013.

[20] Scikit-learn, http://scikit-learn.org/stable/.

