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Abstract
Heart Rate Variability (HRV) measures the variation of the
time between consecutive heartbeats and is a major indicator
of physical and mental health. Recent research has demon-
strated that photoplethysmography (PPG) sensors can be used
to infer HRV. However, many prior studies had high errors
because they only employed signal processing or machine
learning (ML), or because they indirectly inferred HRV, or
because there lacks large training datasets. Many prior studies
may also require large ML models. The low accuracy and
large model sizes limit their applications to small embedded
devices and potential future use in healthcare.

To address the above issues, we first collected a large
dataset of PPG signals and HRV ground truth. With this
dataset, we developed HRV models that combine signal pro-
cessing and ML to directly infer HRV. Evaluation results
show that our method had errors between 3.5% to 25.7% and
outperformed signal-processing-only and ML-only methods.
We also explored different ML models, which showed that
Decision Trees and Multi-level Perceptrons have 13.0% and
9.1% errors on average with models at most hundreds of KB
and inference time less than 1ms. Hence, they are more suit-
able for small embedded devices and potentially enable the
future use of PPG-based HRV monitoring in healthcare.

Keywords: Heart Rate Variability, Machine Learning, Photo-
plethysmography, Signal Processing

1 Introduction
Heart Rate Variability (HRV) measures the variation of the
time intervals of consecutive heartbeats and is a major indi-
cator for health conditions, such as coronary artery disease,
heart failure, hyperlipidemia, and hypertension [40]. HRV
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is traditionally measured using electrocardiographic (ECG)
devices, which record the heart’s rhythm. However, ECGs
can be expensive and require attaching several electrodes to
human bodies, which can be inconvenient to use.

As an alternative to ECG, Photoplethysmography (PPG)
sensors, which monitor light signal changes in blood flows,
can also be utilized to measure heart rate (HR) and HRV [37,
45]. A PPG sensor can be placed on the human skin to pro-
vide HR/HRV readings and is more convenient to use. Many
studies demonstrated the potential of PPG sensors in HRV
monitoring [14, 39]. However, these studies usually face the
following four limitations, restraining their application to
small embedded devices and healthcare in the future.

First, some of these studies relied on only signal processing
for HRV estimation [6, 45], which may negatively affect the
inference accuracy. PPG sensor signals typically suffer from
large noises, particularly, the noises from motion artifacts
(MA). To infer HRV with good accuracy, these noises must be
removed or reduced. Although signal processing techniques
can remove many noises (including MA), these relatively
static techniques may not be able to handle all types of noises,
leading to low HRV accuracy.

Second, many studies also only employed machine learn-
ing (ML) techniques to infer HRV [11, 14]. Although many
ML models by themselves are sophisticated enough to han-
dle all types of noises, the resulting models can be too large
and/or too slow for small embedded devices. Moreover, train-
ing and tuning ML models with raw PPG data can be quite
challenging. ML models without enough tuning may also
have low accuracy.

Third, some prior studies also focused on the inference of
the interval lengths between consecutive heart beats [14, 41],
which are known as RR intervals [13, 18]. That is, these
studies do not direct infer HRV metrics, such as SDNN or
RMSSD (more in Section 2). This indirect inference strictly
follows HRV’s definition. However, due to error amplification,
this indirection can significantly increase the errors of the final
HRV estimations.

Fourth, many prior studies also relied on small datasets. For
example, a popular PPG dataset, the IEEE Signal Processing
Cup (ISPC) dataset, has PPG signals recording lasted for only
five minutes [45]. However, a typical HRV inference requires
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an ECG monitoring length of half to five minutes [1]. Hence,
it is difficult to conduct HRV inference studies with short
recordings, especially for studies with neural networks.

We have studied ML-based HR estimation using PPG in
our prior work [43]. In this paper, our goal is to design an
HRV inference methodology that can provide high accuracy
for resource-constrained embedded devices. To achieve this
goal, we designed a compound and direct method that com-
bines signal processing and ML to directly infer HRV (i.e.,
RMSSD/SDNN). More specifically, we first employed signal
processing to remove outliers and noises from raw PPG sig-
nals and convert the PPG signals into rough HR readings and
HRV readings. These rough HR/HRV readings are then fed
into an ML model to infer RMSSD/SDNN. Applying ML af-
ter signal processing provides additional/better noise removal,
and hence, more accurate HRV estimations. Applying signal
processing before ML avoids the need for large and slow ML
models. Moreover, the direct inference of RMSSD/SDNN,
instead of inferring RR intervals as a proxy, further improves
accuracy.

To explore the impact of various ML algorithms, we also
evaluated different ML models, including Decision Tree (DT),
Random Forest (RF), K-nearest neighbor (KNN), Support
vector machines (SVM), and Multi-layer perceptron (MLP).
To provide more reliable results, we also collected a new
dataset of PPG signals, with ECG readings as ground truth.
This dataset contains three 2-hour-long PPG/ECG traces for
one human subject performing different activities, including
office work, sleeping, and sitting.

Evaluation results show that our compound and direct
method has 3.5% to 25.7% errors for various activities and
monitoring lengths. Both the lowest 3.5% error for RMSSD
and the lowest 5.1% error for SDNN were obtained with a
monitoring length of 300 seconds per HRV estimation. Note
that, 300-second HRV monitoring can be used for caring for
chronic renal failure and diabetes [1], showing the healthcare
potential of PPG-based HRV monitoring. The evaluation re-
sults also show that our method is significantly more accurate
than the signal-processing-only and ML-only methods.

Moreover, the model exploration showed that DT and MLP
models are usually smaller with good accuracy, making them
more suitable for small embedded devices. DT models have
an average error of 13.0% and are usually less than 10KB
with inference time less than 10𝜇s. MLP models have an
average error of 9.1% and are less than 469KB with inference
time less than 1ms. These results corroborate the "Rashomon"
theory [32] that, for some problems, there exist simple models
with good accuracy and meet special requirements, such as
the limited memory size of embedded devices in this case.

The contributions of this paper include,
• The compound and direct HRV inference methodology

combines signal processing and ML to directly infer
RMSSD/SDNN to achieve high accuracy with small
and fast ML models.

RR
intervalR

R
R

R
R

Figure 1. An example of ECG waveform showcasing R peaks
(red dots) and RR intervals.

• A systematic exploration of different ML algorithms
to study their impact on the accuracy, model size, and
time on HRV inference. This exploration showed that
Decision Trees and MLP can achieve high accuracy
with small/fast models suitable for embedded devices.

• A comprehensive PPG/ECG dataset to study HR/HRV
inference, which contains traces of different activity
intensities lasting for 2 hours.

The rest of the paper is structured as follows. Section 2
discusses the background on HRV and the motivation of our
work. Section 3 presents our compound and direct method.
Section 4 presents evaluation results. Section 5 discusses
related work, and section 6 concludes the paper.

2 Background and Motivation
2.1 HRV from ECG
Human heart rate, when measured as beat-to-beat intervals,
is not constant and varies over time [31]. This variation, com-
monly known as Heart Rate Variability (HRV), is an effective
indicator of various health and mental problems [40]. The
traditional medical device to measure HR and HRV is ECG.
ECG records heart activity utilizing electrodes placed at cer-
tain skin spots on the human body and produces an electro-
cardiogram, which is a graph that shows the heart’s activity
over time. Electrocardiogram contains the QRS complexes
information, which is an important waveform in an electro-
cardiogram that shows the spread of a stimulus through the
ventricles [13, 18]. R peaks, which roughly represent heart-
beats, can be computed from the QRS complex. The intervals
between R peaks are called RR intervals. Figure 1 gives an
example output from an ECG device that shows the heart-
beats and RR intervals. Note that, normal RR intervals are
also called NN intervals in the literature [40].

HRV is defined as the variation of the RR intervals within
a time period. HRV is an important health indicator because
it represents the adaptive ability of the heart to unpredictable
changing circumstances. There is no one standard or best
method to calculate HRV [21]. In this work, we focus on
two commonly used time-domain linear measures for HRV
- the Standard Deviation of RR intervals (SDNN) and the
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Root Mean Square of Successive Differences (RMSSD) [20].
SDNN is usually recommended for overall HRV estimation
and represents both sympathetic and parasympathetic mod-
ulation of heart rate, whereas RMSSD is recommended for
estimating short-term components of HRV and represents
parasympathetic activity [24, 40].

An SDNN or RMSSD is calculated from the RR intervals
in a chosen time window, which is usually between 0.5 and
5 minutes [1], and a sequence of HRVs over 5 minutes to
24 hours are typically used in medical practice [24]. The
definitions of SDNN and RMSSD are,

SDNN =

√︄∑𝑁
𝑖=1 (𝑅𝑅𝑖 − 𝑅𝑅)2

𝑁
, (1)

RMSSD =

√︄∑𝑁−1
𝑖=1 (𝑅𝑅𝑖+1 − 𝑅𝑅𝑖 )2

𝑁 − 1
, (2)

where 𝑅𝑅𝑖 is the 𝑖𝑡ℎ RR interval, 𝑅𝑅 is the average, and 𝑁

is the number of RR intervals within the chosen time window.
Although the ECG produces accurate HRVs, attaching elec-

trodes to the human body can be inconvenient for long-term
monitoring [28, 35]. Therefore, in this work, we focus on
using PPG instead of ECG. Nonetheless, we did use ECG to
collect reliable HRV readings as the groundtruth to train and
evaluate our PPG-based HRV solutions.

2.2 HRV from PPG
PPG sensors are popular due to their non-invasive nature.
They are usually attached to human skins at certain locations,
such as fingertips, earlobe, and wrist [9]. These sensors utilize
infrared light that penetrates the skin to detect changes in the
blood circulation – if there is a change in the blood flow, the
intensity of the infrared light also changes [30]. Hence, by
monitoring the light changes, PPG sensors can detect blood
flow changes, which in turn, can be used to infer HR/HRV.

The main challenge to using PPG for HR/HRV monitoring
is light signal noises, especially the motion artifact (MA),
which represents the signal noises due to body/hand move-
ments [15]. There are also noises from the environment [9, 15]
or from the inherent sensor inaccuracy/bias (e.g., sensor sen-
sitivity and calibration issues). Accurate HR/HRV monitoring
requires the removal or reduction of these noises [9, 45].

2.3 Motivation
Although there have been many studies on applying PPG
in HRV inference, these studies were usually limited by
their methodology and/or by small datasets. To illustrate
these limitations, and as a motivation for this study, we ex-
plored the HRV inference accuracy of a signal-processing-
only method [45] and ML-only method with Convolutional
Neural network (CNN) based encoder-decoder [14] using the
popular ISPC dataset.

RMSSD SDNN0%

10%

20%

30%

40%

50%

M
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Sig-proc Only
CNN Only
MLP Only
Sig-proc + MLP

Figure 2. HRV estimation errors of the signal-processing-
only [45], CNN-only [14], MLP-only, and our compound and
direct ("Sig-proc+MLP") methods, using the ISPC dataset.

RR MAPE RMSSD MAPE SDNN MAPE
1% 10.24% 4.99%
2% 27.83% 14.14%
3% 41.55% 23.87%
4% 52.58% 33.19%
5% 61.18% 41.97%

Table 1. RR estimation error amplification after converting to
RMSSD and SDNN.

HRV CNN Only MLP Only Sig-proc + MLP
SDNN 195KB 47.9MB 47.9KB

RMSSD 195KB 122.5MB 49.8KB

Table 2. CNN or MLP model sizes of the CNN-only [14],
MLP-only, and our compound and direct ("Sig-proc+MLP")
methods, using the ISPC dataset.

Figure 2 gives the MAPEs (mean absolute percentage er-
ror) of these two methods. For the signal-processing-only
method, we reproduced its processing procedures to generate
estimations of HRV, which were then compared with the ECG
ground truths in the ISPC dataset to calculate the MAPEs. For
the CNN-only method, its MAPEs were directly calculated
based on results reported in its paper. As Figure 2 shows, both
methods have high errors for HRV estimations. Especially for
RMSSD, both methods have over 50% error.

We observe four reasons that cause these high errors.

1. First, the static signal processing cannot always effec-
tively remove all noises in the PPG signals. Therefore,
for RMSSD, which measures the short-time compo-
nents of HRV, the remaining signal noises could signif-
icantly degrade the accuracy of the signal-processing-
only method. Interestingly, the signal-processing-only
method’s SDNN estimation accuracy is less affected,
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as SDNN represents long-term variability and is less
sensitive to the remaining signal noises.

2. Second, the CNN-only method suffers from error ampli-
fication. This method does not directly estimate RMSSD
or SDNN. Instead, it estimates RR intervals, which are
then converted to RMSSD/SDNN using Equations (1)
and (2). However, this conversion amplifies the estima-
tion error. Table 1 illustrates this error amplification,
where we generated five sets of RR estimations with
random errors based on certain average errors (MAPE),
converted them into HRV (RMSSD/SDNN), and eval-
uated the errors of the converted HRV. Table 1 shows
that a small 3% MAPE in RR estimations amplifies to
41.55%/23.87% error for RMSSD/SDNN.

3. Third, for the CNN-only method, although it can re-
move most of the noises in theory, the small ISPC
dataset does not provide enough data for the CNN
model to learn the noise removal completely. The ISPC
dataset only has PPG signals from five minutes of mon-
itoring, whereas a single HRV reading requires half to
five minutes [1]. This small dataset further contributes
to the CNN model’s high errors for both RMSSD and
SDNN estimations in Figure 2.

4. Fourth, the model used in the CNN-only method could
be too small and not sophisticated enough to process
noisy signals. Table 2 shows that this CNN model is
only 195KB (42657 trainable parameters). As shown
later, inferring HRV with raw noisy PPG signal would
require complex neural network models of tens or hun-
dreds of MBs, as the noise removal computation is
typically nonlinear and non-polynomial. Large models,
however, are unsuitable for small wearable devices with
only hundreds of KBs of on-chip memory.

Based on the above observation, our hypothesis is that a
compound and direct method that combines signal processing
and ML, and directly estimates RSMSSD/SDNN, can achieve
both high accuracy and small ML model size. To verify this
hypothesis, we trained MLP-based models to directly estimate
RMSSD and SDNN using the signal-processed ISPC’s PPG
data. The accuracy and model size of our method are also
given in Figure 2 and Table 2 under the label "Sig-proc+MLP".
As Figure 2 shows, our method had lower error than both
the signal-processing-only and ML-only methods. Table 2
also shows that this compound and direct method had small
model sizes of less than 50KB because many signal noises
are already treated by signal processing.

For the sake of comparison completeness, we also trained
MLP models using the original PPG signals from the ISPC
dataset to directly estimate RMSSD/SDNN. That is, we also
compared an ML-only method with MLP models. These MLP
models went through hyperparameter tuning, and the errors
of the most-accurate MLP models are reported in Figure 2
under the label "MLP-only", which shows that this MLP-only

method has lower accuracy than our compound and direct
method, mainly due to the small dataset. Moreover, as Table 2
shows, the sizes of the MLP-only models are much larger
than our compound models, due to the need of relying on
pure neural networks to remove all noises.

In summary, the above results show that our hypothesis is
likely to be valid, although more data are required to further
validate this hypothesis. In the rest of this paper, we will
present the details of our methodology for data collection and
HRV estimation.

3 Compound and Direct HRV Estimation
In this section, we present our signal processing and machine
learning combined method for direct HRV estimation.

3.1 Data Collection
A single HRV estimation typically requires 30 seconds to

5 minutes of PPG/ECG monitoring [1]. Moreover, typically,
a sequence of five minutes to 24 hours of HRV data is used
in medical practice [40]. Therefore, studying HRV estima-
tion requires hours of PPG/ECG monitoring data to provide
enough data points. As there lack of such public datasets, our
first task in this research was to collect longer traces of PPG
and ECG data.

One subject participated in this data collection. The subject
had a PPG sensor attached to the fingertip and an ECG moni-
tor attached to the chests at the same time. The PPG data were
collected as features/inputs for the HRV inference, whereas
the ECG data were used as the labels for model training and
as the groundtruth in model testing/evaluation. To reduce the
energy consumption caused by the PPG sensors, we collected
PPG readings at a frequency of 25Hz, rather than the 125Hz
used by the ISPC dataset and other studies [4, 10, 27, 44].

The subject conducted three activities during the data col-
lection, including sitting, sleeping, and office work. The office
work activity includes actions such as working in front of a
computer, walking, and drinking water. For each activity,
more than two hours of PPG/ECG data were collected, which
gave about 180193 to 180271 PPG readings per activity.

3.2 Workflow for HRV Inference
Figure 3 gives the overall workflow of our HRV inference
methodology. This workflow includes three major steps, PPG
data collection, signal processing, and machine learning-
based HRV inference. The following paragraphs provide a
detailed description of each step.

3.2.1 Step 1: PPG Monitoring. As our HRV inference is
based on PPG sensors, the first step is to collect the PPG light
signals reflected from the blood flow. Here, we employed a
sampling rate of 25Hz, i.e., 25 signals are collected every
second. This sampling rate is lower than the 125Hz used
by many prior studies [4, 10, 27, 44], and it is employed to
reduce the power consumption of sensing, as prior work [6]
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PPG (light) data:
{l1, l2, l3, 
 ..., l25n}

Step1: 
PPG monitoring 
for n seconds

Step2.1: 
Sig Proc to generate
HR Estimations

Step2.2: 
Z-score outlier
Adjustment 

Rough HR Estimations:
{HR1, HR2, HR3, 
 ..., HR4n}

Step3: 
ML-based Direct
HRV Inference 

Smoothed HR Estimations:
{sHR1, sHR2, sHR3, 
 ..., sHRn}

Final HRV estimation
as RMSSD or SDNN

Step2.3: 
Data Smoothing 

Step2: Signal Processing

Figure 3. The workflow of our compound and direct HRV inference.

has shown that high sampling frequency incurs high power
usage. Low sampling frequency, however, may negatively
affect HRV inference accuracy. As discussed later, we rely
on signal processing and machine learning to compensate for
this negative accuracy impact. Let {𝑙1, 𝑙2, 𝑙3, . . . , 𝑙25𝑛} denotes
the sequence of the 25𝑛 light signals over 𝑛 seconds. These
signals are fed to step 2 for processing.

3.2.2 Step 2: Signal Processing. The primary goal of our
signal processing is to remove the noises due to motion ar-
tifacts with outlier adjustment and data smoothing. The sec-
ondary goal of our signal processing is to generate HR esti-
mations to be used later as features for ML models.

Step 2.1: Signal Processing to Generate HR Estimations.
In this step, we convert the PPG light signals collected in Step
1 into four heart rate estimations per second using signal pro-
cessing. This processing essentially applied a peak detection
algorithm to the PPG signals. These peaks can be viewed as
"heartbeats", and hence, their counts can be used to estimate
HR [2]. After this conversion, there are 4𝑛 HR estimations
over 𝑛 seconds, denoted as {𝐻𝑅1, 𝐻𝑅2, 𝐻𝑅3, . . . , 𝐻𝑅4𝑛}.

This conversion serves two purposes. First, this conver-
sion simplifies the noise removal (i.e., outlier adjustment and
smoothing) conducted later. Motion artifacts typically affect
a sequence of PPG light signals, and it can be challenging
to distinguish erratic signals from real HR fluctuations when
working on raw signals. Converting to HR estimations re-
duces the number of data points, making it easier for noise
removal. Second, these converted HRs are also used as the
features of our ML models in Step 3.

Step 2.2: Z-score Based Outlier Adjustment. Many noisy
signals can be simply viewed as outliers. Therefore, outlier
identification algorithms can be used to remove these signal
noises. More specially, we applied the popular Z-score-based
outlier filter algorithm [23, 33].

The Z-score filter identifies the outliers by picking out the
data points that deviate the most from the mean. Concretely,
consider a large sequence of HR estimations, {𝐻𝑅1, 𝐻𝑅2, . . . },
with mean 𝜇 and standard deviation 𝛿 . If the difference be-
tween a data point 𝐻𝑅𝑖 and 𝜇 ( i.e., |𝐻𝑅𝑖 − 𝜇 |) is larger than a
threshold, then𝐻𝑅𝑖 can be viewed as an outlier. This threshold
is typically defined based on the standard deviation 𝛿 . Partic-
ularly, the threshold is defined as 𝑧_𝑠𝑐𝑜𝑟𝑒 × 𝛿 . In this work,
we used a z_score of 3, following common practices [36, 42].

That is, if the difference between HR estimation 𝐻𝑅𝑖 and the
mean 𝜇 is larger than 3𝛿 , then 𝐻𝑅𝑖 is deemed as an outlier.

We do not remove outliers because HR estimations are
time series, and removing estimations would create "holes"
within the time series. Consequently, after the outliers are
identified, their values are just adjusted to be the average of
their neighboring estimations. That is, given an outlier 𝐻𝑅𝑖 ,
its value is adjusted to be 𝐻𝑅𝑖−1+𝐻𝑅𝑖+1

2 .
Step 2.3: Data Smoothing. The above outlier adjustment

only identifies data points with large noises, i.e., data points
deviate greatly from the overall mean. However, there could
still be HR estimations that deviate significantly from local
HR averages. These deviating HR estimations usually mani-
fest themselves as abnormal local peaks/valleys. These local
peaks/valleys are usually caused by signal noises, because
normally, a person’s heart rate does not increase (or drop)
abruptly and drops (or increases) back within one second.

To remove these local noises, we apply moving average
data smoothing. More specifically, this data smoothing con-
verts the four rough HRs within a second into one HR es-
timation per second by computing their averages to reduce
the impact of the abnormal local peaks and valleys. After
the smoothing, there are 𝑛 smoothed HR estimations over 𝑛
seconds, denoted by {𝑠𝐻𝑅1, 𝑠𝐻𝑅2, 𝑠𝐻𝑅3, . . . 𝑠𝐻𝑅𝑛}.

3.2.3 Step 3: ML-based HRV Inference. The last step of
our methodology employs ML to infer HRV. As stated pre-
viously, the ML models are trained to serve two purposes si-
multaneously. First, they are trained to further remove/reduce
the noises that cannot be filtered by signal processing. These
additional noises may include long motion artifacts that affect
several seconds of PPG signals, the sensor bias (e.g., sensor
sensitivity and calibration issues), and the errors due to our
low sampling frequency. Second, with further reduced noises,
these ML models estimates the final HRV. These models
directly infer SDNN/RMSSD, instead of the RR intervals.

The main input features to the ML models are the smoothed
HR estimations over 𝑛 seconds from Step 2, i.e., the vector
{𝑠𝐻𝑅1, 𝑠𝐻𝑅2, 𝑠𝐻𝑅3, . . . 𝑠𝐻𝑅𝑛}. These smoothed HR estima-
tions are also used to derive a rough HRV (SDNN or RMSSD)
estimation, denoted by 𝑟𝐻𝑅𝑉 , using the Equations (1) and (2).
This rough HRV is used as a constructed feature for our
ML models. As shown with Equations (1) and (2), comput-
ing HRV requires exponentiation and square root operations,
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which may require large ML models to simulate. Therefore,
employing a computed rough HRV estimation as a feature
can potentially reduce the trained model size.

In summary, the features of our ML models are the vector,
{𝑠𝐻𝑅1, 𝑠𝐻𝑅2, 𝑠𝐻𝑅3, . . . 𝑠𝐻𝑅𝑛, 𝑟𝐻𝑅𝑉 }. The output of our mod-
els is the HRV estimation for the past 𝑛 seconds in SDNN or
RMSSD. Note that, 𝑛 represents the number of seconds of
PPG monitoring, which is a tuneable parameter depending on
the HRV use case. In the experimental evaluation (Section 4),
we evaluated different values for 𝑛.

3.3 Model Training
During our PPG data collection (described in Section 3.1),
the subject also had an ECG attached to collect groundtruth
HRV readings. The groundtruth HRVs are used both as the
labels in the training data and validation/testing data.

We partitioned the collected data into training and testing
datasets with a split of 80% and 20%. All models were also
optimized with hyperparameter tuning [5] to find the model
with the best accuracy. The specific hyperparameters for each
type of model are given in Section 4.1.2. Note that, we limited
hyperparameter search space to avoid generating models that
are too large for small embedded devices.

4 Experimental Evaluation
This section presents the evaluation results, focusing on the
HRV inference accuracy, ML model sizes, and inference time.

4.1 Experiment Setup
4.1.1 Hardware used in Data Collection and Inference.
Our dataset contains one channel of PPG data. The subject
simultaneously wore the PPG sensor on the fingertip and
ECG electrodes. The PPG sensor is connected to a Raspberry
Pi 4B through an i2C bus to record the data. The hardware
components are: 1) a Raspberry Pi 4B with 4 GB RAM; 2) a
Maxim MAXREFDES117 HR monitor with a MAX30102
PPG sensor; and 3) a TLC5007 Dynamic ECG. PPG data and
ECG data are synchronized according to their timestamps.
The Raspberry Pi is also used to measure the inference latency
of the signal processing and ML models.
4.1.2 ML Models and Hyperparamter Configurations.
DT, RF, KNN, and SVM models were implemented using
Scikit-learn [26] and MLP was implemented using Keras.
ML models were saved with 𝑗𝑜𝑏𝑙𝑖𝑏. We used the random
search function 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 in Scikit-learn and
𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ in Keras-tuner to tune the model hyperparam-
eters. The hyperparameters are: 1) For DT, the maximum
depth of the tree ranges from 3 to 20; 2) For RF, the number
of trees is between 2 to 128, and the maximum tree depth is
between 3 to 20; 3) For KNN, the number of neighbors is
between 2 to 30, and the distance can be Manhattan or Eu-
clidean; 4) For SVM, the kernel may be among RBF, sigmoid
and polynomial, and regularization (i.e., 𝐶) may be between

0.00001 to 10; 5) For MLP, there are 1 to 5 hidden layers,
each with 1 to 100 neurons, and the activation function can
be 𝑟𝑒𝑙𝑢 or 𝑡𝑎𝑛ℎ.
4.1.3 Metrics. For HRV estimation accuracy evaluation,
we used the metric MAPE (Mean Absolute Percentage Error)
between the HRV estimations and groundtruths. Given 𝑚

HRV estimations, the definition of MAPE is,

𝑀𝐴𝑃𝐸 =
100%
𝑚

𝑚∑︁
𝑖=1

����𝐻𝑅𝑉𝑒𝑠𝑡,𝑖 − 𝐻𝑅𝑉𝑡𝑟𝑢𝑒,𝑖

𝐻𝑅𝑉𝑡𝑟𝑢𝑒,𝑖

����. (3)

For model size evaluation, we report the sizes in KB (kilo-
bytes) or MB (megabytes). For inference time evaluation,
we report the average time it takes to make an inference in
microseconds (𝜇s) or milliseconds (ms).

4.2 Accuracy Evaluation
Figure 4 and Figure 5 give the MAPE of our compound and
direct methods, using different types of ML algorithms at dif-
ferent monitoring lengths (i.e., the 𝑛 seconds in Section 3.2.3).
The figures also give the errors of the signal-processing-only
method ("Sig-proc Only"). The following paragraphs discuss
these accuracy results in detail.

4.2.1 Overall Accuracy of Our Method. Figure 4 and Fig-
ure 5 show that our compound and direct prediction methods
usually had errors between 3.5% to 25.7%. The highest er-
ror was 25.7%, which was for the KNN model for SDNN
estimation under the office work scenario with 30 seconds
monitoring length (Figure 5a). The lowest error was only
3.5%, for the MLP model for RMSSD inference under sit
scenario with 300 seconds monitoring length (Figure 4c).

For the majority of the models, the errors of our method
were less than 20%. Figure 6 also shows that the overall
average MAPEs for different ML models (overall activities
for both RMSSD and SDNN) are all less than 13.2%. MLP
models have the lowest overall average MAPEs of only 9.1%.
These results show that our compound and direct method has
high accuracy for HRV estimation.

4.2.2 Comparison with Signal Processing Only. Figure 4
and Figure 5 also show that our method was usually more
accurate than the signal-processing-only method ("Sig-proc
Only"). In the case of RMSSD estimation (Figure 4), the
signal-processing-only method usually had errors above 20%,
whereas our method’s errors are usually less than 20%.

In the SDNN estimations (Figure 5), the signal-processing-
only method had lower errors than their RMSSD estimations,
because SDNN measures long-term HRV and is less sensitive
to signal noises. We had a similar observation for the ISPC
dataset as discussed in Section 2.3. Nonetheless, our method
usually still had lower errors than the signal-processing-only
method for SDNN estimations.

The only exceptions were for SDNN estimations in sit sce-
nario with 240/300 seconds monitoring lengths (Figure 5c,
where our method with some ML models (e.g., SVM) had
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Figure 4. MAPEs for HRV/RMSSD estimations for different activities.
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Figure 5. MAPEs for HRV/SDNN estimations for different activities.
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Figure 6. Average MAPEs across all activities and all moni-
toring lengths.

higher errors than the signal-processing-only method. How-
ever, the error difference was small – only 2.2% at most.
Moreover, our method with the MLP model was still more
accurate than signal-processing-only in these cases.

Overall, Figure 6 shows that the signal-processing-only
method has an overall average MAPE of 25%, which is higher

than the overall average MAPEs (about 12%) of our com-
pound and direct method using any ML model.

4.2.3 Traces of HRV Estimation. Figure 7 and Figure 8
give the traces of the RMSSD HRVs from the groundtruth
(ECG), signal-processing-only method, and our method with
MLP model for the sleep activity data. These traces illustrate
that our MLP models reduce at least two types of noises after
signal processing. The first type of noise is mostly errors
due to either sensor bias or low sampling frequency. For
example, for the 5600’th to 5750’th HRVs in Figure 7, signal-
processing HRVs had similar fluctuation trends as the ECG
HRVs, but they deviate by roughly 10. The MLP model,
however, was trained to correct this "deviation" and produced
more accurate HRVs. This same issue can also be observed for
the SDNN estimations in Figure 8. The second type of noise is
usually from motion artifact noises that affect a longer period.
For example, for the 5900’th to 6200’th HRVs in Figure 7,
signal-processing HRVs were flat then dropped, whereas the
ECG HRVs were sharply increasing. These longer errors were
also detected and corrected by our MLP model to produce
HRVs increasing from 38 to 50, similar to the ECG.
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Figure 7. RMSSD estimation trace (sleep activity, monitoring length of 180sec). The yellow line separates training and test data.
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Figure 8. SDNN estimation trace (sleep activity, monitoring length of 180sec). The yellow line separates training and test data.

The same conclusion can be drawn from the traces for other
models, activities, and monitoring lengths. However, due to
space limitations, these traces are omitted.

4.2.4 Impact of Type of Activity and HRV Metric. Across
the results for the three activities in Figure 4 and Figure 5,
HRV estimations for sit had the lowest MAPEs. These low
errors were because when the subjects sat, they had little
movement, hence, lower motion artifacts. In this work, we
built one ML model for each activity. However, if only one
ML model is built to cover all activities, then these MAPE dif-
ferences suggest that more sensors/features (e.g., accelerome-
ter or gyroscope) may be needed to conduct noise correction
differently for different activities.

Moreover, Figure 6 also show that our method’s average
MAPEs only differ slightly for RMSSD and SDNN estima-
tions, indicating that our method works for both short-term or
long-term HRV monitoring. However, the signal-processing-
only method had considerably lower errors for SDNN (long-
term) estimations than RMSSD (short-term) estimations.

4.2.5 Accuracy Impact of Model Types. Figure 6 shows
that MLP models were generally more accurate than other
ML models in our method, with average MAPEs for RMSSD,
SDNN, and "overall" being only 6.9%, 11.3%, and 9.1%,
respectively. Nonetheless, the differences in average MAPEs
among model types in Figure 6 are less than 4%. These similar
MAPEs match the recently proposed "Rashomon" theory [32],

which states that there could be multiple ML models having
similar accuracy for the same dataset. A group of models
with similar accuracy implies that it is beneficial to conduct
ML model exploration to search for models that fit certain
non-functional requirements, such as low model sizes and
fast inference time in the embedded applications.

4.2.6 Accuracy Impact of Monitoring Length. Figure 4
and Figure 5 also show that another factor that impacts the
accuracy of our method is the monitoring length 𝑛. That is, the
longer the monitoring length, the lower the HRV estimation
error. And the HRV estimations for the monitoring length at
300 seconds usually had the lowest errors. An HRV estimation
for longer monitoring is usually less susceptible to a few noisy
PPG signals, and therefore, it tends to have lower errors.

Note that, the required HRV monitoring length depends
on the use case [40]. For example, 300-second monitoring is
applied for caring for chronic renal failure and diabetes [1].
The fact that errors vary with monitoring lengths also suggests
the applicability of PPG-based HRV monitoring to medical
use needs to be evaluated case by case.

4.2.7 Comparison with the ML-only Method. We also
experimented with the ML-only method to directly infer HRV
using the original PPG data collected from the sensors. How-
ever, we were not able to obtain any ML-only HRV models
with good accuracy, or even meaningful estimations. These
models typically have accuracy similar to, sometimes even
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Figure 9. Sizes of HRV/RMSSD models for different activities.
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Figure 10. Sizes of HRV/SDNN models for different activities.

worse than, the signal-processing-only method. For the case
of MLP, the HRV estimations produced by each MLP model
are mostly the same value, making the estimations practically
useless. These MLP models also have average sizes of 6.7MB
and maximum size of 26.6MB, larger than the MLP models
in our compound method.

We believe the main cause of the low accuracy was the
small hyperparameter search space. Recall that we limited
the hyperparameter search space to limit the ML model sizes,
which also limits the model complexity. However, it typically
needs very complex ML models to infer HRV using only
the original PPG signals. Because of the poor results of the
ML-only HRV models, we did not include them in the paper.

4.3 Model Size Evaluation
Figure 9 and Figure 10 give the sizes of the ML models
generated by our direct and compound HRV inference method.
As both figures show, the ML model sizes ranged from 2.8KB
to 12.4MB. The figures also show that the model sizes are less
affected by the type of activities and the HRV metric (RMSSD
or SDNN). Monitoring lengths have a higher impact on the

model size – the longer the monitoring length, the more input
features, and hence, larger models.

The largest factor for model size is the type of model. RF,
KNN, and SVM models are usually large and approaching
10MB. As the input HRs to the ML models are generated
from PPG signals, they are usually "messy" and lack a clear
"pattern." Hence, RF/KNN/SVM requires large numbers of
internal parameters to learn their "patterns." The MLP models,
however, are smaller – most MLP models are below 200KB,
with the smallest model being 63.4KB (Figure 9c at 30s)
and the largest model being 468.5KB (Figure 10a at 240s).
DT models are even smaller, – most DT models are below
10KB, with the smallest model being 2.8KB (Figure 9c at
the 30s) and the largest model is 35.4KB (Figure 9b at 120s).
Considering DT and MLP models can fit in on-chip memory
of hundreds of KB, they are better candidates for deploying
to tiny embedded devices.

4.4 Inference Time Evaluation
Figure 11 and Figure 12 give the inference time of our com-
pound and direct method. As both figures show, the inference
time for all models was less than 7.3ms (max 7295𝜇s). DT



CHASE ’23, June 21–23, 2023, Orlando, FL, USA Zhang et al.

30 60 120 180 240 300
Monitoring Length (n seconds)

101

102

103

104

105

In
fe

re
nc

e 
Ti

m
e 

(
s)

DT
RF
KNN

SVM
MLP

(a) Office Work.

30 60 120 180 240 300
Monitoring Length (n seconds)

101

102

103

104

105

In
fe

re
nc

e 
Ti

m
e 

(
s)

DT
RF
KNN

SVM
MLP

(b) Sleep.

30 60 120 180 240 300
Monitoring Length (n seconds)

101

102

103

104

105

In
fe

re
nc

e 
Ti

m
e 

(
s)

DT
RF
KNN

SVM
MLP

(c) Sit.

Figure 11. ML model inference time for HRV/RMSSD estimations for different activities.
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Figure 12. ML model inference time for HRV/SDNN estimations for different activities.

models are the fastest models due to their small sizes – the
inference time for DT models is between only 2.9𝜇s to 10𝜇s.
The inference time of RF models is also fast, ranging between
17.6𝜇s to 57.2𝜇s. The SVM models are the slowest due to
their large sizes, and their inference time ranges from 0.7ms
to 7.3ms. Nonetheless, even 7.3ms is fast enough for HRV
inference, indicating that all models under our methodology
are fast enough for HRV monitoring with embedded devices.

The signal processing takes 65.74ms on average and 68.31ms
at maximum, which is significantly slower than ML model
inference.1 Nonetheless, the signal processing is still fast
enough for HRV monitoring. Note that, the total computation
time for our method includes both the signal processing time
and ML inference time.

5 Related Work
Although there are many existing works on HR monitoring
[4, 7, 10, 25, 43, 45], only a few studied HRV monitoring.

1This 65.74ms is also the average processing time for the signal only method.

5.1 PPG HRV Monitoring with Signal Processing
Ghamari et al. proposed a signal processing algorithm includ-
ing High-Pass and low-Pass Filters to detect R peaks [17].
Srinivas et al. proposed a signal processing method includ-
ing moving average and FFT to measure HRV based on the
PPG wave [34]. However, both of them did not evaluate the
accuracy of HRV estimations. Wang et al. proposed an algo-
rithm to estimate RR intervals from a smartwatch PPG sensor
and accelerometer [38]. They calculated HRV measurements,
such as SDNN and RMSSD. However, no quantitative accu-
racy was reported. Blake et al. devised an HRV estimation
hardware that contains a PPG sensor, an accelerometer, a
Bluetooth module, and a battery [8]. This study only com-
pared the HRV readings from a chest strap instead of ECG
with no quantitative report on accuracy. Janković and Sto-
janović designed a signal processing algorithm including a
low-pass filter, Sum Slope Function, and a peak extraction
function to find R peaks [19]. They collected data for 8 min-
utes in the experiment and obtained one HRV for each trace,
and compared them with ECG HRV. However, it was unclear
which HRV metric they used. Bhowmik et al. proposed an
algorithm including wavelet denoising, trend removal, and
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peak extraction to detect R peaks in PPG signals [6]. They
found that a 100Hz PPG sampling rate is not suitable for
a smartwatch due to high power consumption and chose
25Hz. Inspired by this work, we also choose 25Hz as the
PPG sampling rate to save energy. Saadeh et al. employed
earlobe-attached PPG and wavelet decomposition and moving
average filters to estimate RR intervals [29].

Note that, due to the nature of PPG light signals, the above
prior studies all estimated RR intervals first, and then con-
verted into HRV. As discussed previously, inferring HRV
through RR intervals can lead to low accuracy due to error
amplification. Moreover, as we show in this paper, pure signal
processing may not be able to handle all types of PPG noises.

5.2 PPG HRV Monitoring with Machine Learning
While there are prior studies that employed ML models to
estimate HRV, most of these studies focused on R peak/RR in-
terval estimation, instead of predicting HRV directly. Everson
et al. proposed a CNN-based encoder-decoder network to con-
struct ECG waves from PPG waves and evaluated HRV based
on the predicted wave [14]. They evaluated the model with
the small ISPC dataset, which led to only one HRV estimation
per recording. Similarly, Chiu et al. designed a CNN-based
encoder-decoder with a sequence transformer network to gen-
erate ECG waves from PPG waves [11]. They evaluated the
model with the UQVSD dataset and the BIDMC dataset -
both are datasets from barely moving patients with low mo-
tion artifacts. Xu et al. classified PPG signals to systolic or
diastolic phase using an RNN model with the assistance of
an accelerometer [41]. They obtained RR intervals based on
the classification results and evaluated the RR interval esti-
mations. Wittenberg et al. compared a few CNN and GRU
classification models for PPG R peaks detection [39]. They
classified short PPG waves based on whether the first sample
in it is an R peak. Maritsch et al. proposed a CNN model
to predict the error of the RMSSD estimations from a smart-
watch [22]. This work did not involve PPG signals. Alqaraawi
et al. explored Bayesian learning to detect the PPG peaks with
their collected data [3]. However, their monitoring length was
only 5 or 8 minutes, and hence, only one HRV was provided,
while our data lasted 2 hours. Choudhury et al. used a phone
camera to capture signals of a human fingertip and extract RR
intervals from the collected data with adaptive neural network
(ANN) and SVM [12]. Instead of predicting HRV, most of
the above studies mainly predicted/detected R peaks or RR
intervals. However, as we show in Section 2.3, small errors in
RR peak intervals can be magnified into large errors in HRV
estimates. Therefore, in this work, we estimated HRV directly
(represented by SDNN and RMSSD) from PPG signals.

Commercial wearable devices may also provide HRV esti-
mations, such as Garmin smartwatches [16]. However, prior
work has shown that smartwatch estimations may have high
errors [22]. Due to their proprietary nature, we were not able

to rigorously evaluate commercial wearable devices. There-
fore, we focused on comparing and analyzing existing re-
search studies in our motivation and evaluation sections.

6 Conclusion
Photoplethysmography (PPG) sensors have been shown to be
a good alternative for electrocardiographic (ECG) in Heart
Rate Variability (HRV) monitoring. However, to be applied
to practical and medical use, PPG HRV inference methods
must be carefully designed. Prior work typically employed
signal-processing-only or machine-learning-only methods to
indirectly infer HRV from PPG signals, leading to low ac-
curacy and large models. In this paper, we presented a com-
pound and direct HRV inference method, which combines
signal processing and machine learning to directly infer HRV.
Evaluation results show that our method has errors as low as
3.5% with model sizes of a few hundred KBs, suggesting that
our method can be applied in small embedded devices and
potentially for medical uses.
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