
TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41

ReSense: Mapping Dynamic Workloads of Colocated Multithreaded
Applications Using Resource Sensitivity

TANIMA DEY, WEI WANG, JACK W. DAVIDSON, and MARY LOU SOFFA,
University of Virginia

To utilize the full potential of modern chip multiprocessors and obtain scalable performance improvements,
it is critical to mitigate resource contention created by multithreaded workloads. In this article, we describe
ReSense, the first runtime system that uses application characteristics to dynamically map multithreaded
applications from dynamic workloads—workloads where multithreaded applications arrive, execute, and
terminate continuously in unpredictable ways. ReSense mitigates contention for the shared resources in the
memory hierarchy by applying a novel thread-mapping algorithm that dynamically adjusts the mapping of
threads from dynamic workloads using a precalculated sensitivity score. The sensitivity score quantifies an
application’s sensitivity to sharing a particular memory resource and is calculated by an efficient charac-
terization process that involves running the multithreaded application by itself on the target platform. To
measure ReSense’s effectiveness, sensitivity scores were determined for 21 benchmarks from PARSEC-2.1
and NPB-OMP-3.3 for the shared resources in the memory hierarchy on four different platforms. Using three
different-sized dynamic workloads composed of randomly selected two, four, and eight corunning benchmarks
with randomly selected start times, ReSense was able to improve the average response time of the three
workloads by up to 27.03%, 20.89%, and 29.34% and throughput by up to 19.97%, 46.56%, and 29.86%, re-
spectively, over the native OS on real hardware. By estimating and comparing ReSense’s effectiveness with
the optimal thread mapping for two different workloads, we found that the maximum average difference
with the experimentally determined optimal performance was 1.49% for average response time and 2.08%
for throughput.

Categories and Subject Descriptors: D.4.1 [Process Management]: Scheduling, Thread-mapping; D.4.8
[Performance]: Measurement

General Terms: Coscheduling, Performance, Measurement, Algorithms

Additional Key Words and Phrases: multicore, multithreaded applications, thread mapping, resource con-
tention, memory hierarchy

ACM Reference Format:
Dey, T., Wang, W., Davidson, J. W., and Soffa, M. L. 2013. ReSense: Mapping dynamic workloads of colocated
multithreaded applications using resource sensitivity. ACM Trans. Architec. Code Optim. 10, 4, Article 41
(December 2013), 25 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555298

1. INTRODUCTION

With the continuous growth of the number of cores on modern chip multiprocessors
(CMPs), the number of simultaneously executing multithreaded applications is in-
creasing. When there are multiple applications executing on CMPs, a key challenge is
to determine the thread-to-core mappings to optimize performance [Das et al. 2013;

This work is supported by the National Science Foundation, under grants CCF-0811689 and CNS-0964627.
Authors’ addresses: T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa, Department of Computer Science,
University of Virginia, Charlottesville, Virginia 22904; email: td8h@virginia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific perimssion and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481 or permission@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART41 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555298

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

http://dx.doi.org/10.1145/2555289.2555298
http://dx.doi.org/10.1145/2555289.2555298

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:2 T. Dey et al.

Fig. 1. Difference between a single- and multithreaded application for shared cache contention.

Zhuravlev et al. 2010]. When an application shares any resource with a corunner,1
contention can occur for that shared resource. Because of resource contention in
the memory hierarchy, an application’s performance can degrade by more than 50%
[Zhuravlev et al. 2010], and thus scalable performance improvement is often not read-
ily achieved on multicore and many-core machines [Dey et al. 2011]. Contention for the
shared resources in the memory hierarchy can also lead to inefficient resource usage
[Jin and Cho 2009; Knauerhase et al. 2008]. To utilize these resources to their full
potential and obtain scalable performance improvements on CMPs, intelligent thread
mapping is critical.

A number of techniques have been proposed to address the shared-resource con-
tention problem for single-threaded applications and static workloads2 via thread map-
ping and scheduling [Fedorova et al. 2007; Jiang et al. 2008; Knauerhase et al. 2008;
Mars et al. 2011b; Zhuravlev et al. 2010; Mars et al. 2010]. However, there are several
differences between the mapping of single- and multithreaded applications as they
contend for shared resources [Dey et al. 2011].

A single-threaded application can have one corunning thread on a neighboring core
when it shares, for example, a cache (L2), as shown in Figure 1(a). Consequently, it con-
tends for one cache with that corunner. On the other hand, a multithreaded application
can share multiple caches with multiple corunning threads, as shown in Figure 1(b),
and contend for more than one cache. Moreover, single-threaded applications do not
have data sharing, whereas multithreaded applications can have data sharing, as well
as contentious behavior, among its threads [Dey et al. 2011]. Existing techniques to
address resource contention for single-threaded applications do not consider these dif-
ferences and are thus not applicable for mapping multithreaded applications.

There are several challenges to effectively map multithreaded applications on CMPs.
For workloads with multiple applications, the most effective thread mapping, which
minimizes contention in the shared resources, depends on an application’s behaviors,
the underlying resource topology of the platform, and the behaviors of the corunning ap-
plications. One approach is to develop an online thread-mapping algorithm that detects
and mitigates contention in the shared resources created by corunning applications.
Online contention detection involves performance comparison of different thread-to-
core-mapping configurations, which vary the contention for the shared resources. Miti-
gation involves selecting the thread-to-core mapping that ensures the lowest contention
and performance degradation [Tang et al. 2011; Snavely and Tullsen 2000]. However, as

1Applications that execute on the same or neighboring cores are corunners.
2A static workload is one in which all applications start execution at the same time, and the set of simulta-
neously executing applications does not change during execution.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:3

the multithreaded applications in a workload can create a varying number of threads,
the number of thread-to-core mapping configurations can increase exponentially
[Radojković et al. 2012]. As a result, determining the thread mapping that minimizes
contention by online contention detection in all possible thread-mapping configurations
has exponential complexity and makes the problem of optimally mapping threads an
NP-complete problem [Jiang et al. 2008].

Another issue arises when thread-mapping algorithms consider multithreaded ap-
plications in realistic dynamic workloads, where any number of multithreaded appli-
cations arrive, execute, and terminate in unpredictable ways. Online detection and
minimization of the contention created by dynamic workloads is very challenging be-
cause of the continuous change in the total number of applications and the intensity of
contention in the execution environment, resulting in exponentially varying numbers
of thread-mapping configurations.

Another approach to mitigate shared-resource contention, and the one presented
in this article, is to first determine the inherent characteristics and potential behav-
iors of each multithreaded application in the workload for how it creates and suffers
from the contention on the underlying platform, using an offline technique. After char-
acterization, during execution, the thread-mapping algorithm dynamically maps the
application threads using the characterization rather than exploring the exponential
number of thread-to-core mapping configurations. Prior work characterized applica-
tions in the presence of corunning applications and synthetic workloads [Mars et al.
2011a, 2011b], where the number of characterizations to be performed during execution
can increase polynomially depending on the number of applications in the workload.

In this article, we describe ReSense, the first runtime system that uses application
characteristics to dynamically map threads from dynamic workloads of multithreaded
applications to mitigate contention for the shared-memory resources. Each charac-
teristic of a multithreaded application is represented by a sensitivity score, which is
calculated offline via an independent characterization process. This characterization
process measures the potential impact of contention for a specific shared resource
in the memory hierarchy, including shared caches, Last-Level Caches (LLCs), Front-
Side Bus (FSB), on-chip memory controller, and memory-socket interconnection, on a
multithreaded application’s performance. The characterization is done by running the
application by itself on a particular CMP, which keeps the number of characterizations
in linear order. The sensitivity score identifies different behaviors (e.g., data sharing or
contentiousness) of a multithreaded application and is precise enough to evaluate the
relative importance of a shared resource for an application. The score can be used to
compare the contentiousness among corunning applications as well as the contentious-
ness among sibling threads (threads from the same multithreaded application) with
the corunner’s threads.

Using the sensitivity score of each application, ReSense applies a novel thread-
mapping algorithm that dynamically determines the thread mappings of multithreaded
applications in the presence of any number of corunners to maximize the workload’s
average response time and throughput. Because ReSense uses the precalculated sensi-
tivity scores of the applications, it is capable of handling dynamic workloads and map-
ping any number of threads from any number of applications arriving and terminating
nondeterministically, avoiding the performance overhead of using online contention
detection mechanisms.

There have been a few research efforts that address contention for colocated multi-
threaded applications. Table I summarizes the important differences between ReSense
and other state-of-the-art systems for mitigating contention for the shared-memory
resources. Some of these systems pursue the goals to independently optimize energy,
thread throughput, minimize lock contention, allocate optimal number of cores to the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:4 T. Dey et al.

Table I. Comparison between ReSense and Some State-of-the-Art Systems

Pusukuri Bhadauria Tang et al. Zhuravlev et al.
Systems ReSense et al. TACO’13 et al. ICS’10 ISCA’11 ASPLOS’10

All shared Last-level Shared cache All shared All shared

Resources

resources cache and bus resources resources
in memory shared lock in memory in memory
hierarchy hierarchy hierarchy
Maximize Maximize Minimize Satisfy Reduce
workload’s workload’s system’s quality of workload’s

Primary average average energy service of completion
objective response turnaround and maxi- one latency- time

time and time and mize thread sensitive
throughput throughput throughput application

Application Linear, no Polynomial, Polynomial, Polynomial, Polynomial,
characteristics corunner increases with increases with increases with increases with

detection considered the number the number the number the number
complexity of corunners of corunners of corunners of corunners

Multithreaded Yes Yes Yes Yes No
application
Dynamic Yes Yes No No No

workloads
Performance Average Unknown Average Within Within

compared with less than less than 3% 2%
optimal/oracle 1% 1%

Baseline Native OS Native OS Suleman et al. None Native OS
comparison ASPLOS’08

applications in a workload, or improve only the latency-sensitive application’s perfor-
mance. Our goal is to improve the overall performance of the colocated multithreaded
applications from dynamic workloads and mitigate contention for all the shared re-
sources in the memory hierarchy by determining the effective thread mapping. All the
systems mentioned in Table I determine characterization in the presence of a corunner.
In comparison, ReSense is able to characterize applications without considering corun-
ners. Thus, ReSense operates in linear time to determine application characteristics,
while the other systems operate in polynomial time and are able to achieve similar per-
formance. Details of these systems and the comparisons with ReSense are described in
Section 4.

This work makes the following contributions:

—The first dynamic thread-mapping algorithm, ReSensor, which determines the
thread-to-core mappings of the multithreaded applications in dynamic workloads
using sensitivity scores to optimize performance. These scores are based on an ap-
plication’s solo characterization, without considering any corunning applications, for
each shared resource in the memory hierarchy on a particular CMP.

—A low-overhead runtime system, ReSense, which uses the ReSensor algorithm and
employs the precalculated sensitivity score of a multithreaded application for a spe-
cific shared resource to effectively determine and dynamically adjust its thread map-
ping in the presence of any number of multithreaded applications from dynamic
workloads for mitigating contention and optimizing performance.

—A comprehensive empirical evaluation of the effectiveness of ReSense, which demon-
strates that it can improve the average response time and throughput of dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

tanima_dey
Sticky Note
Shared cache and bus

tanima_dey
Sticky Note
This is the correct line:
Thus, ReSense operates in linear time to determine application characteristics while the other systems operate in polynomial time and is able to achieve similar performance.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:5

Fig. 2. Overview of the ReSense approach.

workloads consisting of multiple multithreaded applications by up to 29.34% and
46.56%, respectively, over the native Operating System (OS) using real hardware.

—A performance comparison of ReSense’s effectiveness in mitigating contention and
improving application performance with that of the optimal thread mapping, which
demonstrates that the maximum average differences with the experimentally de-
termined optimal performance is 1.49% for average response time and 2.08% for
throughput for two different workloads.

This article is organized as follows: Section 2 describes the ReSense system and
ReSensor algorithm. Section 3 describes experimental methodology and evaluation
metrics and discusses the results. Section 4 describes related work and Section 5
concludes.

2. THE RESENSE APPROACH

In this section, we describe the ReSense runtime system, characterization of the mul-
tithreaded applications, sensitivity scores, and ReSensor algorithm.

2.1. The ReSense Runtime System

Figure 2 shows a high-level overview of the ReSense approach. Consider a dynamic
workload consisting of n multithreaded applications, {A1, A2, . . . , An} arriving (repre-
sented by + sign) at time {t1, t2, . . . , tn}, respectively, on platform P. To map these
applications, the ReSense approach has an offline and online phase. The offline char-
acterization phase identifies the potential behaviors (e.g., data sharing or contentious-
ness) of each multithreaded application and determines each application’s sensitivity
scores (SS A1, SS A2, . . . , SS An) for each shared resources in the memory hierarchy
on P. This characterization is done for each application in isolation and consequently
needs to be done only once for a particular shared resource on the target platform.
Section 2.2 discusses the characterization and the calculation of the sensitivity score
for a multithreaded application in more detail.

In the online mapping phase, the ReSense runtime uses the ReSensor algorithm
to determine the thread-to-core mappings of the multithreaded applications using
the sensitivity scores for each application on P. The ReSense runtime invokes this
algorithm when there is a change in the number of threads or applications in the
system. Therefore, as the execution of each application starts or terminates or any
thread is created or destroyed, ReSense dynamically adjusts the thread mappings of
the applications. For example, in Figure 2, at time t1, there is only one application
A1, and ReSense maps A1’s threads on P. At time t2, A2 starts execution and ReSense

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:6 T. Dey et al.

determines and adjusts the thread mapping of A1 and A2 dynamically. At time tn, there
are n multithreaded applications running, and ReSense maps all n applications on P
using the ReSensor algorithm. If at time tn+1 any application Ai (e.g., A1 in Figure 2)
terminates, ReSense adjusts the mappings of the remaining executing applications.

The next two sections describe the two phases of the ReSense approach in detail.

2.2. Characterization: Sensitivity Score

Multithreaded applications demonstrate different behaviors for different resources on
CMPs, which we can determine from their characterization. In this work, we consider
the shared resources in the memory hierarchy, for example, shared caches, LLCs, mem-
ory controller, FSB, and memory socket connection. We apply our prior methodology
for characterizing multithreaded applications for a particular shared resource in the
memory hierarchy [Dey et al. 2011].

We defined two types of contention created by multithreaded applications. Intra-
application contention is defined as the contention for a resource among threads of the
same application when the application runs solely (without corunners). In this situa-
tion, application threads compete with each other for the shared resources. Interappli-
cation contention is defined as the contention for shared resources among threads from
different applications. In this case, threads from one multithreaded application com-
pete for shared resources with the threads from its corunning multi- or single-threaded
application. Our methodology characterizes multithreaded applications based on both
intra-application and interapplication contention.

Because it is infeasible to perform the necessary characterization with corunners for
large dynamic workloads, we characterize a multithread application as it runs solely
(without any corunners). For example, for one corunning application, there are O(n2)
pair-wise characterizations, and for (r − 1) corunning applications, there are O(nr)
characterizations for n applications for each shared resource. On the other hand, the
characterization of a multithreaded application when it runs solely has linear O(n) com-
plexity for each shared resource. As a multithreaded application’s characteristics vary
depending on the underlying platform, offline characteristics for different resources
can be determined only once for each target platform. This type of offline characteriza-
tion is useful for scientific workloads where the input size does not change often. This
one-time offline characterization has much less overhead than considering corunners
and less performance overhead than determining the contention online in the presence
of an unknown number of corunners.

Our methodology measures how sharing the targeted resource among threads from
the same application affects its performance, compared to when they do not share. To
accomplish this measurement, a multithreaded application is run solely with at least
two threads in two configurations. The first or baseline configuration maps the threads
such that the threads do not share the targeted resource and run using two separate
and dedicated resources. The second or contention configuration maps the application
threads such that the threads share the targeted resource and execute while using
the same resource. Because the contention configuration maps the threads to use the
same resource, it creates the possibility that the threads compete with each other
for that resource, causing intra-application contention that degrades the application’s
performance. In both configurations, the mapping of threads will keep the effect on
other related resources the same. The number of threads is chosen to be equal to the
number of cores that use the same targeted resource.

For example, to characterize a multithreaded application for the shared L2 cache
for the Intel-Yorkfield platform shown in Figure 3, the application is run solely in two
configurations. Each configuration runs the number of threads equal to the number of
cores sharing one L2 cache, which is two in this case. In the baseline configuration,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:7

Fig. 3. Configurations for characterizing a multithreaded application for shared L2 cache contention.

two application threads are mapped onto the two cores that use a separate L2 cache,
for example, C0, C2 (shown in Figure 3(a)) or C1, C3. In the contention configuration,
the threads are mapped to the cores that use the same cache so that the threads have
potential cache contention, for example, C0, C1 (shown in Figure 3(b)) or C2, C3. As
the methodology characterizes the application for shared L2 cache contention, intra-
application L1 cache contention is avoided by allowing only one thread to access one L1
cache and using same number of L1 caches in both configurations. The FSB contention
is kept unchanged between configurations by choosing Intel-Yorkfield, which has one
FSB.

The application’s performance is measured in each of the configurations and the
characteristics of the multithreaded application is then determined by comparing the
performance. If the application performance improves in the second configuration,
the application is characterized to have data sharing in the cache. If the performance
degrades, the application is characterized to contend for the shared cache. Thus,
the methodology identifies the key characteristics and potential behaviors of a
multithreaded application for a specific shared resource. These characteristics are
later used in the online phase to determine the effective thread mapping to improve an
application’s performance. The characterization configurations for the other targeted
resource of the experimental platforms are summarized in Table III in Section 3.

We use the performance difference in the characterization phase to compute a sen-
sitivity score of a multithreaded application for each shared resource in the memory
hierarchy on a particular CMP. The sensitivity scores are calculated using the following
equation:

Sensitivity Score = (Number of Cycles Base − Number of Cycles Contend) ∗ 100
Number of Cycles Base

. (1)

Here, Number of Cycles Base and Number of Cycles Contend are the total number
of cycles (by reading hardware performance counter) in the baseline and contention
configuration, respectively, which represent the application performance.

The sensitivity score captures the characteristics of the application for shared caches
and memory bandwidth. The score is represented as a floating-point number, which
has both a sign and magnitude. The sign indicates whether the application’s per-
formance improves (positive sign) or degrades (negative sign) as its threads share a
particular resource. For example, in Table IV, canneal has a positive sensitivity score
for the L2 cache on Intel-Yorkfield, indicating that canneal’s performance improves in
the contention configuration. Streamcluster has a negative sensitivity score for FSB
on Intel-Harpertown, which indicates its performance degrades when its threads are
mapped to use the same FSB and require more FSB bandwidth. Therefore, from the
sign of the sensitivity score, we can identify the key characteristics of an application as

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
obtained by reading hardware performance counters

two changes: add obtained and make counter plural (counters)

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:8 T. Dey et al.

to whether it benefits from certain resource sharing. On the other hand, the magnitude
indicates the degree of the application’s sensitivity for a specific shared resource. The
higher the magnitude, the more sensitive the application is to sharing that resource.
For example, canneal has a higher magnitude of sensitivity score and is more sensitive
to L2 cache sharing than dedup because canneal accesses more shared data. From the
magnitude of the sensitivity score, we determine how much an application benefits or
is penalized from certain resource sharing.

A sensitivity vector of a multithreaded application is a vector containing the sensitiv-
ity score for each shared resource considered on a particular CMP. For example, if the
platform has N types of shared resources, then the sensitivity vector of an application
is an N-element vector. This vector is used as an input to the ReSensor thread-mapping
algorithm, described in the next section.

2.3. Mapping: The ReSensor Algorithm

To maximize the performance of a workload and mitigate contention for the shared
resources, it is critical to determine the thread mapping, considering the character-
istics of the applications and the underlying architecture of the platform. Existing
thread-mapping techniques map an application by considering its characteristics in
the presence of a corunner [Mars et al. 2010; Zhuravlev et al. 2010]. On the other hand,
we determine the thread mapping that maps a multithreaded application’s threads
in the presence of any corunner(s) by utilizing the characteristics determined with-
out considering the presence of the corunner(s). As sensitivity scores identify the key
characteristics of multithreaded applications for the shared resources on a particu-
lar platform, the scores are used to determine the effective thread mapping of each
application in a workload to optimize performance by mitigating contention.

Depending on the number of applications in a workload and number of shared re-
sources at a particular memory hierarchical level on a platform, there are two scenarios.
The scenarios and intuition behind the algorithm are described as follows.

Scenario 1: There are the same or more shared resources at a particular memory
hierarchical level than the number of applications in the workload at a particular
time. As the platform has enough shared resources such that each application can use
separate shared resources, the thread-mapping algorithm should allocate the shared
resources to one application at a time by considering its sensitivity score. For example, if
an application has contentious behavior and is very sensitive for a particular resource,
the application threads should be mapped on to the cores that use separate resources.

Scenario 2: There are more applications in the workload than the number of shared
resources at a particular memory hierarchical level. In this case, as the platform does
not have enough shared resources such that each application can use separate shared
resources, the thread-mapping algorithm should prioritize the applications and map
multiple applications with complementary behavior together to use the same resource,
favoring the more sensitive application. The more sensitive application should be pri-
oritized because its performance has a higher impact on the workload’s overall perfor-
mance. The magnitude of the sensitivity score represents the extent of how an applica-
tion’s performance benefits or is penalized from certain thread mapping and sensitivity
for a particular resource sharing. Therefore, the prioritization can be determined by
considering the magnitude of the applications’ sensitivity scores. For example, when
there are more applications that have to be mapped than the number of shared caches,
the application threads should be mapped such that the most cache-contentious ap-
plication shares the same cache with the least cache-contentious or cache-sensitive
application so that the most contentious application does not degrade the least cache-
contentious/sensitive application’s performance significantly.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
I believe this should be onto (as in placed).

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:9

ALGORITHM 1: ReSensor Algorithm: Mapping application threads based on resource
sensitivity
1: INPUT: Workload WL, Topology of the experimental platform P, Sensitivity vector SV of

the applications on P
2: nApps ← number of multithreaded applications in WL
3: [Apps] ← multithreaded applications in WL
4: for each level MHL in the memory hierarchy of P do
5: R ← shared resource at MHL
6: NR ← number of R at MHL
7: [C+] ← set of cores that use or share the same R on P
8: [C−] ← set of cores that do not use or share the same R on P
9: [SS] ← SV[R] of the applications in [Apps]
10: sort [SS] array in descending order of the magnitude of the sensitivity scores and

rearrange [Apps] accordingly
11: if NR >= nApps then
12: /* Case 1: equal or more shared resources than the number of applications */
13: for (i=0; i < nApps ; i++) do
14: if SS[i] > 0 AND [C+] has available core(s) then
15: map Apps[i]-threads on the available cores from [C+]
16: else if SS[i] < 0 AND [C−] has available core(s) then
17: map Apps[i]-threads on the available cores from [C−]
18: else
19: /* [C+] or [C−] does not have available core(s) */
20: map Apps[i]-threads on any core on P
21: end if
22: end for
23: else
24: /* Case 2: fewer shared resources than the number of applications */
25: for (i=0; i < nApps/2 ; i++) do
26: if SS[i] > 0 AND [C+] has available core(s) then
27: map Apps[i]- and Apps[nApps − i − 1]-threads on the available cores from [C+]
28: else if SS[i] < 0 AND [C−] has available core(s) then
29: map Apps[i]- and Apps[nApps − i − 1]-threads on the available cores from [C−]
30: else
31: /* [C+] or [C−] does not have available core(s) */
32: map Apps[i]- and Apps[nApps − i − 1]-threads on any core on P
33: end if
34: end for
35: end if
36: end for

Considering these scenarios, we developed an algorithm, ReSensor, that determines
the thread mappings of multithreaded applications by utilizing their characteristics for
a particular shared resource. The algorithm maps the application threads in the pres-
ence of any number of corunning multithreaded applications to maximize performance
by exploiting the application’s sensitivity scores on a particular platform.

Algorithm 1 contains the pseudo-code of the ReSensor algorithm for mapping threads
from a workload consisting of any number of multithreaded applications on a particu-
lar platform P. Platform P can have shared resources in multiple levels of the memory
hierarchy. In most platforms, a resource lower in the memory hierarchy contains mul-
tiple numbers of resources that are at a higher level in the memory hierarchy. Once the
mapping with respect to the resources lower in the memory hierarchy is determined,
the mapping with respect to resources at a higher memory hierarchy can be easily
determined because the number of thread-mapping configurations reduces to half. In

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:10 T. Dey et al.

addition, if we consider the resources from the top of the memory hierarchy to the
bottom, the mapping determined on the basis of a resource at a higher level can vio-
late the mapping that will be determined based on the characterization of the shared
resource in the lower level. Therefore, ReSensor considers the shared resources from
the bottom to the top of the memory hierarchy, that is, from memory bus or memory
controller to the shared caches, to determine the thread mappings.

For example, Intel-Harpertown (shown in Figure 5(b)) has four L2 caches and two
FSB connections as the shared resources. Assume we have to map an application A
with two threads on this platform. A has a negative sensitivity score for L2 cache and
positive sensitivity score for FSB. From the sensitivity scores, we can conclude that
A’s performance improves when A is mapped on the cores that use the same FSB and
separate L2 caches. If ReSensor determines the thread mapping of the application
by considering the characteristic of the L2 cache (higher at the memory hierarchy)
first, then A can be mapped on the cores that use separate cache, any one from the
24 possible thread-mapping configurations. If the mapping {C0, C1} is chosen, then
this mapping uses a separate cache to avoid cache contention. But at the same time,
this mapping causes A to use separate FSB connections, which violates the mapping
that leverages A’s FSB characterization to use the same FSB. Therefore, the mapping
{C0, C1} can degrade A’s performance. On the other hand, if ReSensor determines the
thread mapping of the applications by considering the characteristic of FSB (lower in
the memory hierarchy) first, then A can be mapped on cores that use same the FSB
connection, which reduce the number of mapping configurations for the L2 cache to
eight. Therefore, ReSensor considers each shared resource R from the bottom of the
memory hierarchy to the top (line 4). For the Intel-Harpertown example, ReSensor
considers the FSB first and then L2 cache characteristics to determine the final thread
mapping.

Next, ReSensor counts the number of shared resources, NR, at each memory hier-
archical level (MHL) (line 6). It computes two arrays: the set of cores that share or
use the same R, [C+], and the set of cores that do not share the same R, [C−] (lines
7, 8). These two arrays are later used to look up the cores on which the threads will
be mapped. It collects the sensitivity scores of the applications for R into [SS] array
(line 9). To maximize the workload’s performance in terms of the average response time
and throughput (defined in Section 3), the application that has the highest sensitivity
for R should be prioritized (as described in Scenario 2 previously) and should have its
thread mapping earlier than the least sensitive applications. To ensure the prioriti-
zation, the algorithm sorts the [SS] array in the descending order of the sensitivity
score’s magnitude and rearranges the applications in the [Apps] array accordingly (line
10). There are two cases to consider by ReSensor, corresponding to the two scenarios
described earlier.

Case 1: There is the same or more shared resources than the number of applica-
tions in the workload (line 11). In this case, P has enough resources to be allocated to
each application for isolated execution. The sign of the sensitivity score represents if
sharing R will improve the application performance. Therefore, ReSensor determines
the thread mapping of each application by considering the sign of the sensitivity score
for the shared resource at that level. If the application’s sensitivity score is positive
(line 14), it has sharing behavior and its performance improves when its threads ex-
ecute while using or sharing the same resource R. ReSensor maps the application
threads on the available cores (the cores on which any thread is not mapped yet) from
[C+] considering its sharing characteristics (line 15). Sharing the same resource, es-
pecially the caches, also reduces the number of memory transactions for maintaining
the cache coherency and results in better performance. If the application’s sensitivity
score is negative (line 16), its performance degrades when the application threads use

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
I think it should be "mapped onto cores"

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:11

Fig. 4. Mapping decision for the two cases.

Fig. 5. Topology of experimental platforms.

the same resource R because of intra-application contention for R. Therefore, to avoid
and mitigate the contention, ReSensor maps the threads on the available cores from
[C−] (line 17) so that the threads use separate R. If there are no available cores from
[C+] or [C−], ReSensor maps threads on any core on P (line 20). As ReSensor maps
the application threads considering its performance characterization for each shared
resource, it always guarantees the mapping that improves the workload’s performance.

For example, consider a workload that has two multithreaded applications, A and B.
Assume both applications have negative sensitivity scores of −a and −b, respectively,
and contentious behavior for the shared L2 cache on the quad-core platform (e.g., Intel-
Yorkfield), shown in Figure 4. Here, both nApp and NR equal 2 and [C+] = [{C0,C1},
{C2,C3}] and [C−] = [{C0,C2}, {C1,C3}]. As both applications have contentious behavior
for the shared L2 cache, they are both mapped to the cores from [C−]. A is mapped on
C0 and C2, and B is mapped on the two remaining cores from [C−], as shown in
Figure 4(a). These applications, with negative sensitivity scores, suffer from rela-
tively higher intra-application contention than interapplication contention for cache
resources [Dey et al. 2011], and the performance degrades more when the sibling
threads are colocated with each other compared to when threads are colocated with
the threads from the corunning application to use the same cache. Therefore, for such
workloads with negative sensitivity scores, it is beneficial to share the resource with
the corunner’s threads than sharing the resource with its sibling threads to improve
the workload’s overall performance.

Let us now consider application A, which has a positive sensitivity score +a and
sharing behavior, and application B, which has a negative sensitivity score −b and
contentious behavior for the shared L2 cache on the same platform. Similar to the
last example, both nApp and NR equal 2 and [C+] = [{C0,C1}, {C2,C3}] and [C−] =
[{C0,C2}, {C1,C3}]. After sorting, if |a| > |b|, ReSensor maps A’s threads on the cores
from [C+] (C0 and C1) to take advantage of the sharing characteristics and B’s threads
on the available cores from [C−] (C2 and C3), shown in Figure 4(b). This mapping may
degrade B’s performance as it forces B’s contentious threads to use the same cache.
Because B is comparatively less sensitive for the L2 cache, the degradation is less

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:12 T. Dey et al.

significant than A’s degradation if the opposite thread mapping was selected. As Re-
Sensor prioritizes A’s characteristic, A has better performance improvement compared
to the alternative mapping when it shares the same L2 cache with B’s threads, and the
overall performance of the workload improves.

Case 2: There are more applications than the number of resources at a particular
level of the memory hierarchy. In this case, P does not have enough resources to be
allocated to each application for isolated execution. Therefore, ReSensor needs to se-
lect more than one application to use the same resource R. ReSensor selects the most
sensitive application with the least sensitive application to share the same resource
and chooses the mapping that benefits the most sensitive application. ReSensor pri-
oritizes the most sensitive applications because its performance has a higher impact
on the workload’s overall performance than that of the least sensitive applications, to
maximize the workload’s overall performance. Lines 25–34 contain the pseudo-code
for mapping applications in such cases. After sorting [SS] in descending order, the
algorithm maps the most sensitive (highest magnitude) application from the first half
of [Apps] with the least sensitive ones (lowest magnitude) from the second half of
[Apps], favoring the characteristics of the most sensitive application. If the sensitivity
score of the most sensitive application is positive (line 26), it maps its threads and
least sensitive application threads to the available cores from [C+] (line 27) favoring
the sharing characteristics of the most sensitive application for R. If the sensitivity
score of the most sensitive application is negative (line 28), ReSensor maps its threads
and the least sensitive application threads to the available cores from [C−] (line 29)
to avoid the intra-application contention among sibling threads of the most sensitive
applications. If there are no available cores from [C+] or [C−], ReSensor maps threads
on to any core on P (line 32). The mapping prioritization toward the most sensitive
application does not affect the least sensitive application’s performance significantly
and results in overall performance improvement of the workload.

For example, let us consider a workload that has four applications [A, B, C, D] to
be mapped on the same platform from the previous example. The sensitivity scores
of the four applications for the L2 cache after sorting is [+c,−a,+b,−d], where |c| >
|a| > |b| > |d|. ReSensor selects the most sensitive application C and the least sensitive
application D to map them together. As C has a positive sensitivity score, ReSensor
maps C and D on the cores from [C+] (C0 and C1), prioritizing C ’s sharing behavior
for the L2 cache. Then ReSensor maps A and B on the remaining cores (C2 and C3).
The final mapping is shown in Figure 4(c). Because C is the most sensitive application,
this mapping favors C ’s characteristic to ensure its improved performance. D being
the least sensitive, the mapping does not degrade D’s performance significantly and
improves the workload’s overall performance.

3. EXPERIMENTS AND RESULTS

To evaluate ReSense’s effectiveness in mapping the threads of applications from a
workload, we chose two multithreaded benchmark suites, PARSEC [Bienia et al. 2008]
and NAS Parallel Benchmarks (NPBs) [Bailey et al. 1991]. We used the PARSEC
benchmark suite as it is composed of multithreaded applications designed to be rep-
resentative of next-generation shared-memory programs for multicore architectures.
We used the NAS benchmark suite as it consists of representative applications for
high-performance computing. Both benchmark suites have multithreaded applica-
tions of diverse characteristics. We used 12 benchmarks from PARSEC-2.1 shown in
Table IV. We used the largest native input set for the PARSEC benchmarks. We used
nine benchmarks from NPB-OMP-3.3 described in Table V. We used the Input B for
the benchmark DC and input D for all other benchmarks as these were the largest
inputs for the experimental platforms. We did not use BT from NPB as it did not run

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
should be "maps threads onto any ..'

<iAnnotate iPad User>
Pencil
subject verb agreement - "after sorting are" not is

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:13

Table II. Configuration of the Experimental Platforms

Linux kernel Number of Base of
Platform Topology /GCC version cores/contexts Memory system characterization

private 32KB L1
Intel- Figure 5(a) 2.6.25/4.2.4 4/4 2 shared 6MB L2 L2 cache

Yorkfield 2GB memory
Intel- private 32KB L1 L2 cache,

Harper- Figure 5(b) 2.6.30/4.2.4 8/8 4 shared 6MB L2 FSB
town 32GB memory

private 32KB L1 L3 cache
Intel- Figure 6(a) 2.6.32/4.4.3 32/64 private 256KB L2 + Memory
Xeon 4 shared 18MB L3 controller

250GB memory (MC)
private 64KB L1 L3 cache,

AMD- Figure 6(b) 2.6.32/4.4.3 48/48 private 512KB L2 Memory
Opteron 8 shared 5MB L3 socket

95GB memory

multiple threads. All the applications were statically compiled using the GCC compiler
with optimization level 3, and the OpenMP benchmarks were compiled using fopenmp
flag.

We chose four different experimental platforms: Intel-Yorkfield, Intel-Harpertown,
Intel-Xeon, and AMD-Opteron. Table II describes the configurations. We chose Intel-
Yorkfield to characterize benchmarks for the L2 cache or last-level cache (LLC) con-
tention. We selected Intel-Harpertown to characterize benchmarks based on contention
for the FSB bandwidth. Intel-Xeon is chosen to characterize benchmarks based on con-
tention for the L3 cache and on-chip memory controller (MC). We chose AMD-Opteron
to characterize benchmarks on a different microarchitecture and measure contention
for LLC and memory socket connection. The selected machines represent a range of
different microarchitectures, topologies, and types of shared resources in the memory
hierarchy and provide evidence of the generality by ReSense.

ReSense is implemented as a user-level virtual execution manager using REEact’s
framework [Wang et al. 2012]. We chose this framework because it is customizable, is
especially designed for CMPs, and has very low (less than 3%) runtime overhead. Re-
Sense uses several services provided by REEact to detect the creation and termination
of an application thread, including detecting the start and finish of an application and
pinning application threads on specific cores.

We compare our experimental results with the native OS, as after an extensive search
for similar work, we found it is the only viable option. Most of the previous thread-
mapping or scheduling work focused on single-threaded applications, and extensions
to accommodate multithreaded applications were not obvious. The prior research on
multithreaded applications, on the other hand, focused on optimizing energy, choosing
the thread count, minimizing lock contention, or optimal core allocation, goals and
techniques that are different than mitigating shared-resource contention and improv-
ing application performance by determining the thread mapping. This work is the first
to have management of contention for shared-memory resources for multiple multi-
threaded applications from dynamic workloads via thread mapping as the goal. We
believe comparing to the native OS is a fair comparison as recent operating systems,
including the one we used, consider an application’s cache and memory behavior in
scheduling [Siddha and Mallick 2005]. Therefore, to evaluate ReSense’s effectiveness,
we ran the experiments in two configurations. In the first or baseline configuration, we
ran the workloads under the OS’s control where the native OS determines the thread

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
was chosen

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:14 T. Dey et al.

Table III. Characterization Configurations on the Experimental Platforms

Platform: Number Baseline Contention
Targeted resource of threads configuration configuration

Intel-York Maps on cores Maps on cores
field: L2 cache 2 C0 and C2 C0 and C1
Intel-Harper- Maps on cores Maps on cores

town: L2 cache 2 C0, C4 C0, C2
Intel-Harper- Maps on cores Maps on cores

town: FSB 4 C0, C2, C1, C3 C0, C2, C4, C6
Intel-Xeon: Maps on cores Maps on cores

L3 cache+MC 8 C0-C3 and C8-C11 C0-C7
AMD- Maps on cores Maps on cores

Opteron: L3 cache 6 C0-C2 and C6-C8 C0-C5
AMD- Maps on cores Maps on cores

Opteron: Memory socket 12 C0-C5 and C12-C17 C0-C11

mapping (called OS mapping). In the second configuration, we ran the workloads under
ReSense’s control, using the mapping determined by ReSensor (called ReSense map-
ping). In all experiments, the number of workloads were chosen to ensure statistical
significance for t-test (see Section 3.5). The evaluation metrics, average response time
and throughput, are computed according to the following equations, and the results
are normalized with respect to the native OS. Here, n is the total number of applica-
tions in a workload and Execution Time is the average wall-clock execution time of an
application.

Average Response Time =
∑n

i=1 ExecutionTimei

n
Throughput =

n∑

i=1

1
ExecutionTimei

3.1. Sensitivity Score

To characterize the benchmarks and determine their sensitivity scores, we ran each
benchmark in two configurations for each shared resource on the four experimental
platforms, as described in Section 3.1. The characterization configurations for each
targeted resources on the platforms are described in detail in Table III. The number
of threads for each benchmark was chosen to be equal to the number of cores that
shared the targeted resource on the platform. The baseline configuration mapped the
threads to the cores such that the benchmark used two shared targeted resources.
The contention configuration mapped the threads such that the benchmark used the
same targeted resource. Both configurations kept the effect of contention on the other
resources the same so that only the effect of contention for the targeted resource on an
application’s performance could be isolated.

The application’s sensitivity scores for the targeted resources were calculated using
Equation 1. Tables IV and V show the sensitivity scores of the PARSEC and NPB bench-
marks, respectively. We did not determine sensitivity scores of the NPB benchmarks on
Intel-Yorkfield and Intel-Harpertown as these platforms are too resource constrained
for these long-running applications.

In all our experiments described in the following sections, we configured each bench-
mark to run with two, four, eight, and six threads on Intel-Yorkfield, Intel-Harpertown,
Intel-Xeon, and AMD-Opteron, respectively. We represent each workload, WLn, that
consists of n applications, as {ts1(BM1,k1) ts2(BM2,k2) ... tsn(BMn,kn)}, which means at
time-stamp tsi, BMi arrives and executes for ki iterations. Depending on the size of
the workload, the time stamps are randomly chosen between 0 and 400 seconds, and
the benchmarks are randomly picked from PARSEC and NPB benchmark suites. The

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
the targeted resources

tanima_dey
Sticky Note
Remove WLn, Just say:
We represent each workload that consists on n applications, as ..

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:15

Table IV. Sensitivity Scores of the PARSEC Benchmarks

Intel- Intel-
Intel- Harper- Harper- Intel- AMD- AMD-

Platform Yorkfield town town Xeon Opteron Opteron
L3 cache Memory

Benchmarks L2 cache L2 cache FSB +MC L3 cache socket
blackscholes (BS) 0.0354 −0.0922 −0.1277 −7.5441 −1.1348 0.1289
bodytrack (BT) 2.2210 3.412 0.2922 −4.6291 0.5649 0.0558
canneal (CN) 4.4049 4.6012 −3.3664 8.1034 6.7756 8.5197
dedup (DD) 2.4294 1.7702 −0.2925 −5.4493 2.2727 1.1811
facesim (FA) −0.5406 −6.6455 −1.1869 −6.0272 3.8579 24.148
ferret (FE) 0.2665 −0.4081 −0.6787 −3.0600 4.0712 1.1431

fluidanimate (FL) 0.4920 1.9047 −1.7727 −7.8056 −1.0396 0.3836
freqmine (FQ) 2.065 −0.4574 −0.3188 −8.6898 −0.2647 0.0623
raytrace (RT) 0.0196 0.7365 −0.0036 −0.4280 1.1278 −0.0463

streamcluster (SC) 9.9298 9.1566 −11.3983 14.4905 10.9319 36.148
swaptions (SW) 0.2762 0.2570 0.0061 −6.3446 0.6461 0.2931

vips (VP) 0.2803 1.1600 0.4082 −11.2819 0.0897 0.1766

Table V. Sensitivity Scores of the NPB Benchmarks

Intel- AMD- AMD-
Platform Xeon Opteron Opteron

L3 cache Memory
Benchmarks +MC L3 cache socket

IS.D −12.4783 −52.0424 −10.4446
DC.B −7.1677 −11.0202 1.9157
SP.D −21.5190 −10.1729 21.6309
LU.D −25.8932 −22.3693 1.1384
FT.D −31.2067 −233.2549 −38.6669
CG.D 1.5424 −107.5569 17.9871
MG.D −11.9599 −66.5676 −43.0097
EP.D −11.4738 0.0476 0.2832
UA.D −23.3012 −19.5132 0.9321

number of iterations is randomly chosen between 1 and 10. These parameters for the
different-sized workloads are described in the corresponding experiments.

3.2. Evaluation: Small Dynamic Workloads

To evaluate if ReSense determines effective thread-to-core mappings of the multi-
threaded applications by using the sensitivity scores and improves the workload’s
overall performance, we first used Small dynamic workloads. We randomly selected
three PARSEC benchmarks. The first two benchmarks started execution simultane-
ously. After the second benchmark finished, the third benchmark executed for a random
i3 iterations. We chose to run the third benchmark to evaluate ReSense’s effectiveness
at dynamically adjusting the mapping based on the new benchmark’s sensitivity scores.
Each workload had simultaneously executing two or one benchmark at some point in
time.

In Figure 7(a), we observe that the average response time and throughput of most
workloads improve by up to 4.75% and 5.32% on Intel-Yorkfield. The improvement
indicates that ReSense adjusts the benchmarks’ thread mappings dynamically in the
presence of a corunner and the corresponding sensitivity scores. The workloads, WL2,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:16 T. Dey et al.

Fig. 6. Topology of experimental platforms.

Fig. 7. Performance results of Small dynamic workloads, normalized to the native OS (ReSense performs
better than the OS).

WL3, WL5, and WL7, consist of at least two benchmarks that are not L2 cache sensitive,
and thus the performance difference between the OS and ReSense is small.

In Figure 7(b), we observe that the average response time and throughput improve
by up to 8.89% and 14.88% for most workloads on Intel-Harpertown, especially those
containing SC, FA, FL, and CN. These benchmarks have the highest sensitivity scores
for FSB and are more memory intensive than the other benchmarks. SC, FL, and CN
also have data sharing in the L2 cache. Because ReSensor considers the benchmarks’
sensitivity scores for both L2 cache and FSB, ReSense maps the threads to use both
FSB’s bandwidth and the same cache, resulting in performance improvement. As the
benchmarks in other workloads do not have high sensitivity scores for FSB, their
performance differences between OS and ReSense are small.

ReSense improved both average response time and throughput by up to 16.52% and
13.70% on Intel-Xeon and by up to 27.03% and 19.97% on AMD-Opteron, respectively,
which indicates that ReSense effectively adjusts the thread mappings depending on
the benchmarks’ sensitivity scores and the underlying platform’s topology. The perfor-
mance improvements on the more powerful machines (Intel-Xeon and AMD-Opteron)

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:17

Fig. 8. Performance results for Medium dynamic workloads, normalized to the native OS (ReSense performs
better than the OS).

are much higher than that of the less powerful machines (Intel-Yorkfield and Intel-
Harpertown). This discrepancy between the performance gains of the more and less
powerful machine is caused by the benchmarks, which are more sensitive to the shared
resources on the more powerful machines.

To summarize, by utilizing an application’s sensitivity score, ReSense effectively
maps threads from dynamic pairs of multithreaded applications and improves response
time and throughput.

3.3. Evaluation: Medium Dynamic Workloads

To demonstrate that ReSense effectively maps threads from workloads consisting of
multithreaded applications, we ran experiments with Medium workloads. The work-
loads consisted of four randomly selected benchmarks from both PARSEC and NPB to
have a diverse set of applications. Two benchmarks started simultaneous execution at
the beginning, and the third and fourth benchmark arrived after random intervals. A
benchmark in the workload continued to execute and re-execute for a number of times.
Thus, even when the third and fourth benchmarks arrived and executed, the first and
second benchmarks were still executing. If any benchmark finished, it restarted im-
mediately without any intermediate delay. Therefore, on average more than 50% of
the time there were four simultaneously executing multithreaded applications in the
system for Medium workloads.

In Figure 8, we observe that ReSense improves the average response time and
throughput by up to 12.38% and 30% on Intel-Xeon and 20.89% and 46.56% on AMD-
Opteron, respectively, over the native OS. From the improvements in both metrics for
every workload, we conclude that ReSense effectively maps multithreaded applications

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:18 T. Dey et al.

Fig. 9. Performance results for Large dynamic workloads, normalized to the native OS (ReSense performs
better than the OS).

from very diverse dynamic workloads and dynamically adjusts the thread mappings
as the benchmarks arrive and execute nondeterministically.

On Intel-Xeon, all the benchmarks in WL1, WL3, WL4, and WL8 have negative
sensitivity scores for (L3 cache+MC). Therefore, ReSense maps the sibling threads on
separate L3 caches to reduce the cache contention among threads. Under OS mapping,
the sibling threads are randomly mapped on the cores using separate L3 caches and
the mapping determined by ReSense and OS is similar. Therefore, the performance
difference between ReSense and the OS is small.

To summarize, ReSense improves the workload’s average response time and through-
put by dynamically adjusting the thread mappings of the multithreaded applications
in the presence of multiple dynamic corunners using sensitivity scores.

3.4. Evaluation: Large Dynamic Workloads

To evaluate ReSense’s scalability and the capability of handling more multithreaded
applications and threads in a more dynamic environment, we ran experiments with
Large dynamic workloads. The workloads were composed of randomly selected eight
benchmarks from both PARSEC and NPB to create diversity. Each workload had one
to eight benchmarks simultaneously executing at some point in time.

In Figure 9, we observe that ReSense improves the average response time and
throughput of the workloads up to 8.29% and 13.65%, respectively, on Intel-Xeon and
29.34% and 29.86%, respectively, on AMD-Opteron, over the native OS. On Intel-Xeon,
all workloads show improvements for both metrics. The mapping decision of ReSense
is similar to the OS mapping for WL1, WL5, and WL7. Therefore, the performance
differences between the OS and ReSense are small. On AMD-Opteron, most work-
loads have high performance improvements for both metrics. The benchmarks in WL1,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Pencil
eight randomly selected benchmarks

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:19

Table VI. Confidence Interval of Performance Improvements for Three Workloads

Dynamic Intel- Intel- Intel- AMD-
workloads Metrics Yorkfield Harpertown Xeon Opteron

Small

Average 2.25 ± 1.58 3.73 ± 2.68 14.15 ± 13.4 7.45 ± 6.18
response time p-val = 0.0005 p-val = 0.005 p-val = 0.005 p-val = 0.0005
Throughput 2.70 ± 1.64 3.27 ± 3.95 4.89 ± 4.03 11.70 ± 6.39

p-val = 0.0005 p-val = 0.025 p-val = 0.005 p-val = 0.0005

Medium

Average – – 4.94 ± 4.18 11.70 ± 7.45
response time p-val = 0.005 p-val = 0.0005
Throughput – – 9.005 ± 9.74 16.17 ± 14.80

p-val = 0.01 p-val = 0.005

Large

Average – – 3.67 ± 3.37 17.60 ± 14.19
response time p-val = 0.005 p-val = 0.005
Throughput – – 4.95 ± 4.45 10.58 ± 10.8

p-val = 0.0005 p-val = 0.01

particularly RT, SW, and BS, are not very sensitive to the shared resources. ReSense
maps IS’s threads on separate processors and L3 caches, and OS mapping also maps the
threads randomly on any processor. Because both OS and ReSense map the threads
similarly on the cores, the performance difference between the OS and ReSense for
WL1 is small. The throughput degrades by 2% for WL8. ReSense colocates one of the
benchmarks in the workload, FE, with the long-running NAS benchmarks, causing
FE’s performance degradation. As FE has a very low execution time, it has high impact
on the throughput equation. Therefore, even if the average response time improved for
this workload, the throughput did not improve over the native OS.

In summary, ReSense manages and determines effective thread mapping for dy-
namic workloads, consisting of eight randomly selected benchmarks, and improves
both average response time and throughput.

3.5. Discussion and Statistical Analysis

Because we used workloads having randomly selected benchmarks in our experiments,
we performed a significance test for the reported average response time and through-
put. We assumed the null hypothesis that ReSense does not improve the average
response time and throughput of the workloads over the native OS. As we performed
each experiment in two configurations, using the native OS and ReSense runtime, each
experiment has two distributions, OS and ReSense. We performed a t-test to compare
these distributions to determine if OS is better than ReSense in terms of average re-
sponse time and throughput [Milton and Arnold 2003]. For each dynamic workload on
the experimental platforms, we observed that the null hypothesis is rejected with a
p-value of at most 0.005 for average response time and 0.025 for throughput. It indi-
cates that the probability of ReSense improving a workload’s average response time
and throughput over the OS is very high, at least 99.5% and 97.5%, respectively.

We determined the confidence intervals of the mean improvement of the average
response time and throughput provided by ReSense over the native OS, shown in
Table VI. If the confidence interval for any metric is x ± y with p − val = z, it means
that at (1 − z) ∗ 100% confidence interval the mean improvement will range from x − y
to x + y. From the table, we observe that the lower interval for the average response
time is always greater than 0, which indicates that ReSense always improves the
average response time of the three dynamic workload sets on the four platforms. For
throughput, the lower interval is always greater than 0 except the negligible –0.68%
for Small on Intel-Harpertown, –0.69% for Medium on Intel-Xeon, and –0.22% for
Large on AMD-Opteron. These negligible negative values are caused by the very small

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:20 T. Dey et al.

Table VII. Average Performance Improvements (Positive Values) or Degradation (Negative Values)
over the Native OS, for Thread Mappings Using Fixed Positive, Fixed Negative, and

Characterization-based Sensitivity Scores

Thread 2-application workload 4-application workload
mappings Average response time Throughput Average response time Throughput

C+ −1.70% 5.57% 14.1% 8.28%
C− 0.51% −3.77% −2.5% −6.51%

ReSense 5.07% 7.90% 16.77% 11.82%

performance degradation of the benchmark having very small execution time. From
the higher interval, we observe that the maximum average response time improvement
is 31.79% for Large and the maximum throughput improvement is 30.97% for Medium
on AMD-Opteron.

To summarize, the statistical analysis validates ReSense’s effectiveness in mapping
and improving the performance of multithreaded applications over the native OS.

The improvements over the native OS by ReSense are mainly due to the character-
ization and use of these characterizations by ReSense. If ReSense does not consider
any sensitivity scores (sensitivity scores are 0) to determine the thread mappings, the
performance of the workload will be the same as the native OS. To further isolate
the benefits of the sensitivity scores, we explored the performance of workloads when
the sensitivity scores were set to the same magnitude with a positive or negative sign
and ran our algorithm for these two cases. Table VII summarizes these experimental
results for the two-application and four-application workloads used in Section 3.6 on
Intel-Harpertown and AMD-Opteron, respectively, relative to the native OS. The rows
C+ and C− show the performance results of the thread mappings determined using the
fixed positive and negative sensitivity scores (same magnitude with positive or nega-
tive sign), respectively, for all applications in the workloads. The row ReSense shows
the performance results of the thread mappings determined using an application’s
sensitivity scores from the characterization. From the table we observe that C+ thread
mapping degraded application performance for the two-application workloads, and C−
thread mapping degraded application performance for both the two-application and
four-application workloads. Therefore, thread mappings determined using fixed posi-
tive or negative sensitivity scores do not ensure application performance improvements.

In contrast, with the computed sensitivity scores from the characterization, for the
two-application workloads ReSense improved both the workloads’ average response
time by 5.07% and throughput by 7.9% on average, and for the four-application work-
loads ReSense improved both the workloads’ average response time by 16.77% and
throughput by 11.82%, on average, relative to the native OS. Therefore, these results
show that the computed sensitivity scores were essential for the improved performance.

3.6. Performance Comparison with Experimentally Determined Optimal Thread Mapping

To evaluate ReSense’s effectiveness in contention mitigation, we compared application
performance obtained from ReSense and the experimentally determined optimal
thread mapping. We experimentally determined the optimal performance of a work-
load by choosing the minimum average response time and maximum throughput of the
optimal thread mapping among all possible thread-to-core mapping configurations.
Throughout this section, when we use “optimal,” we mean the experimentally deter-
mined optimal. Dynamic workloads have O(rn1 ∗ rn2∗, . . . ∗ rnn) numbers of different
thread-mapping configurations, where r is the number of a particular shared resource
on a platform, and n1, n2, . . . , nn are the numbers of executing applications at time t1, t2,
. . . , tn, respectively. As dynamic workloads have such a large number of configurations,
it is unfeasible to experimentally determine the optimal performance. Therefore, we

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

tanima_dey
Sticky Note
infeasible

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:21

Fig. 10. Performance comparison between ReSense and experimentally determined optimal thread mapping
for pair-wise workloads, normalized to the native OS.

chose to use workloads that have all the benchmarks start at the same time and
execute for the same number of iterations so that it was feasible to determine the
optimal performance.

For performance comparison on Intel-Yorkfield and Intel-Harpertown, we ran exper-
iments with randomly selected 10 pair-wise workloads from the PARSEC benchmark
suites. We did not include the NAS benchmarks in the random selections because those
benchmarks have execution times that are too long to finish the experiments for all
possible thread-mapping configurations. Figure 10 shows the experimental results rel-
ative to the native OS, where the x-axis labels the initials of the benchmarks used as the
workload. For each workload, the first two bars show average response times (ARTs)
of ReSense and experimentally determined optimal mapping, and the last two bars
show throughput (TP) of ReSense and experimentally determined optimal mapping.
In both Figures 10(a) and 10(b), we observe that ReSense’s performance improvements
are very close to that of the optimal. The average ART difference between ReSense
and the experimentally determined optimal is 0.27% and 0.18% on Intel-Yorkfield and
Intel-Harpertown, respectively. The average TP difference between ReSense and the
experimentally determined optimal is 0.49% and 0.10% on Intel-Yorkfield and Intel-
Harpertown, respectively. Both the ART and TP differences between ReSense and op-
timal are negligible on both machines, and we conclude that ReSense always ensures
near-optimal performance on these machines.

For performance comparison on Intel-Xeon and AMD-Opteron, we ran experi-
ments with randomly selected 10 four-application workloads from the PARSEC bench-
mark suites. Figure 11 shows the experimental results relative to the native OS. In
both Figures 11(a) and 11(b), we observe that ReSense’s performance improvements
are very close to that of the experimentally determined optimal. The average ART

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Pencil
10 randomly selected

<iAnnotate iPad User>
Pencil
10 randomly selected

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:22 T. Dey et al.

Fig. 11. Performance comparison between ReSense and experimentally determined optimal thread map-
ping for four-application workloads, normalized to the native OS.

difference between ReSense and the experimentally determined optimal is 1.49% and
0.05% on Intel-Xeon and AMD-Opteron, respectively. The average TP difference be-
tween ReSense and the experimentally determined optimal is 2.08% and 0.49% on
Intel-Xeon and AMD-Opteron, respectively. Both the ART and TP differences between
ReSense and the experimentally determined optimal are very small on both machines.
Therefore, we can conclude that ReSense performs very competitively with the optimal
mapping.

4. RELATED WORK

There have been a few works on scheduling multiple multithreaded applications.
[Bhadauria and McKee 2010] scheduled threads from multiple multithreaded appli-
cations at a time quantum to optimize thread throughput and energy. At a particular
time quantum, their algorithm selected a number of threads from each application
in the workload and the applications to run together by considering an application’s
cache miss rates (FAIRMIS policy) or bus occupancy (FAIRCOM policy). They did not
consider an application’s characteristics for both cache and bus in the same policy.
On the other hand, ReSense mitigates contention for all the shared resources in the
memory hierarchy, considering applications cache and bus characteristics at the same
time. [Pusukuri et al. 2013] allocated cores to multithreaded applications by using an
application’s cache and lock contention characteristics that were determined in the
presence of a corunner. In the presence of r corunners, the number of characterizations
grows polynomially, O(nr), for n applications. Their system determined the number

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:23

of cores to be allocated to each application by using a supervised learning technique,
which requires more offline analyses compared to ReSense. On the other hand, ReSense
does not have any training phase and characterizes application without considering
any corunner. This solo characterization has linear complexity of O(n), which is much
lower than O(nr).

Pusukuri et al. [2011] described scheduling policy for minimizing lock contention
for multithreaded applications. Emani et al. [2013] determined the thread count to
improve an application’s performance in the presence of external workloads. Das
et al. [2013] described application-to-core mapping for NoC systems. Garcia et al. [2012]
investigated dynamic scheduling for “embarrassingly” parallel applications for CMPs.
Broquedis et al. [2010] described a scheduling framework for OMP applications. These
works primarily pursued the goals to minimize lock contention, optimize a single appli-
cation’s performance, minimize communication overhead, or focus on core allocation,
NoC, and data-parallel application. These goals are different than the goal pursued
by ReSense, which targets optimizing the average response time and throughput of
every multithreaded application from a dynamic workload by determining the thread
mappings. Chen et al. [2007] proposed scheduling threads that share data to use the
same cache to improve performance for multithreaded applications. We consider both
contention and data sharing in caches to map multithreaded applications.

Jin et al. [2009] characterized parallel applications, and Dey et al. [2011] character-
ized multithreaded PARSEC applications, when they run alone and with corunners, for
shared-resource contention in the memory hierarchy. Kambadur et al. [2012] described
methodology to measure interference between data-center applications while they are
executing. However, these works have not focused on mitigating contention.

Some research efforts proposed the idea of mapping application threads or manag-
ing shared resources based on prior characterization. Mars et al. [2011a, 2011b] and
Tang et al. [2011] scheduled and determined the mapping of colocated applications by
characterizing the application in the presence of corunners or synthetic workloads. Xie
and Loh [2008] classified applications by measuring cache miss rates for a dynamic
cache partitioning scheme. Jaleel et al. [2012] mapped applications by using a run-
time classification based on cache replacement policy. In this work, ReSense utilizes
an application’s prior performance characterization for individual shared resources
by running it solely, without using any corunning applications or special hardware
policies, and is capable of determining the thread mapping for dynamic workloads
consisting of multiple multithreaded applications.

There have been several efforts at designing different models to map applica-
tion threads, including analytical probabilistic models for shared L2 cache [Chandra
et al. 2005] and a prediction model for shared resources in simultaneous multithreaded
processors [Moseley et al. 2005]. ReSense uses an application’s solo performance char-
acterization for each shared resource in the memory hierarchy to predict the effective
thread-to-core mapping in the presence of corunners. Several works addressed shared
resource management in CMPs via hardware cache partitioning to mitigate contention
[Qureshi and Patt 2006; Xie and Loh 2009] and software methods to partition the
cache and allocate memory pages [Cho and Jin 2006; Jin and Cho 2009; Tam et al.
2009; Zhang et al. 2009; Soares et al. 2008]. Our approach is compatible and can be
combined with both hardware and software cache partitioning techniques to further
reduce cache contention and improve performance.

5. CONCLUSION

In this article, we describe the ReSense runtime system, which demonstrates that sensi-
tivity scores for the shared resources in the memory hierarchy are useful in determining
the effective thread mappings for multithreaded applications. ReSense does not require

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Pencil
delete by "... each application using a supervised learning technique,"

<iAnnotate iPad User>
Highlight
applications

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

41:24 T. Dey et al.

the application’s source code modifications. ReSense uses a novel thread-mapping al-
gorithm, ReSensor, to dynamically adjust the thread mappings of three different-sized
dynamic workloads and improves the average response time and throughput up to
29.34% and 46.56%, respectively, over the native OS using real hardware.

REFERENCES

BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., FATOOHI, R. A., FREDERICKSON, P. O.,
LASINSKI, T. A., SIMON, H. D., VENKATAKRISHNAN, V., AND WEERATUNGA, S. K. 1991. The NAS parallel bench-
marks. Tech. rep., The International Journal of Supercomputer Applications.

BHADAURIA, M. AND MCKEE, S. A. 2010. An approach to resource-aware co-scheduling for cmps. In Proceedings
of the International Conference on Supercomputing.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques.

BROQUEDIS, F., CLET-ORTEGA, J., MOREAUD, S., FURMENTO, N., GOGLIN, B., MERCIER, G., THIBAULT, S., AND NAMYST, R.
2010. hwloc: A generic framework for managing hardware affinities in HPC applications. In Proceedings
of the Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP’10).

CHANDRA, D., GUO, F., KIM, S., AND SOLIHIN, Y. 2005. Predicting inter-thread cache contention on a chip multi-
processor architecture. In Proceedings of the International Symposium on High-Performance Computer
Architecture.

CHEN, S., GIBBONS, P. B., KOZUCH, M., LIASKOVITIS, V., AILAMAKI, A., BLELLOCH, G. E., FALSAFI, B., FIX, L.,
HARDAVELLAS, N., MOWRY, T. C., AND WILKERSON, C. 2007. Scheduling threads for constructive cache sharing
on CMPs. In Proceedings of the Symposium on Parallel Algorithms and Architectures.

CHO, S. AND JIN, L. 2006. Managing distributed, shared L2 caches through OS-level page allocation. In
Proceedings of the International Symposium on Microarchitecture.

DAS, R., AUSAVARUNGNIRUN, R., MUTLU, O., KUMAR, A., AND AZIMI, M. 2013. Application-to-core mapping poli-
cies to reduce memory system interference in multi-core systems. In Proceedings of the International
Symposium on High-Performance Computer Architecture.

DEY, T., WANG, W., DAVIDSON, J. W., AND SOFFA, M. L. 2011. Characterizing multi-threaded applications based
on shared-resource contention. In Proceedings of the International Symposium on Performance Analysis
of Systems and Software.

EMANI, M. K., WANG, Z., AND O’BOYLE, M. F. 2013. Smart, adaptive mapping of parallelism in the pres-
ence of external workload. In Proceedings of the International Symposium on Code Generation and
Optimization.

FEDOROVA, A., SELTZER, M., AND SMITH, M. D. 2007. Improving performance isolation on chip multiprocessors via
an operating system scheduler. In Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques.

GARCIA, E., OROZCO, D., PAVEL, R., AND GAO, G. R. 2012. A discussion in favor of dynamic scheduling for regular
applications in many-core architectures. In Proceedings of the Workshop on Multithreaded Architectures
and Applications.

JALEEL, A., NAJAF-ABADI, H. H., SUBRAMANIAM, S., STEELY, JR., S. C., AND EMER, J. 2012. CRUS: cache replacement
and utility-aware scheduling. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems.

JIANG, Y., SHEN, X., CHEN, J., AND TRIPATHI, R. 2008. Analysis and approximation of optimal co-scheduling
on chip multiprocessors. In Proceedings of the International Conference on Parallel Architecture and
Compilation Techniques.

JIN, H., HOOD, R., CHANG, J., DJOMEHRI, J., JESPERSEN, D., AND TAYLOR, K. 2009. Characterizing application per-
formance sensitivity to resource contention in multicore architectures. Tech. rep., NASA Ames Research
Center.

JIN, L. AND CHO, S. 2009. SOS: A software-oriented distributed shared cache management approach for chip
multiprocessors. In Proceedings of the International Conference on Parallel Architecture and Compilation
Techniques.

KAMBADUR, M., MOSELEY, T., HANK, R., AND KIM, M. A. 2012. Measuring interference between live datacenter ap-
plications. In Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis.

KNAUERHASE, R., BRETT, P., HOHLT, B., LI, T., AND HAHN, S. 2008. Using OS observations to improve performance
in multicore systems. IEEE Micro 28, 3.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

<iAnnotate iPad User>
Highlight
should be "CMPs"

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

ReSense 41:25

MARS, J., TANG, L., HUNDT, R., SKADRON, K., AND SOFFA, M. L. 2011a. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In Proceedings of the International Symposium on
Microarchitecture.

MARS, J., TANG, L., AND SOFFA, M. L. 2011b. Directly characterizing cross core interference through contention
synthesis. In Proceedings of the International Conference on High Performance Embedded Architectures
and Compilers.

MARS, J., VACHHARAJANI, N., HUNDT, R., AND SOFFA, M. L. 2010. Contention aware execution: online con-
tention detection and response. In Proceedings of the International Symposium on Code Generation and
Optimization.

MILTON, J. S. AND ARNOLD, J. C. 2003. Introduction to Probability and Statistics 4th Ed. Tata McGraw Hill
Publishing Company, New Delhi, India.

MOSELEY, T., GRUNWALD, D., KIHM, J. L., AND CONNORS, D. A. 2005. Methods for modeling resource contention
on simultaneous multithreading processors. In Proceedings of the International Conference on Computer
Design.

PUSUKURI, K. K., GUPTA, R., AND BHUYAN, L. N. 2011. No more backstabbing . . . a faithful scheduling policy for
multithreaded programs. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques.

PUSUKURI, K. K., GUPTA, R., AND BHUYAN, L. N. 2013. ADAPT: A framework for coscheduling multithreaded
programs. ACM Transactions on Architecture and Code Optimization. 9, 4, Article 45.

QURESHI, M. K. AND PATT, Y. N. 2006. Utility-based cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In Proceedings of the International Symposium on
Microarchitecture.

RADOJKOVIĆ, P., ČAKAREVIĆ, V., MORETÓ, M., VERDÚ, J., PAJUELO, A., CAZORLA, F. J., NEMIROVSKY, M., AND VALERO,
M. 2012. Optimal task assignment in multithreaded processors: a statistical approach. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Operating
Systems.

SIDDHA, V. P. S. AND MALLICK, A. 2005. Chip multi processing (CMP) aware Linux kernel scheduler. In Pro-
ceedings of the Ottawa Linux Symposium.

SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic jobscheduling for a simultaneous multithreading processor.
In Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems.

SOARES, L., TAM, D., AND STUMM, M. 2008. Reducing the harmful effects of last-level cache polluters with an OS-
level, software-only pollute buffer. In Proceedings of the International Symposium on Microarchitecture
(MICRO’08).

TAM, D. K., AZIMI, R., SOARES, L. B., AND STUMM, M. 2009. RapidMRC: Approximating L2 miss rate curves on
commodity systems for online optimizations. In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems.

TANG, L., MARS, J., VACHHARAJANI, N., HUNDT, R., AND SOFFA, M. L. 2011. The impact of memory subsystem
resource sharing on datacenter applications. In Proceedings of the International Symposium on Computer
Architecture.

WANG, W., DEY, T., MOORE, R., AKTASOGLU, M., CHILDERS, B. R., DAVIDSON, J., IRWIN, M. J., KANDEMIR, M., AND SOFFA,
M. L. 2012. REEact: A customizable virtual execution manager for multicore platforms. In Proceedings
of the International Conference on Virtual Execution Environments.

XIE, Y. AND LOH, G. 2008. Dynamic classification of program memory behaviors in CMPs. In Proceedings of
the CMP-MSI, Held in Conjunction with ISCA-35.

XIE, Y. AND LOH, G. H. 2009. Pipp: promotion/insertion pseudo-partitioning of multi-core shared caches. In
Proceedings of the International Symposium on Computer Architecture (ISCA’09).

ZHANG, X., DWARKADAS, S., AND SHEN, K. 2009. Towards practical page coloring-based multicore cache manage-
ment. In Proceedings of the European Conference on Computer Systems.

ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A. 2010. Addressing shared resource contention in multicore
processors via scheduling. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems

Received xxx; revised xxx; accepted xxx Q1

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 41, Publication date: December 2013.

tanima_dey
Sticky Note
Q1: Received August 4, 2013; revised September 15, 2013; accepted November 4, 2013

TACO1004-41 ACM-TRANSACTION December 12, 2013 15:35

QUERY

Q1: AU: Please provide history date.

