
Empirical Evaluation of Workload Forecasting
Techniques for Predictive Cloud Resource Scaling

In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey
Department of Computer Science

University of Virginia
{ik2sb, wwang}@virginia.edu, {yq2h, humphrey}@cs.virginia.edu

Abstract—Many predictive resource scaling approaches have
been proposed to overcome the limitations of the conventional
reactive approaches most often used in clouds today. In general,
due to the complexity of clouds, these reactive approaches were
often forced to make significant limiting assumptions in either
the operating conditions/requirements or expected workload
patterns. As such, it is extremely difficult for cloud users to
know which – if any – existing workload predictor will work best
for their particular cloud activity, especially when considering
highly-variable workload patterns, non-trivial billing models,
variety of resources to add/subtract, etc. To solve this problem,
we conduct comprehensive evaluations for a variety of workload
predictors under real-world cloud configurations. The workload
predictors cover four classes of 21 predictors: naive, regression,
temporal, and non-temporal methods. We simulate a cloud
application under four realistic workload patterns, two different
cloud billing models, and three different styles of predictive
scaling. Our evaluation confirms that no workload predictor
is universally best for all workload patterns, and shows that
Predictive Scaling-out + Predictive Scaling-in has the best cost
efficiency and the lowest job deadline miss rate in cloud resource
management, on average providing 30% better cost efficiency
and 80% less job deadline miss rate compared to other styles of
predictive scaling.

Index Terms—Predictive Cloud Resource Scaling; Cloud
Workload Prediction; Job Arrival Time Prediction; Performance
Evaluation;

I. INTRODUCTION

When and how to scale-out and scale-in a cloud application
can be one of the most difficult challenges for a cloud appli-
cation designer/deployer. Fundamentally, basing this decision
on the current state of resources (e.g., VMs) for a given cloud
application is usually simple and can be effective but is limited
due to its reactive nature. For example, a standard use of
Amazon Web Services’ auto-scaling mechanism is to configure
it to add more “worker VMs” when the average current CPU
utilization stays above a certain threshold for a short period
time. However, fluctuating or generally unpredictable work-
load patterns can quickly eliminate any potential performance
or monetary improvements of such a policy/mechanism. In
other words, intuitively any changes to the cloud application
system state/configuration assume that the near-past workload
will continue for the near-future.

Next-generation scaling approaches attempt to move beyond
the limitations of such reactive systems by instead attempt-
ing to predict the near-future workloads. In such systems,
generally, there are two components. The workload predictor

functionality, and the resource scaling functionality, which
allocates/deallocates cloud resources and maps work requests
to specific resources. Over the past years, many studies have
proposed predictive scaling approaches [1–19]. In general, due
to the complexity of cloud environments, these approaches
were often forced to make significant limiting assumptions
in either the operating conditions/requirements or expected
workload patterns. As such, it is extremely difficult for cloud
users to know which – if any – existing workload predictor
will work best for their particular cloud activity, especially
when considering highly-variable workload patterns, non-
trivial billing models, variety of resources to add/subtract, etc.

The goal of this work is to comprehensively evaluate
existing cloud workload predictors, holistically, and often in a
broader context than in the authors’ evaluation methodology.
Because the most common metric to evaluate workload pre-
dictors is accuracy for the future job arrivals, the first question
we seek to answer is:

Question #1: Which existing workload predictor has the
highest accuracy for job arrival time prediction, when applied
for different workload patterns?

After considering the workload predictor in isolation, we
evaluate it in combination with the resource scaling compo-
nent. Therefore, the second question we seek to answer is:

Question #2: Which existing workload predictor has the
best cost efficiency and deadline miss rate (which represents
performance and SLA requirements), when applied for differ-
ent workload patterns, different scaling styles and different
pricing models?

Furthermore, some previous work employed predictive
scaling-out, some employed predictive scaling-in, and some
employed both. Given these choices of applying predictive
scaling, the third question we seek to answer is:

Question #3: Which style of predictive scaling (predictive
scaling-out, predictive scaling-in, or both) achieves the best
cost and performance benefit for particular cloud configura-
tions (e.g. billing model, job deadline)? And how much benefit
can be achieved?

To answer these questions, we conducted comprehensive
evaluations with a wide range of configurations of predictive
cloud resource scaling using 15 existing workload predictors
[5–19]. We also included 6 well-known machine learning
predictors that have not been used for the predictive scaling
before. In total, we examined 21 predictors, covering naive,

1

regression, temporal (time series) and non-temporal methods.
We used 24 randomly generated workloads covering four
common types of job arrival patterns [20, 21], which are
growing, on/off, bursty and random. We also examined scaling
operations including RR (Scaling-out: Reactive + Scaling-in:
Reactive), PR (Scaling-out: Predictive + Scaling-in: Reactive),
RP (Scaling-out: Reactive + Scaling-in: Predictive) and PP
(Scaling-out: Predictive + Scaling-in: Predictive). We also
considered both hourly and minutely pricing models. In our
experiments, each configuration then covered one workload
predictor, one workload, one scaling operation and one billing
model. As a result, more than 4K (21 ⇥ 24 ⇥ 4 ⇥ 2) config-
urations were examined. We run each configuration using the
PICS [22] simulators to evaluate each configuration’s cost and
deadline miss rate. We chose PICS because it can accurately
simulate real public IaaS clouds in short amount of time.
Without PICS, it is both timely and financially infeasible to
conduct such extensive experiments on real IaaS clouds

Based on the experimental results, we successfully answer
the three questions posed previously. Here we summarize our
findings and answers to each question:

To find the best workload predictor in terms of the
accuracy for diverse workload patterns (Question #1): the
accuracies of different workload predictors vary considerably.
The best workload predictors in terms of statistical accuracy
are usually orders of magnitudes more accurate than the worst
ones. However, no workload predictor is universally the best
for all workload patterns. Each workload pattern has its own
best workload predictor. We show the best workload predictors
for each workload pattern in Section IV-A.

To find the best workload predictor in terms of cloud
metrics such as cost efficiency and SLA satisfaction (Ques-
tion #2): the workload predictor with the highest accuracy is
not necessarily the best in terms of cost and deadline miss rate.
Additionally, no workload predictor is universally the best for
any workload pattern and billing model. However, we observe
that the best predictor (in terms of cost and deadline miss rate)
for a particular workload pattern is always one of the top
3 most accurate predictors (in terms of statistical accuracy)
of that workload pattern. We also show the best workload
predictors for each workload pattern in terms of cloud metrics
in Section IV-B.

To find the best style of predictive resource scaling
in terms of providing the best cost and performance
benefits (Question #3): both predictive scaling-out (PR) and
predictive scaling-in/out (PP) significantly reduces cost and
deadline miss rate over purely reactive scaling (RR). However,
predictive scaling-in (RP) performs similarly to RR. Overall,
PP always provides the lowest cost and deadline miss rate
for all workload patterns and billing models. On average,
PP provides 30% less cost and 80% less deadline miss rate
compared to RR or RP, and PP offers 14% less cost and 39%
less deadline miss rate compared to PR.

A key finding from the answering those questions is that
users, who want to design new algorithm for predictive re-
source scaling, should consider top 3 workload predictors

depending on workload patterns, and use PP for their scal-
ing operations in order to archive better cost efficiency and
deadline miss rate.

The contributions of this paper include:

• An extensive evaluation of 21 workload predictors for
their accuracy to predict the future job arrival time.

• A comprehensive evaluation of workload predictors in
terms of cost and deadline miss rates. This evaluation
considers various workload patterns, three styles of scal-
ing operations, and two different billing models.

• Complete answers for the questions regarding what is
the best workload predictor and what is the best style for
predictive resource scaling operations.

The rest of this paper is organized as follows: Section II
describes workload predictors used in this work. Section III
contains the experimental design of this work. Section IV pro-
vides evaluation results for all predictors. Section V contains
related work and Section VI concludes this paper.

II. WORKLOAD PREDICTORS

We collect a total of 21 workload predictors via an extensive
survey of previous research on predictive resource scaling.
Each predictor is categorized into one of the following classes:
1) naive, 2) regression, 3) temporal, and 4) non-temporal pre-
dictor. The detailed description for all 21 workload predictors
is described in Table I.

1. Naive workload predictors: two types workload predic-
tors are included in this class – mean and recent mean-based
(kNN – k Nearest Neighbor) methods.

2. Regression-based workload predictors: the predictors
in this class can be split into category of global and local
regressions. Each category can include linear (1-degree) or
polynomial (2 or more degrees) models. In total, we use
six regression-based predictors, which are global and local
regression with linear, quadratic, and cubic models [23].

3. Temporal (Time-Series)-based Workload Predictors:
there exist various temporal (time-series) methods for the
future workload prediction because these predictors [5–15,
18, 19, 24] are widely used to analyze workload patterns
for cloud computing as well as other domains of computer
systems research. We use four categories of temporal models:
ES (Exponential Smoothing), AR (Autoregressive), ARMA
(Autoregressive and Moving Average), and ARIMA (Autore-
gressive Integrated Moving Average) [1, 3, 8–15, 19].

4. Non-temporal Workload Predictors: the predictors in
this class have not been applied to the cloud resource scaling
before. These predictors, however, have provided accurate
prediction results within a deterministic amount of time. We
consider several non-temporal approaches to predict the next
job arrival time and select three categories of non-temporal
prediction approaches: SVMs (Support Vector Machines),
decision tree, and ensemble methods [23].

2

TABLE I: The Description of All 21 Workload Predictors.
Class Predictor Description

The mean-based predictor forecasts a next job arrival time based on a mean arrival time of all previous jobs. For the scaling-out
mean operation, the cloud application prepares cloud resources as if the next job will be arrived at the predicted result based on mean. For

Naive the scaling-in operation, the cloud application waits until the predicted next job’s arrival time when a VM running by the cloud
Predictors application is idle in order to increase a possibility of reuse of this VM.

recent-mean The recent mean-based predictor (kNN) is a similar approach with mean-based predictor, but this uses the arrival time of recent k
(kNN) jobs and predicts the next job’s arrival time based on a mean arrival time of those recent jobs.
Global The global regression models forecast the next job arrival time by creating a linear or polynomial regression model [23] using features

Regression including all previous job arrival time. Here we only consider job arrival time as the main variable. Therefore, these approaches are
Models a single variable regression models.

The local regression models [23] to estimate the next job arrival time. These approaches consist of two steps: 1) applying a kernel
Regression function to select job arrival samples and 2) creating linear or polynomial regression model based on the samples. In this work, we use

-based kNN (k Nearest Neighbor) as the kernel function for the local regression models to select proper samples. kNN calculates a distance
Predictors Local between a target object (e.g. next job arrival time) and all possible samples (e.g. past job arrival time) by using absolute or Euclidean

Regression distance function. kNN then selects proper local samples (e.g. k recent jobs). Based on the selected samples from the kNN, a linear or
Models polynomial regression model is created, and predicts the next job arrival time. The major difference between the global and local

regression is the size and similarity of job arrival samples used for creating a regression model. Local regression uses smaller number
of samples that are more similar to the prediction target. The local regression models often have less overhead for model creation and
workload prediction.

WMA WMA (Weighted Moving Average) [3] is a weighted sum of observed dataset (e.g. past job arrival information) and sum of weight for
each observed data is 1. WMA is calculated by

Pk
n=1 wnxt+1�n, s.t.

Pk
n=1 wn = 1

EMA (Exponential Moving Average) [19] a similar approach as WMA, but it gives more weight to the most recent observation of job
EMA arrivals. EMA predicts the future job arrival time by st = ↵xt + (1 � ↵)st�1. ↵ is a smoothing factor (0 < ↵ < 1). If ↵ is close

to 1, EMA has less smoothing effect and gives more weight to the recent data, and vice versa.
Holt-Winters DES (Double Exponential Smoothing) predicts the next job arrival time by capturing a smoothing value at time t

Holt-Winters (st = ↵xt + (1 � ↵)(st�1 + bt�1), where s1 = x1) and estimating the trend at time t (bt = �(st � st�1) + (1 � �)bt�1,

DES where b1 = x1 � x0). x0 is the first observation of raw data, ↵ is a smoothing factor (0 < ↵ < 1) and � is a trend smoothing
Temporal factor (0 < � < 1). Then, the next job arrival time is calculated by st + bt.

(Time-Series) Brown’s Brown’s DES predicts the next job arrival time by calculating (2 + ↵
1�↵)s

0
t � (1 + ↵

1�↵)s
00
t . s

0
t is the first order exponential

-based DES smoothing model and is expressed by s

0
t = ↵xt + (1 � ↵)s

00
t . xt is current job arrival and ↵ is a smoothing factor (0 < ↵ < 1).

Predictors s

00
t is double-smoothed statistics and is expressed by s

00
t = ↵s

0
t + (1 � ↵)s

00
t�1.

AR (Autoregressive) [1, 8] is a linear combination of previous data of the target object (e.g. job arrival time). AR(p) model is
AR expressed in Xt = c +

Pp
i=1 'iXt�1 + "t. p is the order of AR model, 'i is the set of parameters of the model, c is constant,

and "t is white noise.
ARMA (Autoregressive and Moving Average) [9–13]. is a combined model of AR and MA (Moving Average) and ARMA(p, q) is

ARMA expressed in Xt =
Pp

i=1 'iXt�1 +
Pq

i=1 ✓i"t�i + c + "t. The first term is AR(p) model with the order of p. The second term
is MA(q) model with the order of q.
ARIMA [14, 15] is a generalization of ARMA and provides a reliable prediction for non-stationary time-series data by integrating AR

ARIMA and MA models. ARIMA is expressed as ARIMA(p, d, q), where p is the order of AR, q is the order of MA, and d is the order of
differencing model.
SVM (Support Vector Machine) [23] is an optimal margin-based classifier that tries to find a small number of support vectors (data
points) that separate all data points of two classes with a hyperplane in a high-dimensional space. With kernel tricks, it can be extended
as a nonlinear classifier to fit more complex cases. SVM can be applied to the case of regression as well which contains all the main

SVM features that characterize the maximum margin based algorithm. At testing time, the (positive or negative) distance of a data point to
the hyper-plane is output as the prediction result for regression. We consider both linear and non-linear SVM. We use linear kernel for

Non-temporal Linear-SVM and Gaussian kernel for non-linear-SVM (Gaussian-SVM). Linear-SVM is to focus on the workloads that have relatively
Predictors clear trend factors and Gaussian-SVM is to predict the workloads with non-linear characteristics.

Decision tree [23] is a non-parametric learning algorithm and it has also been used for both classification and regression problems.
Decision Tree Decision tree creates a classification or regression model by applying decision rules derived from features of dataset. Decision tree is

known as its simple (tree-based) structure and fast execution time for numerical data.
Ensemble Ensemble prediction methods [23] employ multiple numbers of predictors to obtain better generalizability and increase performance.
Prediction Ensemble methods use bagging or boosting approaches to reduce variance (bagging) or bias (boosting) on prediction results. We select

Models three ensemble methods including gradient boosting, extra-trees, and random forest.

III. EXPERIMENT DESIGN

A. Design of Cloud Resource Management System

To evaluate all workload predictors, we designed a cloud
management system for resource scaling as shown in Figure 1.
This system consists of three modules: job portal, resource
management module (RMM) and predictive scaling module
(PSM). The job portal is an entry for the workloads (jobs
from end-users). A job’s arrival triggers two other modules. A
newly arrived job is passed to the RMM. The RMM selects
a proper VM based on the job’s duration and deadline. More
specifically, the RMM creates a list of VMs that meets the
deadline of the job by comparing the performance of different
VM types with the job’s duration and deadline. the RMM then
selects the most cost efficient VM (i.e., cost/performance-ratio

[25]) from the candidates. Note that the algorithm, used in this
cloud resource management, focuses primarily on improving
the job deadline satisfaction than reducing the cloud cost.
Once a proper VM is selected, the RMM schedules the job
to the selected VM via “Earliest Deadline First” scheduling.
The selected VM is then used to execute the job. A new job’s
arrival activates the PSM as well. The job’s arrival information
is stored in the workload repository. The workload information
from this repository is used by both predictive scaling-out and
scaling-in.

Predictive Scaling-out Operation (Algorithm 1) is trig-
gered when a job arrives. A prediction obtains proper amount
of job arrival samples for prediction (ln 1) and forecasts the
next job’s arrival time in the future (ln 2). Based on the
prediction result, this operation chooses a proper type of VM

3

Job Portal
Job (Duration, Deadline)

Workload Repository

Predictor for Scaling-Out Predictor for Scaling-In

Samples for
Prediction

Prediction
Result

Predictive Scaling Module

Job Arrival
Info

Predictive Scaler

Predictive
Scaling

Decision

Job

Job Queue

J J

J J J

J J J

Job Exe

Job Exe

Job Exe

Cloud Resource Management System

Resource Management Module
(e.g. job scheduling, VM scaling,

and Management)

+/- VMs, Job Assign.

Cloud Infrastructure
(e.g. AWS, Azure)

Workload

Fig. 1: Cloud Resource Management System with Predictive Scaling.

for the future job (ln 3) as explained in the previous paragraph
(In Algorithm 1, we assume that the duration and deadline
of the future job are known). This operation selects a list of
currently running VMs to execute the next job (ln 4). If the
list is empty (ln 6), then a new VM will be created for the
next job (ln 7).

Algorithm 1 Predictive Scaling-Out
Require: A new job arrives
1: samples get samples for prediction ()
2: next job predict next job arrival (samples)
3: vm type select proper vm type (next job)
4: vm list current running vms (vm type)
5:
6: if vm list is empty then
7: create vm (vm type, time to start)
8: else
9: do nothing ()

10: end if

Algorithm 2 Predictive Scaling-In
Require: vm is idle
1: samples = get samples for prediction (vm)
2: next job = predict next job arrival (samples)
3:
4: if next job arrival max startup delay then
5: scale in time next billing boundary after next job arrival
6: else
7: scale in time this billing boundary
8: end if
9:

10: repeat
11: if next job arrives then
12: go to new job processing routine()
13: end if
14: until scale in time

15:
16: terminate (vm)

Predictive Scaling-in Operation (Algorithm 2) is trig-
gered when a VM is idle – no jobs in both processor and
work queue. The workload predictor for scaling-in operation
estimates the next job arrival time to the idle VM (ln 1–2).
Then we compare the predicted job arrival time with maximum
VM startup delay [26]. If the job arrival time is smaller than
the max startup delay, we choose to keep this VM for at least
max startup delay time; otherwise, we choose to terminate this
VM (ln 4–8). The rationale behind this choice is explained
as follows. For any new job, starting a new VM for it takes
(startup time + job duration) to execute it. However, if we use
existing idle VM, it takes (job arrival time + job duration)

of

 J
ob

 R
eq

ue
st

s

Time

(a) Growing Pattern

of

 J
ob

 R
eq

ue
st

s

Time

(b) On/Off Pattern

of

 J
ob

 R
eq

ue
st

s

Time

(c) Bursty Pattern

of

 J
ob

 R
eq

ue
st

s

Time

(d) Random Pattern

Fig. 2: Cloud Workload Patterns. X-axis means time and Y-axis means
the number of requests (e.g. the number of jobs).

to execute it. Therefore, if job arrival time is smaller than
startup time, it is faster and cheaper to use the existing VM;
otherwise, it is cheaper to use new VM. Moreover, we choose
to terminate a VM only at nearest billing boundary, because we
have already paid for this billing cycle. If the next job arrives
within the predicted time, the job is assigned/processed by this
VM (ln 12). If there is no more jobs until the predicted time,
this VM is terminated (ln 16).

B. Cloud Workload Patterns
We generate synthetic workloads based on four cloud work-

load patterns (Figure 2). We create 6 workloads for each
workload pattern with different mean and standard deviation of
job arrival time/duration to reflect various and realistic cloud
usage scenarios. The detail of each dataset is described in
Table II. For the growing workload pattern, we first generate
a quadratic base function and then apply Poisson distribution
to randomize the arrival time of a particular job. The on/off
workload pattern has four active periods and three inactive
periods. For the active periods of the on/off workload pattern,
we use growing and declining quadratic functions. The bursty
workload pattern has 6 – 7 peak spikes periods and other
stable periods. To generate the random workload pattern, we
use Poisson distribution for the random job arrivals.

1This is job duration on smallest (worst performance) VM instance (small
EC2 instance [27] in our experiment design). By using the job duration and
deadline, the cloud resource management system (Section III-A) determines
a proper VM type that can meet deadline.

4

TABLE II: Workload Dataset Information.

Workload # of
Jobs

Mean Job
Arrival Time

Std. Dev. of Job
Arrival Time

Job1

Duration
Job

Deadline
Growing 60.5 Average: Average:
On/Off 10K 25s 375.5 450s, 500s,
Bursty 35.3 Std.Dev.: Std.Dev.:

Random 270 270 250

C. Implementation Details
We implemented the cloud resource management system on

top of PICS [22], a Public IaaS Cloud Simulator. In addition
to the simulation model, we implement all the predictors
(described in Section II) and scaling-in/out mechanisms us-
ing numpy ver. 1.8, Pandas (Python Data Analysis Library),
statsmodels, and scikit-learn machine learning packages.

Choosing the parameters and the training sample size are
very crucial to all workload predictors in order to provide
the best possible prediction performance. For the decision of
the training sample size for predictors, it is obvious that a
predictor should use as many sample as possible to maximize
the accuracy of the prediction. However, large size of training
samples increases the overhead of prediction. A constraint for
the prediction is that the predictors should be able to forecast
the next job arrival time before the actual job comes to our
cloud application. To this end, we tested a wide range of
sample size and determine the size based on a tradeoff between
the prediction overhead and the prediction accuracy. In this
work, all predictors (except global regression approach) uses
50 – 100 of most recent job arrival samples for forecasting
the future job arrival time prediction.

For the parameter selection of the workload predictors,
we use either a performance-based or a grid search ap-
proach. For AR, ARMA, and ARIMA model, we employ
the performance-based parameter selection, and we choose the
first order of these three models. (e.g. AR(1), ARMA(1, 1),
ARIMA(1, 1, 1)) Higher-order of these models is not desirable
because these three workload predictors require high compu-
tation time. It is often impossible for the higher order of these
models to predict the next job arrival time before the actual
job arrives. For other temporal-based workload predictors (e.g.
EMA and DES), we leverage a grid search approach for the
parameter selection that tries every possible parameter within
its range constraints (e.g. 0 < ↵ < 1 and 0 < � < 1
for Holt-Winters DES). Moreover, SVM predictors require
soft and kernel parameters (e.g. Gaussian-SVM needs both
parameters and Linear-SVM requires only the soft margin
parameter). We choose these parameters that result in best
prediction performance. The range we have considered is from
10e�6 to 10e3 for both parameters.

IV. EVALUATION

A. Evaluation of Accuracy for Workload Predictors
As the first evaluation of this work, we measure all 21

workload predictors’ accuracy for predicting the future job
arrival time under four different workload patterns. We employ
MAPE (Mean Absolute Percentage Error) [23] to statistically
measure the prediction accuracy.

MAPE =
1
n

nX

i=1

����
Tactual,i � Tpredicted,i

Tactual,i

���� (1)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

G
-SVM

L-SVM

W
M

A
AR

M
A

BR
D
ES

AR R
andForest

EM
A

H
W

D
ES

Ext.Trees

Loc.Lin.R
eg

kN
N

Lin.R
eg

AR
IM

A

Loc.C
ubicR

eg

C
ubicR

eg

G
radBoost

D
ec.Tree

Loc.Q
uad.R

eg

Q
uad.R

eg

M
ean

M
A

P
E

Fig. 3: MAPE Results of All 21 Predictors.

10-1

100

101

102

103

kN
N

W
M

A
EM

A
BR

D
ES

Loc.Q
uad.R

eg

H
W

D
ES

Loc.C
ubic.R

eg

Loc.Lin.R
eg

M
EAN

L-SVM

G
-SVM

Lin.R
eg

Q
uad.R

eg

D
ec.Tree

C
ubicR

eg

AR G
radBoost

Ext.Tree

R
andForest

AR
IM

A

AR
M

A

(L
o
g
 S

ca
le

d
)

O
ve

ra
ll

P
re

d
ic

tio
n
 O

ve
rh

e
a
d

(U
n
it:

 S
e
c.

)

Fig. 4: Prediction Overhead (Log-scaled Sum of Total Prediction Time)
for All the 21 Workload Predictors. (Sample Size: 50 recent jobs)

Figure 3 shows MAPE results of all 21 predictors. Average
of the MAPE for all 21 predictors is 0.6360. Overall, two
SVM approaches have the best MAPE results. Other three
best predictors are WMA, ARMA, and Brown’s DES. The
MAPE value of Gaussian-SVM predictor (the best predictor) is
0.3665, which is 42% less result than average of all predictors.
However, the best predictors in overall do not necessarily mean
the best predictor for each workload pattern, so we also present
the performance of all predictors for each workload pattern.

Table III shows the MAPE results for each workload pattern.
Due to page limitation, Table III only contains the best 3
predictors, average results, and the worst predictor. As shown
in Table II, different workload patterns have different best
predictors: Linear-SVM (growing), Gaussian-SVM (on/off),
ARIMA (bursty), and Gaussian-SVM (random). Table III
also shows that the MAPE results of the top three predic-
tors are very similar to each other for growing and bursty
workloads. These workloads have clear trend patterns, and
many good workload predictors can successfully detect these
patterns when using enough job arrival samples. The MAPE
results of random workload are lower compared to other
workloads, indicating random workload is the most difficult
to predict. This difficulty is primarily caused by the fact that
job arrival times in random workloads do not have clear trend
pattern for predictors to discover.

Moreover, obtaining the prediction results in a deterministic

TABLE III: The MAPE Results of Workload Predictors Under Four
Different Workload Patterns. (WL: Workload, GR: Growing, OO: On/Off,
BR: Bursty, RN: Random)

WL Rank Predictor MAPE WL Rank Predictor MAPE
1 L-SVM 0.28 1 G-SVM 0.22
2 AR 0.29 2 ARMA 0.30

GR 3 ARMA 0.30 OO 3 L-SVM 0.44
Avg. – 0.51 Avg. – 0.69
Worst Qua.Reg 2.75 Worst Loc.Cub.Reg 1.25

1 ARIMA 0.38 1 G-SVM 0.45
2 BRDES 0.41 2 Lin.Reg 0.46

BR 3 L-SVM 0.43 RN 3 L-SVM 0.46
Avg. – 0.75 Avg. – 0.52
Worst mean 3.35 Worst Dec.Tree 0.62

5

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

37
.6

50
.1

38
.2

44
.0

37
.9

38
.3

50
.2

38
.1

41
.8

44
.7

42
.8

42
.6

42
.9

42
.8

43
.1

43
.6

43
.6

43
.3 61

.1
52

.3
52

.5
51

.7
53

.0
52

.2
53

.6
48

.7
53

.1

11
3.

6
11

4.
1

11
4.

4
11

3.
8

90
.6

11
3.

8
11

3.
6

11
3.

6
11

0.
9

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

23
.3

16
.0

16
.8

19
.0

16
.0

14
.4

22
.1

13
.7

17
.7

11
.7

13
.5

16
.2

12
.4

11
.7

14
.0

8.
2

9.
2

12
.1 23

.6
16

.8
20

.6
19

.9
23

.7
15

.2
15

.4
17

.9
19

.1

54
.9

48
.2

54
.6

47
.8

48
.8

48
.9

47
.3

48
.8

49
.9

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 5: Case #1 – Normalized Cost and Job Deadline Miss Rate of PR (Scaling-Out:Predictive + Scaling-In:Reactive) – Hourly Pricing Model.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

10
7.

9
10

3.
1

10
3.

5
10

3.
9

10
3.

1
10

4.
0

10
3.

5
10

4.
7

10
4.

2

10
0.

1
98

.5
99

.0
98

.5
10

0.
1

98
.4

99
.4

99
.2

99
.2

96
.6

97
.7

97
.7

98
.1

98
.0

98
.3

96
.5

95
.8

97
.3 10

6.
9

10
6.

8
10

5.
9

10
6.

5
10

4.
7

10
6.

7
10

6.
2

10
6.

1
10

6.
3

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

42
.4

42
.3

43
.3

41
.3

42
.3

42
.0

42
.8

42
.8

42
.4

12
.2

14
.6

14
.3

13
.4

11
.4

14
.0

12
.9

12
.8

13
.2

43
.7

42
.6

43
.1

45
.2

44
.7

44
.2

43
.0

42
.9

43
.6 59

.4
59

.3
59

.2
59

.2
59

.1
59

.2
58

.6
59

.0
59

.1

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 6: Case #1 – Normalized Cost and Job Deadline Miss Rate of PR (Scaling-Out:Predictive + Scaling-In:Reactive) – Minutely Pricing Model.

amount of time is a critical issue for the predictive resource
scaling. We also measured computation overhead of predictors
(Figure 4). kNN, WMA, and EMA are the fastest predictors.
The overall prediction time for 10K jobs of these three
predictors are 0.48 (kNN), 0.96 (WMA), and 1.86 seconds
(EMA). However, some temporal approaches (AR, ARMA,
and ARIMA) and ensemble methods (extra trees, gradient
boosting, and random forest) have longer prediction time. The
highest overhead predictor is ARMA, which takes 6031.52
seconds for 10K jobs.

B. Performance of Different Styles of Predictive Scaling

We measure the performance of four different styles of
scaling operations for cloud resource management:

• Baseline: RR (Scale-Out: Reactive + Scale-In: Reactive)
• PR (Scale-Out: Predictive + Scale-In: Reactive)
• RP (Scale-Out: Reactive + Scale-In: Predictive)
• PP (Scale-Out: Predictive + Scale-In: Predictive)
PR is the most common style of predictive scaling for cloud

application. PR predictively scales out cloud resources and

reactively scales in cloud resources. RP is another way of
predictive scaling, and it uses a reactive way for scaling-out
and a predictive approach for scaling-in. PP is a combination
of PR and RP, and it leverages a workload predictor for both
scaling-out and scaling-in operations. For this evaluation, we
use RR (Scaling-Out: Reactive + Scaling-In: Reactive) as a
baseline. RR adds a new VM (scaling-out) when a new job
needs an extra VM, and terminates an idle VM (scaling-in) at
its billing boundary. (i.e., hourly bound or minutely bound).

Due to page limitation, we only show the results of the pre-
dictive scaling operations with the most accurate 8 workload
predictors from Section IV-A. These predictors are Linear-
SVM, Gaussian-SVM, ARMA, AR, WMA, ARIMA, Brown’s
DES, Linear regression, which cover the overall best 5 pre-
dictors and the best 3 predictors for each workload pattern.

To evaluate the predictive scaling operations, we use two
common cloud metrics (cost and job deadline miss rate) and
two different billing models (hourly and minutely pricing
model). Cost is to evaluate each scaling operations’ cost
efficiency, and job deadline miss rate represents the SLA-

6

 0

 50

 100

 150

 200

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

10
0.

4
10

0.
5

10
0.

6
10

0.
5

10
0.

5
10

0.
6

10
0.

5
10

0.
4

10
0.

5

74
.5

71
.1

71
.1

83
.4

77
.6

76
.9

71
.1

76
.9

75
.3

13
3.

5
13

3.
9

13
8.

1
14

9.
6

13
7.

4
13

7.
6

13
3.

9
13

7.
5

13
7.

7

77
.6

77
.6

77
.5

77
.7

77
.6

77
.6

77
.6

77
.5

77
.6

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

98
.9

99
.6

99
.2

99
.9

99
.4

99
.3

99
.1

98
.5

99
.2

99
.6

98
.7

99
.5

99
.1

97
.6

99
.2

99
.7

98
.5

99
.0

99
.9

10
0.

3
98

.4
10

1.
3

97
.5

97
.4

99
.5

99
.4

99
.2 99
.5

99
.3

10
0.

3
10

0.
0

11
0.

8
99

.3
99

.5
99

.0
10

1.
0

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 7: Case #2 – Normalized Cost and Job Deadline Miss Rate of RP (Scaling-Out:Reactive + Scaling-In:Predictive) – Hourly Pricing Model.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

10
4.

4
10

6.
8

10
8.

0
10

8.
3

10
5.

4
10

7.
4

10
4.

9
10

9.
7

10
6.

9

12
2.

1
12

2.
4

12
1.

2
12

3.
3

12
0.

1
12

3.
2

12
1.

4
12

0.
7

12
1.

8

10
9.

0
10

9.
0

10
7.

1
11

0.
4

10
8.

3
10

9.
1

10
8.

4
10

8.
9

10
8.

4

85
.3

85
.9

85
.9

90
.1

89
.2

85
.4

85
.9

85
.9

86
.7

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 20
 40
 60
 80

 100
 120
 140

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

98
.9

99
.3

99
.5

99
.2

99
.4

99
.0

98
.9

10
0.

7
99

.5

99
.3

99
.2

99
.2

99
.9

99
.5

99
.3

99
.4

99
.2

99
.5

99
.2

99
.3

99
.2

99
.3

99
.6

99
.3

10
0.

6
99

.0
99

.5

99
.4

99
.4

99
.4

99
.7

99
.6

99
.4

99
.4

99
.3

99
.5 Lin.Reg.

WMA
BRDES

AR
ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 8: Case #2 – Normalized Cost and Job Deadline Miss Rate of RP (Scaling-Out:Reactive + Scaling-In:Predictive) – Minutely Pricing Model.

satisfaction requirement. We use two different billing mod-
els for cloud infrastructure, because major commercial IaaS
clouds employ either hourly (e.g. AWS) or minutely (e.g. MS
Azure) pricing model. We also use four different workload
patterns (growing, on/off, bursty, and random workload).

The goals of this evaluation are:

• Measuring the actual benefits from predictive scaling.
• Determining the best style of predictive scaling.
• Finding the best workload predictor for each workload

pattern in terms of cloud metrics.

Case #1 – PR (Scale-Out: Predictive + Scale-In: Reactive):
Figure 5 shows a normalized cost and job deadline miss rate
(all results are normalized to RR) of PR for hourly pricing
model. The results show that PR can improve 47%–58% of
cost efficiency for growing, on/off, and bursty workloads.
However, for random workload, PR has 11% of worse cost
efficiency over the baseline. In terms of job deadline miss rate,
PR has 50%–88% of less job deadline miss rate over the RR
(baseline). For the hourly pricing model, PR shows relatively
poor performance for random workload in both cost efficiency

and job deadline miss rate. This is because random workload
is harder to predict than the other workload patterns. We rank
the workload predictors for the PR based on the deadline miss
rate, because it is more important to ensure that jobs meet their
deadlines. Only after the deadline requirements are met, our
cloud resource manager in Section III-A optimizes for cost
efficiency. The best workload predictors for PR are: Linear-
SVM (13.7%) for growing, Gaussian-SVM (8.2%) for on/off,
ARIMA (15.2%) for bursty, and Gaussian-SVM (47.3%) for
random workload.

Figure 6 shows evaluation results of PR for minutely pricing
model under four workload patterns. PR has similar cost effi-
ciency with RR, but it has 41%–87% of less job deadline miss
rate than the baseline. Thus, PR provides better job deadline
satisfaction without dramatically increasing cost. The reason
that PR has similar cost efficiency with RR is that the minutely
pricing model is designed to provide better cost efficiency than
hourly model to the user. So it is very hard to improve the cost
efficiency for the minutely pricing model even though we have
a good predictor. The best workload predictors for RP with

7

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

32
.6

32
.0

32
.1

30
.2

33
.1

30
.1

30
.0

30
.3

31
.3 33

.9
33

.2
35

.2
39

.3
34

.1
37

.7
34

.2
33

.8
35

.2

56
.4

55
.6

45
.1

56
.3

51
.5

51
.9

49
.7

46
.4

51
.6

48
.2

48
.2

48
.2

47
.9

48
.3

47
.8

48
.0

47
.8

48
.0 Lin.Reg.

WMA
BRDES

AR
ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0

 10

 20

 30

 40

 50

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

12
.6

6.
9

6.
8

6.
5

6.
3

5.
7

9.
2

5.
5

7.
4

8.
9

11
.9

14
.1

11
.8

8.
3

11
.5

7.
8

9.
4

10
.5

7.
3

8.
7

5.
1

9.
4

11
.6

11
.8

9.
3

6.
1

8.
7

20
.4

21
.7

20
.3

23
.6

20
.3

26
.6

21
.6

18
.1

21
.6 Lin.Reg.

WMA
BRDES

AR
ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 9: Case #3 – Normalized Cost and Job Deadline Miss Rate of PP (Scaling-Out:Predictive + Scaling-In:Predictive) – Hourly Pricing Model.

 0
 20
 40
 60
 80

 100
 120
 140

Growing On/O Bursty Random

No
rm

. C
os

t (
%

)

96
.7

98
.4

97
.4

97
.4

97
.5

98
.6

98
.3

97
.9

97
.8

99
.8

99
.4

99
.7

99
.2

10
0.

4
99

.1
98

.7
99

.1
99

.4

92
.3

94
.1

94
.6

96
.2

97
.3

95
.8

94
.1

93
.5

94
.7

85
.9

86
.1

88
.7

94
.0

88
.5

89
.4

90
.2

88
.6

88
.9 Lin.Reg.

WMA
BRDES

AR
ARMA

ARIMA
G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60

Growing On/O Bursty RandomNo
rm

. D
ea

dl
in

e
M

iss
 R

at
e

(%
)

30
.9

28
.3

27
.9

27
.5

28
.9

28
.1

29
.4

27
.9

28
.6

12
.5

14
.5

14
.3

12
.9

11
.4

14
.5

12
.9

12
.5

13
.2

29
.6

30
.9

19
.7

32
.9

36
.5

33
.0

31
.2

27
.2

30
.1

39
.8

39
.8

39
.6

39
.8

40
.5

39
.6

39
.5

39
.8

39
.8

Lin.Reg.
WMA

BRDES
AR

ARMA

ARIMA
G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Fig. 10: Case #3 – Normalized Cost and Job Deadline Miss Rate of PP (Scaling-Out:Predictive + Scaling-In:Predictive) – Minutely Pricing Model.

minutely pricing model are: AR (41.3%) for growing, ARMA
(11.4%) for on/off, WMA (42.6%) for bursty, and Gaussian-
SVM (58.6%) for random workload.

Case #2 – RP (Scale-Out: Reactive + Scale-In: Predictive):
Figure 7 and 8 show the evaluation results of RP for both
pricing models under four workload patterns. The results
indicate that RP’s benefit to the cloud system is not as much
as the benefits from PR. The only benefit from the RP is the
improved cost efficiency (on/off and random workloads for
hourly pricing model, random workload for minutely pricing
model). The improvement of cost efficiency is 12%–25%, but
it has no benefits for job deadline miss rate.

Case #3 – PP (Scale-Out: Predictive + Scale-In: Predictive):
Figure 9 shows normalized costs and job deadline miss rates of
PP for hourly pricing model under four workload patterns. The
results show that PP improves 48%–69% of cost efficiency for
the four workloads over RR, and has 78%–93% of less job
deadline miss rate than RR. The best workload predictors for
the PP with hourly pricing model are: Linear-SVM (5.5%)
for growing, Gaussian-SVM (7.8%) for on/off, Brown’s DES
(5.1%) for bursty, and Linear-SVM (18.1%) for random

workload.
Figure 10 shows evaluation results of PP for minutely

pricing model under four workload patterns. The results show
that PP slightly improves cost efficiency (11%) of the cloud
system and has huge improvement (60%–87%) for the job
deadline miss rate. The best workload predictors of PP with
minutely pricing model for each workload pattern are: AR
(27.5%) for growing, ARMA (11.4%) for on/off, Brown’s
DES (19.7%) for bursty, and Gaussian-SVM (39.5%) for
random workload.

Comparison of Three Predictive Scaling Styles: So far
we have separately evaluated three predictive scaling styles of
the cloud resource management. In the following paragraphs,
we present the overall benefit of predictive scaling. And we
compare the results of these three predictive scaling styles
to determine the best one for cloud resource management.
Figure 11 shows that the comparison of average results of
normalized cost and job deadline miss rate for PR, RP, and
PP in both hourly and minutely pricing models.

For the hourly pricing model (Figure 11(a)), we found that
PP is the best style for cloud resource management in terms

8

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

PR RP PP

No
rm

. C
os

t/D
L

M
iss

 R
at

e
Norm. Cost

Norm. DL Miss

(a) Hourly Pricing Model

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

PR RP PP

No
rm

. C
os

t/D
L

M
iss

 R
at

e

Norm. Cost
Norm. DL Miss

(b) Minutely Pricing Model

Fig. 11: Comparison of Average Results of Normalized Cost and Job
Deadline Miss Rate of Three Scaling Styles (PR, RP, and PP).

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

PR RP PP

No
rm

. V
M

 #
/U

tils

Norm. # VMs
Norm. VM Utils

(a) Hourly Pricing Model

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

PR RP PP

No
rm

. V
M

 #
/U

tils

Norm. # VMs
Norm. VM Utils

(b) Minutely Pricing Model

Fig. 12: Comparison of VM Numbers/Utilization of Three Scaling Styles.

of better cost efficiency and less job deadline miss rate. PP’s
cost efficiency is 20% (compared to PR) and 56% (compared
to RP) better than other two approaches. Moreover, PP’s
job deadline miss rate is 13% (compared to PR) and 88%
(compared to RP) lower than others. This result is interesting,
because although predictive scaling-in does not improve cost
and deadline miss rate by itself (as shown in Case #2), it
provides considerable improvement for both metrics when
combined with predictive scaling-out. These results show that
predictive scaling in/out approach (PP) (with a good workload
predictor) helps to improve the performance of the cloud
resource management.

For the minutely pricing model (Figure 11(b)), the job
deadline miss rate of PP outperforms other two styles of
predictive scaling operations. PP has 12% (compared to PR)
and 72% (compared to RP) of less job deadline miss rate. PP
also improves cost efficiency over PR and RP. These results
suggest PP can significantly reduce deadline miss rate without
cost overhead.

To understand the reasons of 1) PP significantly improves
cost efficiency (hourly pricing model) and deadline miss
rate (both pricing model) and 2) RP does not improve the
performance by itself, we analyze the number of created VMs
and VM utilization of three styles. Figure 12 represents the
VM numbers and utilization of three scaling styles for both
pricing models. For the both pricing models, PP creates the
less number of VMs and has higher utilization than others. The
reasons that PP has high VM utilization and lower number of
created VMs are:

• Predictive scaling-out of PP uses more currently running
VMs for the (near) future jobs, and creates less VMs for
the (near) future jobs.

• Predictive scaling-in of PP keeps VMs alive for (further)
future jobs, which further reduces the new VM creations,
and increases the utilizations of existing VMs.

Moreover, the reason that RP cannot improve the cloud
metrics is related to reactive scaling-out of RP. Reactive
scaling-out operation creates VMs when jobs actually arrive,
so RP has to create better performance VMs (more expensive
VMs) in order to meet the jobs’ deadline. This is because RP
has no advance preparation for eliminating the overhead of the
VM creation (e.g. startup delay). Also most of VMs should
be terminated after processing the current job because they
are not used for future jobs. So, predictive scaling-in of RP
does not help in this case because most of VMs should be
destroyed.

V. RELATED WORK

A large body of work has been conducted for the predictive
cloud resource management for dynamic workload patterns.
There are two major branches in predictive resource manage-
ment in the clouds. First branch is to focus on predicting the
future resource usages (e.g. CPU, memory, and I/O) based
on past resource usage history [1–4, 28]. Second branch is
a workload predictive approach for cloud resource manage-
ment. More specifically, this branch focuses on predicting the
future job arrival time by using various workload predictors.
Our work is closer to the second branch because we have
evaluated prediction techniques for the future job arrivals
to the clouds. In order to predict the next job arrival time,
previous works employ a variety of predictors. They applied
regression [16, 17, 29–31], time-series methods (e.g. ES [5–
7, 18, 19], AR [8, 24], ARMA [9–13] and ARIMA [14, 15]) to
their cloud systems to effectively manage the cloud resources.
Herbst et al [32] proposed WCF (Workload Classification and
Forecasting) framework, which is a self-adaptive approach for
proactive resource management. However, the purpose of our
work is different from the goal of previous works (proposing
a new predictive scaling mechanism). We are more geared
toward evaluating the performance of all existing prediction
techniques for cloud resource management (e.g. scaling) by
employing various/realistic workload patterns [20, 21], diverse
cloud configurations (e.g. billing model), and common per-
formance metrics. Furthermore, we have concentrated on the
evaluation of different styles of predictive scale operations:
predictive scaling-out only, predictive scaling-in only, and both
predictive scaling-in/out. Therefore, our goal is to determine
the best workload predictor for the cloud users’ specific
workload pattern and cloud configurations as well as the best
scaling style of the predictive scaling.

VI. CONCLUSION

In order to help the cloud users select the best workload pre-
dictor, we comprehensively evaluated 21 workload predictors
using statistical and cloud metrics. We then evaluated the pre-
diction accuracy of all workload predictors, and cost/deadline
miss rate of three following styles of predictive scaling under
diverse workload patterns and different cloud configurations.

• PR (Scale-Out: Predictive + Scale-In: Reactive)
• RP (Scale-Out: Reactive + Scale-In: Predictive)
• PP (Scale-Out: Predictive + Scale-In: Predictive)

9

We found that to design a new predictive cloud resource
scaling, the cloud users should consider top 3 workload
predictors depending on their workload patterns, and use PP
approach for their scaling operations in order to maximize the
scaling performance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of this paper.

REFERENCES

[1] Peter A. Dinda and David R. O’Hallaron. Host Load Prediction using
Linear Models. Cluster Computing, 3(4):265–280, 2000.

[2] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In International Conference
on Network and Service Management (CNSM), 2010.

[3] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic Resource Allocation
Using Virtual Machines for Cloud Computing Environment. IEEE
Transactions on Parallel and Distributed Systems, 24(6), 2013.

[4] Akindele A. Bankole and Samuel A. Ajila. Cloud Client Prediction
Models for Cloud Resource Provisioning in a Multitier Web Application
Environment. In IEEE International Symposium on Service Oriented
System Engineering (SOSE), 2013.

[5] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang, and
Wenguang Chen. Cost-effective Cloud HPC Resource Provisioning by
Building Semi-Elastic Virtual Clusters. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2013.

[6] Ching Chuen Teck Mark, Dusit Niyato, and Tham Chen-Khong. Evo-
lutionary Optimal Virtual Machine Placement and Demand Forecaster
for Cloud Computing. In IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2011.

[7] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. Online Self-reconfiguration with Performance Guarantee
for Energy-efficient Large-scale Cloud Comp. Data Centers. In IEEE
International Conference on Services Computing (SCC), 2010.

[8] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement
of Virtual Machines for Managing SLA Violations. In IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2007.

[9] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Au-
toscaling in the Cloud using Predictive Models for Workload Forecast-
ing. In IEEE International Conference on Cloud Computing (CLOUD),
2011.

[10] Juan M. Tirado, Daniel Higuero, Florin Isaila, and Jesus Carretero.
Predictive Data Grouping and Placement for Cloud-based Elastic Server
Infrastructures. In IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2011.

[11] Mohit Dhingra, J. Lakshmi, S. K. Nandy, Chiranjib Bhattacharyya, and
K. Gopinath. Elastic Resources Framework in IaaS, preserving perfor-
mance SLAs. In IEEE International Conference on Cloud Computing
(CLOUD), 2013.

[12] Upendra Sharma, Prashant Shenoy, and Sambit Sahu. A Flexible Elastic
Control Plane for Private Clouds. In ACM Cloud and Autonomic
Computing Conference (CAC), 2013.

[13] Shun-Pun Li and Man-Hon Wong. Data Allocation in Scalable Dis-
tributed Database Systems Based on Time Series Forecasting. In IEEE
International Congress on Big Data (BigData Congress), 2013.

[14] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyy. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Transactions on Cloud Computing,
3(4), 2015.

[15] Hong Xu Di Niu, Baochun Li, and Shuqiao Zhao. Quality-Assured
Cloud Bandwidth Auto-Scaling for Video-on-Demand Applications. In
IEEE International Conference on Computer Communications (INFO-
COM), 2012.

[16] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael
Jordan, and David Patterson. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. In USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2009.

[17] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang Mao,
Chunhong Liu, Lisha Niu, and Junliang Chen. A Cost-aware Auto-
scaling Approach Using the Workload Prediction in Service Clouds.
Information Systems Frontiers, 16(1), 2014.

[18] Sou Koyano, Shingo Ata, Ikuo Oka, and Kazunari Inoue. A High-
grained Traffic Prediction for Microseconds Power Control in Energy-
aware Routers. In IEEE/ACM International Conference on Utility and
Cloud Computing (UCC), 2012.

[19] Prasad Saripalli, GVR Kiran, Ravi Shankar R, Harish Narware, and Nitin
Bindal. Load Prediction and Hot Spot Detection Models for Autonomic
Cloud Computing. In IEEE International Conference on Utility and
Cloud Computing (UCC), 2011.

[20] Christoph Fehling et al. Cloud Computing Patterns: Fundamentals to
Design, Build, and Manage Cloud Applications. 2014.

[21] Workload Patterns for Cloud Computing. http://watdenkt.veenhof.nu/
2010/07/13/workload-patterns-for-cloud-computing/.

[22] In Kee Kim, Wei Wang, and Marty Humphrey. PICS: A Public Iaas
Cloud Simulator. In IEEE International Conference on Cloud Computing
(CLOUD), 2015.

[23] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Element
of Statistical Learning: Data Mining, Inference, and Prediction. 2011.

[24] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic Re-
source Allocation for Shared Data Centers Using Online Measurements.
In International Workshop on Quality of Service (IWQoS), 2003.

[25] In Kee Kim, Jacob Steele, Yanjun Qi, and Marty Humphrey. Comprehen-
sive Elastic Resource Management to Ensure Predictable Performance
for Scientific Applications on Public IaaS Clouds. In IEEE/ACM
International Conference on Utility and Cloud Computing (UCC), 2014.

[26] Ming Mao and Marty Humphrey. A Performance Study on the VM
Startup Time in the Cloud. In IEEE International Conference on Cloud
Computing (CLOUD), 2012.

[27] Amazon Web Services. http://aws.amazon.com.
[28] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.

CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems.
In ACM Symposium on Cloud Computing (SoCC), 2011.

[29] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek.
Adaptive Resource Provisioning for Read Intensive Multi-tier Applica-
tions in the Cloud. Future Generation Computer Systems, 27(6), 2011.

[30] Sireesha Muppala, Xiaobo Zhou, and Liqiang Zhang. Regression Based
Multi-tier Resource Provisioning for Session Slowdown Guarantees.
In IEEE International Performance Computing and Communications
Conference (IPCCC), 2010.

[31] Sourav Dutta, Sankalp Gera, Akshat Verma, and Balaji Viswanathan.
SmartScale: Automatic Application Scaling in Enterprise Clouds. In
IEEE International Conference on Cloud Computing (CLOUD), 2012.

[32] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. In ACM/SPEC International Confer-
ence on Performance Engineering (ICPE), 2013.

10

