
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 1

Guaranteeing Performance SLAs of Cloud
Applications under Resource Storms

In Kee Kim, Member, IEEE, Jinho Hwang, Member, IEEE, Wei Wang, Member, IEEE,
and Marty Humphrey, Member, IEEE

Abstract—In modern data centers, enterprise cloud instances run not only foreground applications like web and databases, but also
different background services (e.g., backup, virus/compliance scan, batch) to manage the cloud instances securely and improve the
overall resource utilization. These background services often incur resource storms that suddenly consume a lot of shared resources
on cloud instances. The resource storms significantly degrade the performance of foreground applications by interfering in the
preemption of the shared resources, resulting in frequent SLA violations. However, stock OS schedulers are not designed to handle
these situations, and prior works are insufficient to address such resource storms under highly dynamic cloud workloads. This work
presents Orchestra, a cloud-specific framework for controlling multiple applications in the user space, aiming at meeting corresponding
SLAs. Orchestra takes an online approach with lightweight monitoring and performance models for both applications on the fly. It
optimizes the resource allocations to meet corresponding SLAs. We evaluate the performance of Orchestra on a production cloud with
a diverse range of SLAs. Orchestra guarantees the foreground application’s performance SLAs at all times. At the same time, Orchestra
maintains the background’s performance by minimizing its performance penalty with proper allocation of the shared resources.

Index Terms—Cloud Computing; Resource Storms; Resource and Application Management, Guaranteeing Performance SLA;
Performance Modeling and Prediction, Enterprise Cloud Management

F

1 INTRODUCTION

IN modern data centers, enterprise cloud instances (i.e.,
virtual machines) are not only serving user-facing (fore-

ground or FG) applications, but also running diverse types
of background (BG) services1 – backup, security compliance,
virus scan, patching, and batch tasks – in order to securely
and reliably manage such instances, and improve overall
resource utilization/cost efficiency. Since the BG services
frequently perform very critical missions for management
purposes, they have to be executed as planned in many
cases [1]. This requirement incurs resource storms [2] that
create high peaks of resource usage and surges of resource
contention without being aware of the FGs’ resource re-
quirements [3–9]. Such resource storms can retard the pro-
cessing time of FG applications and in turn the response
time.

Figure 1(a) illustrates the performance degradation of
two FGs (Olio Web application and MongoDB) when they
co-run with BGs. To confirm the performance change in
FGs, we use three different BGs, which are a backup, virus
scanner, and batch (MapReduce) applications. The result
shows that the web application’s tail latency (98%tile) could

• I. K. Kim is with the Department of Computer Science, University of
Georgia, Athens, GA 30602. E-mail: inkee.kim@uga.edu

• J. Hwang is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598. E-mail: jinho@us.ibm.com

• W. Wang is with the Department of Computer Science, Univer-
sity of Texas at San Antonio, San Antonio, TX 78249. E-mail:
wei.wang@utsa.edu

• M. Humphrey is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22904. E-mail: humphrey@cs.virginia.edu

1. In this paper, we use the term “application,” “task,” and “service”
interchangeably.

 0

 2

 4

 6

 8

 10

No BG 1 BG 2 BGs 3 BGs

24x

33x
36x

7.2x
10x 11x

Re
sp

on
se

 T
im

e
(S

ec
.)

(a) FG Response Time

Web
DB

 0

 2

 4

 6

 8

 10

No FG WLx1 WLx2 WLx3

1.0x
1.6x

3.3x

7.5x

N
or

m
. S

lo
w

do
w

n

(b) BG Execution Slowdown

Fig. 1. Performance variation of FG and BG applications. (a) the slow-
down of FGs (Web and DB) response time (98%tile) when running
together with BGs; (b) the slowdown of a 10G data backup duration
as the FG workloads increase.

be as slow as 24x with a BG application (backup), 33x
with two BGs (backup and virus scanner), and 36x with
three BGs (backup, virus scanner, and batch application).
We also observe that MongoDB also shows a similar trend
of performance degradation when co-running with different
numbers of BGs. The degraded performance has a signifi-
cant impact on the QoS of the FGs, resulting in frequent SLA
violations and poor user experiences. For instance, Amazon
has reported that every 100ms delay loses 1% of the sales
profit [10], and video streaming (e.g., YouTube) users start
abandoning videos after 2 seconds of buffering time [11].

However, the current cloud instances are not well de-
signed to handle the resource storms. Specifically, stock op-
erating system schedulers such as completely or weighted
fair scheduler (CPU, IO) and network queueing (FIFO)
mechanisms are designed without considering the resource
storms [12, 13], so that SLAs of FGs suffer while parts
of shared resources are consumed by BGs [14, 15]. OS

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 2

modifications, such as changing task priority [16], design-
ing a biased OS scheduler [17], have been proposed, but
such tweaks are not feasible for ordinary cloud users due
to the technical difficulties. Moreover, intuitive approaches
(e.g., terminating or suspending BGs [18, 19]) to guarantee
the FGs’ SLA are not sufficient in practice since particular
BG tasks, such as backup and security checks, may have
SLAs2 to finish the tasks due to the importance of such
services [1]. As shown in Figure 1(b), the BGs’ execution
time is also highly affected by the amount of FG workloads.
Such coarse-grained approaches – minimizing the resource
allocation – are hard to guarantee the BG’s SLAs (or comple-
tion of the tasks) and often underutilize the cloud instances
by overly controlling the BGs.

The research community has performed significant
work, especially when one or more FG applications – nor-
mally latency-sensitive applications – are running together
with other BGs such as batch jobs [18]. Previous approaches
mainly focus on enhancing performance isolation [12, 20–
22], designing intelligent scheduling policies [5, 23–25], or
determining safe co-locations [3, 4, 26]. These techniques
often rely on either or both of monitoring the host ma-
chine’s system/HW-level statistics (e.g., program counter
and cache miss rate) and profiling the behaviors of FGs
and BGs. While AWS recently started to provide PMU
(Performance Monitoring Unit) capability to the dedicated
instance users [27], this information is not yet accessible
by the users of more general resource provisioning models
like on-demand and spot instances. In general, only cloud
providers (e.g., AWS, Azure, or data center operators) are
allowed to leverage such information [28, 29], so we do not
consider using such information in this work. The profiling-
based approaches aim to create performance interference
models through off/online measurements. However, the
models do not provide the flexibility required in highly
dynamic cloud environments and workloads [30, 31]. The
models need profiling of target applications with differ-
ent/diverse constraints – virtual resources (vCPU, memory,
network, disk) and even HW architectures –, and different
combinations of placement with other types of applications.
It is apparent to imagine how much profiling effort needs
with all possible combinations. As a result, the models
created by the off/online measurements are more desirable
in practice, yet the required computation and monitoring
power are very challenging.

In this paper, we address the impact of the resource
storms by creating Orchestra, a framework for control-
ling both FG applications and BG3 services in the user
space, aiming at meeting both SLAs. Orchestra relies on
an online approach with very lightweight monitoring at
runtime. With the monitoring, Orchestra estimates the re-
sponse time of FGs using a multivariate polynomial model
with a wide range of resource options and predicts a
BG’s execution time from a multivariate linear regression

2. These SLAs are often very relaxed as compared to the SLAs for the
FGs. i.e., once in a day.

3. In this work, we consider that BG is running on Virtual Machines
(VMs) and managed by public cloud users. The users have control
over both FG applications and BG services. Thus the users can obtain
application-level and system-level statistics regarding the execution of
FGs and BGs.

powered by its resource usage and application-assisted
hints. It then optimizes the allocations of diverse resources
on cloud instances to both FG and BGs for guarantee-
ing their SLAs. The resource control by Orchestra lever-
ages the knobs provided by modern OS’s improvement,
such as cgroups4. Orchestra is complementary to widely
used approaches for cloud application management. Or-
chestra’s capabilities for performance monitoring and re-
source controlling offer finer-grained mechanisms than off-
the-shelf monitoring/management (e.g., cloud auto-scaling5

and CloudWatch6), and thus it helps cloud users accurately
determine when to scale.

We have implemented and evaluated Orchestra with
real workloads on the production clouds. Our primary
workloads are a web service and a NoSQL database (Mon-
goDB) for FG applications, and backup (AWS Sync7) and
virus/malware scanner (ClamAV8) for BG services. Our
evaluation shows that Orchestra can comply with various
SLA targets for FG applications with 70% performance
improvement of the BG services. Moreover, Orchestra has
a very high overall correctness (less than 5% error), 16.5%
of MAPE (Mean Absolute Percentage Error) for the FGs’
response time estimation, and over 90% accuracy for the
BGs’ performance prediction.

As a result, Orchestra has the following contributions:
• A real trace of performance and resource usage fluc-

tuations of two BG applications measured on real
IBM production servers to demonstrate the severe
impact of resource storms (Section 2).

• A user space resource control framework that pro-
vides low-overhead resource management to ensure
high SLA satisfaction for multiple co-running appli-
cations (both FG and BG) on cloud instances (Sec-
tion 3.1, 3.4, and 4).

• An accurate, multivariant regression-based response
time estimator for various FG applications. In par-
ticular, we perform extensive characterization of the
behavior of two FG applications (e.g., web and
MongoDB) as well as evaluation of overhead and
accuracy from the prediction model with various
parameters (Section 3.2).

• Design of an accurate performance model for BG
services. Specifically, we provide a detailed corre-
lation of the execution of BG services with diverse
resource factors (e.g., CPU, memory, IO, disk) as well
as application-specific parameters (Section 3.3).

• A thorough evaluation of the performance of Orches-
tra on the production clouds with real FG and BG
workloads. We evaluate the overall performance of
orchestra regarding SLA satisfaction, the accuracy
of performance prediction models for both FG and
BGs, as well as the overhead of the framework. In
particular, we employ a more realistic application
deployment scenarios in public cloud environments
(e.g., FG co-running with multiple BG services) to

4. https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt

5. https://aws.amazon.com/autoscaling/
6. https://aws.amazon.com/cloudwatch/
7. http://docs.aws.amazon.com/cli/latest/reference/s3/sync.html
8. https://www.clamav.net/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 3

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400
 0

 2

 4

 6

 8

 10Backup Compliance Virus Scan BatchCPU Usage
Response Time

C
PU

 U
sa

ge
 (%

)

Re
sp

on
se

 T
im

e
(s

ec
)

Time (Seconds)

Fig. 2. Resource and performance metrics of a managed cloud instance. Two BGs (Backup and Virus Scan) are measured on VMs in AWS. The
other two BGs (Compliance and Batch) are measured on production IBM servers. The four measurements on real cloud VMs depict the fluctuation
of response time in FG application regarding the change of co-running BG services’ resource consumption.

compare the performance of Orchestra against state-
of-the-art approaches (Section 5).

A preliminary version of this work appeared in ISPDC
2018 conference [2], but the first version only focused on
simplified deployment scenarios of cloud applications. For
example, the previous version only considered deployment
of a FG application (e.g., only hosting Web or MongoDB)
and a BG service (e.g., only executing AWS Sync or Cla-
mAV) on the same VM. In this version, we take a step
further in presenting an improved version of Orchestra with
adopting a more realistic deployment scenario of cloud
applications by executing and controlling multiple BG ser-
vices co-running with a FG application. We further provide
a thorough investigation of the resource storms and the
resource management solution under them. Specifically, in
this paper, we provide an in-depth analysis of the resources
storms inside a production data center (IBM) and public
clouds (Amazon EC2). Moreover, we perform a more com-
prehensive analysis of the behavior of both FG applications
and BG services and identify the most critical factors that
can change the execution of such applications and services.
We also provide a comprehensive evaluation of Orchestra
to study its performance in terms of accuracy and overhead.
These improvements aim at obtaining a complete under-
standing of resource storms and their impacts in real clouds,
as well as a better understanding of the effectiveness of our
solution.

We structure the rest of the paper as follows. In Sec-
tion 2, we describe the background of this work. We present
the framework details and implementation of Orchestra in
Section 3 and 4. In Section 5, we evaluate the performance
of Orchestra with real-world cloud workloads. Section 6 de-
scribes discussion and future work of Orchestra; In Section 7,
we summarize related work. Finally, Section 8 concludes
this paper.

2 BACKGROUND

2.1 Enterprise Cloud Instances

Enterprise or managed cloud instances require high stan-
dards for infrastructure service management such as
backup, application/system monitoring, compliance, and
patching. The services are typically built by a diverse set
of providers. Service vendors often have agent processes
running in the background, and they run commands from a

central manager or report data to the central location. Due to
such behaviors of the BG services, there has been significant
research focused on resource contention, especially batch
jobs. Although the research community has been mainly
focusing on the cloud resource contention problem among
VMs as to resource over-provisioning, in practice, it is
unlikely as cloud providers have reported that the average
utilization of cloud instances is about 20% – 30% [31–
35]. Therefore, over-provisioning resources do not solve the
resource contention for cloud applications.

However, each managed cloud instance often runs 5 – 10
BG service agents, and their operations are not coordinated
as they are from different vendors [36]. Thus, it is highly
likely that agents run simultaneously and saturate resources
abruptly without being aware of FGs’ resource requirements
and in turn, result in resource storms [2]. In each cloud
instance, resource storms generated from BG management
services have a significant impact on the performance of FG
applications. Figure 2 demonstrates the fluctuation of the
response time of a FG application (webserver) on a man-
aged cloud when co-running with multiple management
and BG services such as backup, compliance check, virus
scan, and batch jobs. The impacts from the compliance and
batch are measured on the production IBM servers, and the
other BGs (backup and virus scan) are measured on VMs
from Amazon EC2. As shown in Figure 2, the FG’s varies
significantly as the BGs preempt more shared resources (e.g.,
CPU) on the same cloud instance. Therefore, it is apparent to
imagine that simultaneous executions of BG services could
substantially worsen the FGs performance.

2.2 User Space Resource Control
The resource controls in user space for each resource type
has been developed separately thus far. A CPU control, nice
directly maps to a kernel system call to manually adjust
the task’s priority level of a process, and yet another CPU
resource control, cpulimit9 repeatedly curbs the CPU usage
of a process by stopping the process at different intervals
to keep it under the defined ceiling. A disk resource control,
ionice gets and sets program IO scheduling class and priority
to adjust the disk usage of processes. There are network
traffic shaping tools such as trickle [37], force bind10, and
damper11 that throttle the traffic bandwidth of processes.

9. http://cpulimit.sourceforge.net/
10. http://kernel.embedromix.ro/us/
11. https://github.com/vmxdev/damper

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 4

Master Controller

(Online)
Foreground
Perf. Model

(Online)
Background
Perf. Model

Optimizer
(at every 5
seconds)

Resource
Controller

Data

Collection

Node

Requests

Resource Monitor/Controller

Background Exec. Monitor

Resource Util. and
BG Exec. Progress

Background (or Batch)
Workloads

Foreground Workloads

Sidecar
(Proxy
Agent)

Response Time Changes
Workload Changes

Resource Control Signal
(CPU, Disk, Memory, Network)

Fig. 3. Overall architecture of Orchestra.

With the emergence of cloud computing, there have been
demands for the user space resource control mechanisms.
In particular, the control groups (cgroups) have gained
large attention recently under container virtualization dom-
inance. The Linux’s built-in cgroups is a mechanism that
lets OS schedulers to limit the amount of resources (e.g.,
CPU time, system memory, disk IO, network bandwidth,
or combinations of these resources) available to processes
from user space, and this allows users to specify how
the kernel should allocate specific resources to a group of
processes. Specifically, reconfiguring resources dynamically
on a running system is amenable to user space resource con-
trol with fine-grained control over allocating, prioritizing,
denying, managing, and monitoring system resources. The
advantage of cgroups over prior implementations is that
the limits are applied to a set of processes, rather than to
just one. Orchestra adopts the user space resource control
mechanisms.

3 Orchestra FRAMEWORK

3.1 Orchestra Overview

3.1.1 Overall Architecture
We design Orchestra with a two-layer, distributed archi-
tecture, of managed nodes and a master controller. Figure 3
illustrates the design of Orchestra.

A managed node (VM instance) has two components
in Orchestra– sidecar and node agent. The sidecar – a traffic
forwarder used as an online performance monitor – is designed
to monitor performance variation of the FGs, i.e., a response
time of web requests and DB transactions. It measures the
FG’s processing time by capturing the ingress and egress
time of user requests. Moreover, the sidecar can monitor a
diverse set of FG workloads as long as they use general
purpose protocols (e.g., HTTP, TCP) to communicate with
end-users. The measured FG’s performance is reported to
the data collector in the master controller.

The node agents are used for 1) monitoring the resource
usage of the target applications, 2) monitoring the progress
of BG’s execution, and 3) reconfiguring resources allocation
to both FG and BGs. The monitoring of resource usage

Monitoring

Control

Predictor
(Model

Creation/
Training)

Optimizer

Best Resource
Configuration

SLA under control
Feature Vector (VM Usage, #

Reqs, FG's Res, BG's progress)

Prediction Models
(FG RT, BG Exec Time)

Meet FG's SLA
While maximizing BGs'

throughput

If FG's SLA
violated

init

Fig. 4. Orchestra state diagram.

focuses on collecting general system statistics, i.e., vCPU,
memory, disk, and network IO. The BG’s execution progress
is relying on probing the application-assisted hints, such
as retrieving log files. All the collected statistics – resource
utilization and application progress – are reported to the
data collector in the master controller. The resource recon-
figuration is to manage subsystems of control knobs (e.g.,
cgroups) with the decision made by the master controller.

The master controller plays the most important role in
Orchestra by determining the adjusted resource allocations
to both FG and BGs with the goal of satisfying FG’s SLA
requirement and maximize BG’s executions. To this end,
with various statistics – response time, resource utilization,
and application progress – from the node agents, the master
controller creates a response time estimator (Section 3.2) and
performance model (Section 3.3) for both applications on the
fly. With these models, the master controller optimizes the
resource allocations to achieve the management goal. The
detailed mechanisms will be explained in Section 3.4.

3.1.2 Orchestra Workflow
The workflow of Orchestra is illustrated in Figure 4. Orches-
tra starts with monitoring diverse statistics of the FG and
BG applications’ performance and the instance’s resource
utilization. And it creates feature vectors with the statistics,
and these feature vectors are used to train and create two
predictive models that forecast the FG’s response time and
BG’s execution duration. If a response time of the FG appli-
cation is close to or violates a SLA target (defined by Orches-
tra operator), Orchestra adjusts the resource allocations to
both applications through optimization with two predictive
models. Once the proper resource allocation is determined,
the decision is sent to a node agent that will change resource
usage to both applications. If the performance of FG be-
comes stable (meeting the SLA targets), then Orchestra stops
controlling the resource allocation and comes back to the
steady monitoring state that collects the essential statistics
to tune two predictive models.

3.2 Response Time Estimator for FG Applications
A key component of the master controller is the RT (Re-
sponse Time) estimator that predicts (the near future) web

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 5

 0

 0.2

 0.4

 0.6

 0.8

 1

REQN CPU MEM NRX NTX

Ideal Linear Correlation

W
ea

k
M

od
er

at
e

St
ro

ng

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (
ρ

)
(a) Web Application

 0

 0.2

 0.4

 0.6

 0.8

 1

REQN CPU MEM NRX NTX DWT DRD

Ideal Linear Correlation

W
ea

k
M

od
er

at
e

St
ro

ng

(b) MongoDB

Fig. 5. Correlation coefficient of factors that could affect FG’s response
time. (NRX: Network RX Bytes/sec. NTX: Network TX Bytes/sec., DWT:
Disk Write Bytes/sec., DRD: Disk Read Byte/sec.)

response time or DB transaction time with a broad range
of resource utilization. Since Orchestra’s decision on the
resource control relies upon this estimation model and the
resource control should be made at runtime, high accuracy
with low overhead is an essential prerequisite.

3.2.1 Feature Selection for FG Applications

We observe the behaviors of two FGs (Web and MongoDB)
by running benchmark tools (CloudSuite [38] and TPC-
C12 without BGs’ execution. We then calculate the Pearson
Correlation Coefficient between the FG’s RT and the follow-
ing features, including the number of requests and various
system resources – CPU, memory, disk, and network IOs.

Figure 5 reports the measured correlation. Three factors
show the highest correlation with the RT of web application
(FG) – CPU, MEM (Memory), and NRX (Network RX Bytes).
The coefficients are between 0.6 and 0.75. Note that we do
not measure disk IO for the web application since it has very
negligible disk operations. In the MongoDB benchmark, all
features show relatively weaker correlations. Four factors
– REQN (the request numbers/sec.), CPU, NRX, and NTX
(Network TX Bytes) – show a moderate correlation with the
MongoDB’s RT. The coefficients are slightly over 0.3. While
the MongoDB has weaker factors, we decide to consider all
these (correlated) factors to model the RT estimator because
the RT estimator aims to handle both or potentially more
types of FGs. The selected factors are CPU, MEM, NRX, and
NTX. We exclude REQN from this feature selection since
NRX is a more comprehensive metric that covers REQN.
For the other FGs, users may add other factors if necessary.

Additionally, we measure the correlation coefficient
among these four factors since there could be a certain
possibility that one factor can be correlated with other ones.
i.e., a correlation between CPU and Network IO. We report
the correlations among the factors represented by 1 to 3 of
scale (1: weak, 2: moderate, and 3: strong correlation), and
the results are reported in Table 1. CPU and Network IO are
strongly correlated with each other for both FGs. MEM is
moderately (Web) or lightly (MongoDB) correlated with the
other two factors. MEM also shows low variance over the
RT’s fluctuation. i.e., (µ of 13, σ of 11) for Web, (µ of 23, σ of
2) for MongoDB.

12. https://github.com/apavlo/py-tpcc

TABLE 1
Correlation between the selected factors. (1: weak, 2: moderate, 3:

strong correlation)

(a) Web Application
CPU MEM NRX NTX

CPU – 2 3 3
MEM 2 – 2 1
NRX 3 2 – 3
NTX 3 1 3 –

(b) MongoDB
CPU MEM NRX NTX

CPU – 1 3 3
MEM 1 – 1 1
NRX 3 1 – 3
NTX 3 1 3 –

3.2.2 Model Selection for FG Applications

We chose MVPR (Multivariate Polynomial Regression) [39]
approach to model the RT estimator because MVPR consid-
ers both 1) multiple factors’ contribution to the estimation
target and 2) the correlation among the selected factors. The
MVPR model is expressed as below:

f(x1, x2, ..., xp) =

N∑
i=0

βiφi (1)

where p indicates the number of independent variables, βi
is coefficient, φ1 = 1, φN = xn1 · xn2 · xn3 · · ·xnp , and n is the
order of the MVPR.

When applying a polynomial model to a runtime sys-
tem, the computational overhead is highly concerned. The
overhead depends on both the number of the indepen-
dent variables (p) and the order (n) of the model. With
this concern, we use a harmonic mean of NTX and NRX
(2

1
NTX + 1

NRX

), both representing network-IO statistics, and it
helps to reduce the number of equation terms. i.e., with a
quadratic model, 3 independent variables require 27 terms,
and 4 variables generate 64 terms. Regarding the order of
the model, we empirically test the overhead with a training
dataset (1 hour of Web RT data) and various polynomial or-
ders from two to ten. The overhead exponentially increases
as the order of the polynomial model increases as shown in
Figure 6. However, the overhead is not too high in the model
with the orders less than 5. For example, the quartic model
(order of 4) has an average computational overhead of 7.8ms
and, its highest overhead of prediction is just as high as
87ms. We limit the order of the model with this observation.
Moreover, the overhead of MVPR can be determined by the
size of the training dataset. The RT estimation model with
MVPR incorporates a sliding window technique [40] to limit
the size of the training dataset as well as leverage the most
recent observations.

3.2.3 Model Accuracy of FG Response Time Estimator

We measure the performance of the RT estimation model
with Web and MongoDB. Figure 7 illustrates the RT (ground
truth) from both FGs and prediction from the model with
an order of 2. While this evaluation is performed with less

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 6

 0
 5

 10
 15
 20
 25

Order(2) Order(3) Order(4) Order(5) Order(10)

2.1ms 3.3ms
7.8ms

14ms

326ms
Av

g.
 O

ve
rh

ea
d

(m
s)

Fig. 6. Computational overhead of MVPR model with different polyno-
mial orders.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

Re
sp

on
se

 T
im

e
(s

ec
.)

Time (Second)

(a) Web Application

Ground Truth
Prediction

 0

 0.2

 0.4

 0.6

 0.8

 1
Re

sp
on

se
 T

im
e

(s
ec

.)

Time (Second)

(b) MongoDB

Ground Truth
Prediction

Fig. 7. Prediction results from MVPR model (order of 2) for RTs of Web
and MongoDB.

challenging conditions (without BGs), it is obvious that the
model accurately estimates the RT of the FGs. The prediction
shape from the model successfully catches the trend of the
RT variation for the web application. For the MongoDB, the
model has more errors than the case of the web application,
but it also shows robust predictions except for some outliers.
We perform more comprehensive evaluations for the accu-
racy of the RT estimation model with the BGs’ executions in
the evaluation section.

3.3 Performance Model for BG Services
Orchestra requires a performance model that predicts BGs’
execution time. The model is essential for monitoring and
controlling BGs services because Orchestra needs to assure
BGs’ SLA satisfaction and/or minimizing their execution
time. So this model performs a critical role in optimizing
resource allocation with an accurate prediction of difference
resource usages. To create such a model, we consider Cla-
mAV13 and AWS Sync14 as examples of BGs.

3.3.1 Feature Selection for BG Performance Model
We perform a profiling study on two different Amazon
EC2 instances15 – m3.medium and c4.large – of Ubuntu
16.04 LTS with 35G (10K files) and 106G (50K files) dataset.
In this measurement, we use the default configuration of
Ubuntu OS and run these two BG services individually
without any FGs’ execution. The statistics and results from
this profiling are shown in Table 2. ClamAV is observed as a
CPU and Disk-IO (Read) bound application and moderately
consumes memory resources. Sync mostly consumes CPU,

13. ClamAV is an open-source anti-virus engine used to defend user
instance (e.g., VM) from computer viruses, Trojan, and other malicious
threats.

14. AWS Sync is a backup application for Amazon EC2 instances
similar to rsync. Sync recursively copies new or updated files from
a source directory on an EC2 instance to S3 storage.

15. m3.medium instance has 1 vCPU, 3.75G RAM, and SSD drive [41].
c4.large instance has 2 vCPUs, 3.75G RAM, and SSD Drive [41].

TABLE 2
Statistics of measurement results for understanding BG applications’

characteristics on two EC2 instances.

(a) ClamAV (B) Sync
Dataset 35G 106G 35G 106G
CPU16 73.8% 86.5% 78.6% 95.2%

MEM 14.2%
(0.53G)

19.5%
(0.73G)

3.3%
(0.12G)

3.9%
(0.15G)

DRD 8.3 MB/s 40 MB/s 51 MB/s 133 MB/s
DWT 79 KB/s 301 KB/s 2.2 KB/s 159 KB/s
NTX – 55 MB/s 141 MB/s
NRX – 1.4 MB/s 3.7 MB/s

Disk-IO (Read), and Network (TX) resources. Since both
CPU and Disk-IO (Read) are common resource factors that
can potentially affect the performance of the BGs, we decide
these two resources as main features for the performance
model of these two BGs.

Also, we consider leveraging application-assisted hints
from these two applications. Intuitively, the BGs’ perfor-
mance could be highly related to the size and number of files
they manage. Fortunately, two BGs, like many other applica-
tions, provide a capability to write log files that saved how
many files they scanned or backed up. To test such hints’
applicability, we measure the correlation between the size
and numbers of files saved in the logs and the execution
progress of two BGs. Figure 8 represents the progress of
file size and numbers scanned or backed up by ClamAV
and Sync as per their execution. Compared to the ideal
progress (black line in Figure 8), while the progress of the
processed numbers and size of files are slightly different
from the progress of the ideal case, it is obvious that the
processed files (numbers and size) are correlated with the
ideal progress of BGs. On average, the progress by the
number and size of processed files has 4.85 and 4.93 of
MAE17 (Mean Absolute Error), and a harmonic mean18 of
two factors has just 2.9 of MAE over the ideal progress.
Thus, we consider such hint as a feature for the performance
model of BGs and use the harmonic mean of them.

3.3.2 Model Selection for BG Performance Model

We design the performance model with a multivariate linear
regression [39] that models the linear relationship between
independent variables (the features) and the corresponding
variable y (BG’s execution time). The model is formulated
as below:

y =

n∑
i=1

αixi + β (2)

where x is the independent variables (x ∈ [CPUbg, DRDbg,
HINTbg]) and β is a constant. The corresponding variable
y means the (predicted) execution time of the BGs. In this
work, we consider three features to design the performance
model, and users can add/remove more features according
to the performance characteristics of other BGs.

16. 100% of CPU means the full usage of 1 vCPU.
17. |Progressideal − Progresslog |.
18. 2/(1/file size+ 1/file numbers).

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 7

 0

 20

 40

 60

 80

 100
Ex

ec
ut

io
n

Pr
og

re
ss

 (%
)

Time (Second)

(a) ClamAV

Ideal Prog.
File Size

File Num.

 0

 20

 40

 60

 80

 100

Ex
ec

ut
io

n
Pr

og
re

ss
 (%

)

Time (Second)

(b) Sync

Ideal Prog.
File Size

File Num.

Fig. 8. Changes of file size and numbers managed by BG services.
(Comparison with the ideal progress.)

3.4 Orchestra Resource Optimizer and Controller

This subsection describes Orchestra’s decision process in
resource allocation for both applications with two predictive
models developed in the previous sections. The primary
objective of resource allocation is to satisfy the FG’s SLA, so
the RT estimation model (Equation (1) in Section 3.2) should
have the following constraint. Suppose SLAfg indicates a
SLA target for a FG:

f(CPUfg,MEMfg, NET fg) ≤ SLAfg (3)

To simplify this equation, we can consider MEMfg

as a constant because the memory resource has a weak
correlation with other factors (shown in Table 1) as well
as it has no significant variance with the fluctuations of
FG’s performance. We replace MEMfg with the average
memory utilization of the FG. We can also estimate NET fg

from EMA (Exponential Moving Average) [25]. This estima-
tion may result in slightly inaccurate predictions for the RT
estimation, but it greatly reduces the computation overhead
for the RT estimation. i.e.,O(n2) toO(n). Now we transform
the RT estimation model from multivariate to univariate
model, depending on CPUfg . We can obtain the minimum
value of CPUfg that satisfies the SLAfg from the below
equation:

ˆCPUfg = argmin
CPUfg

f(CPUfg) ≤ SLAfg (4)

where 0 < CPUfg < CPUmax. CPUmax is the maximum
amount of CPU resources in the VM. If CPUfg from Equa-
tion (4) is greater than CPUmax, this means that the FG
is impossible to meet SLA requirement with 100% CPU
utilization on the instance. Thus, in this case, Orchestra
provisions more resources to the FG by collaborating with
cluster or application management techniques (e.g., auto-
scaling) to ensure SLA satisfaction. With CPUfg , Orchestra
can determine the CPU allocation for the BGs by:

CPUbg = CPUmax − (CPUfg + ε) (5)

where ε is the CPU utilization for other applications (neither
FG or BG) or the reserved amount of CPU for unknown
processes.

Next, Orchestra performs an optimization to minimize
Equation (2), which is the performance model of the BGs.

minimize:
3∑

i=1

αixi + β, where

xi ∈ {CPUbg, DRDbg, HINTbg}
(6)

subject to: CPUbg = CPUmax − (CPUfg + ε) (7)
0 ≤ DRDbg ≤ DRDmax (8)
HINTbg = 1, (100% prog. of BG) (9)

The solution of this optimization determines the desired
utilization of the BGs. From Equation (3) to (9), Orchestra
determines all resource allocations to both FG and BGs. The
set of resource allocation is sent to a node agent on the
VM instance, and then the node agent reconfigures resource
allocation with cgroups.

4 IMPLEMENTATION

The implementation of Orchestra follows the architectures of
recent cluster management frameworks such as Kubernetes
and Docker Swarm, as shown in Figure 3 (in Section 3). The
main components of these architectures include a master
and nodes to manage and orchestrate virtual machines, and
the sidecar component is used in the micro-service architec-
ture such as Netflix OSS and Istio19 as a packet forwarder in
both/either ingress and/or egress. In the master controller
of Orchestra, two predictive models – the RT estimator
(FG) and performance model (BG) – are implemented with
various statistics and machine learning libraries.

The implementation of node agent focuses on resource
monitoring and control. Sysstat20 is used to periodically
monitor the changes of resource utilization on the VM
instances. To control multiple resources, Orchestra consults
with two subsystems of cgroups – cpu and blk io – to control
the CPU and disk IO, and utilizes tc21 for network IO. When-
ever the new resource allocations are decided, Orchestra re-
configures a different set of tunable values to cpu.shares and
cfs period us (for CPU control) and read iops in blk io (for
disk IO control). While Orchestra can determine the proper
reconfiguration for network IO and is fully implemented
to utilize tc, according to our experience, reconfiguring tc
is often unnecessary because applying the updated value
of cfs period us automatically adjusts network IO as well.
(Moreover, in Section 3.2, we discussed that both CPU and
network IO are highly correlated.)

The sidecar – a performance monitor for the FG – is
based on Nginx’s reverse proxy [42] and load-balancing [43]
functionality. Currently, the sidecar supports multiple pro-
tocols for the FG workloads – HTTP and data stream (TCP
and UDP) requests – and it forwards the requests to the
corresponding FG applications. With the Nginx’s recent
improvement, the sidecar can capture ingress and egress
time of each request, and the statistics of the FG’s RT are
reported to the master controller in a real-time manner.

19. https://istio.io/
20. http://sebastien.godard.pagesperso-orange.fr/
21. http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 8

5 PERFORMANCE EVALUATION

We evaluate Orchestra on the real cloud environment. We
first demonstrate the performance of Orchestra for control-
ling both FG and BGs to satisfy the FG’s SLA goals under the
resource storms (Section 5.2). Next, we analyze the overall
accuracy of Orchestra as well as the accuracy of the RT esti-
mator of FG and performance models of BGs (Section 5.3).
We then report the overhead of Orchestra (Section 5.4).

5.1 Evaluation Setup
5.1.1 Evaluation Infrastructure
We use general purpose m422 instances of Amazon EC2
clouds since Orchestra aims to provide fine-grained control
mechanisms of various VM resources to general cloud users
(of course, all controls are performed in the user space).
As several works reported [44–47], Amazon EC2 has per-
formance variance due to the resource contentions and HW
heterogeneity on the base infrastructure. We use EC2 spot
instances in this evaluation because spot instances could
have even higher level of the performance variance than that
of on-demand instances. Multiple runs of experiments are
performed, and we average the results to offset the variance.

5.1.2 FG Workloads
We consider Web application and MongoDB as represen-
tatives of FGs and use two different benchmarks for each
FG to generate real workloads; CloudSuite for Web Serving
benchmark and TPC-C for MongoDB. For the Web applica-
tion, we generate web serving workloads from 50 to 250 con-
current users to create a sufficient level of workload fluctua-
tion. We set up different VMs for the web server (m4.large23)
and back-ends – Memcached and DBMS – (m4.xlarge24)
and focus on the resource controls for the front-end (web
server) VM. For MongoDB, we install the latest version of
MongoDB on m4.large instance and continuously change
the number of concurrent users from 2 to 20 to generate the
realistic workloads.

5.1.3 BG Workloads
A 5GB of a dataset is used for BG workloads. i.e., ClamAV
(virus scan) and AWS Sync (backup). This dataset is com-
posed of about 25K of files with various sizes (µ of 1024K,
σ of 1495.6). We use a different dataset from the dataset we
used in Section 3.3 for a fair comparison.

5.1.4 Performance Metric
In Section 5.2, meeting a broad range of SLAs is the primary
metric. We focus on tail latency – 95%tile – for this mea-
surement and define that a SLA requirement is satisfied if a
95%tile of a FG’s response time is equal to or less than the
SLA target. In Section 5.3, we use two well-known metrics
of measuring the model accuracy; MAPE (Mean Absolute
Percentage Error) and RMSE (Root Mean Square Error) as
expressed below:

MAPE =
1

n

n∑
i=1

∣∣∣∣Actuali − Predicti
Actuali

∣∣∣∣ (10)

22. m4 instances are the latest generation of VM instances and have
balanced resource combinations, i.e., the ratio between CPU and mem-
ory is 1:4 [41].

23. m4.large has 2 vCPUs, 8GB RAM, and SSD storage.
24. m4.xlarge has 4 vCPUs, 16GB RAM, and SSD storage.

 0.6

 0.8

 1

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

SLA Target
13%
diff.

4% diff.

N
or

m
. R

T
(9

5%
til

e)

(a) Web Application
Reactive Orchestra

 0.6

 0.8

 1

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

18%
diff.

3% diff.

N
or

m
. R

T
(9

5%
til

e)

(b) MongoDB
Reactive Orchestra

Fig. 9. Normalized RT (95%tile) of Web and MongoDB over a set of SLA
targets (The best result should be 1.0.)

TABLE 3
95%tile response time (RT) of Web and MongoDB with and without

resource storms from BGs.

BGs Web MongoDB
FG Only 0 0.92s 0.86s
FG + ClamAV 1 5.88s 2.71s
FG + Sync 8.65s 3.57s
FG + ClamAV + Sync 2 11.78s 4.31s

RMSE =

√√√√ 1

n

n∑
i=1

(Predicti −Actuali)2 (11)

For both metrics, lower values indicate better accuracy.
The overhead of Orchestra (Section 5.4) measures CPU con-
sumption of the master controller and the managed nodes
(including the overhead from the sidecar and node agent)
when they monitor, predict, and control target applications
and resources.

5.2 Overall Performance with FG Workloads

This section focuses on the overall performance of Orches-
tra; meeting the SLA goals while minimizing the BGs’
execution time. Before we start this evaluation, we need
to recognize the range (the upper and lower bound) of
SLA targets that Orchestra should meet. We quantify RTs
(Table 3) of four different scenarios when a FG runs with
BGs (resource storms) and without BGs. We pick SLAs
for each case within the range of between “RT without a
BG” and “RT with BG(s)”. Three SLAs – 25%, 37.5%, and
50% ∈ [RT without a BG, RT with BG(s)] – are chosen for
evaluations with resource storms. We define these three
SLA requirements as a “tight SLA (with 25% padding)”,
“moderate SLA (with 37.5% padding)”, and “loosed SLA
(with 50% padding).”

We use a reactive approach from other works [12, 26]
as the baseline. This reactive system relies on a dynamic
adjustment of maximum resource capping. The reactive one
sets a low value of the maximum cap (e.g., 5% of CPU
utilization) for BGs’ resource consumption when the FG’s
RT violates the SLA goals, and it allocates more resources
to the BGs by releasing this cap when the FG shows a
stable performance. Also, we add a warning system to this
baseline, and the warning system sets a threshold (e.g., 10%
gap from the SLAs). When the FG’s 95%tile RT exceeds the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 9

 0

 0.5

 1

 1.5

 2

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

1.5x

1.2x

1.7x

1.3x

2.0x

1.3x

BG
 S

lo
w

do
w

n
(a) Web Application

Reactive Orchestra

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

2.2x

1.4x

3.4x

1.3x

2.7x

1.5x

BG
 S

lo
w

do
w

n

(b) MongoDB
Reactive Orchestra

Fig. 10. Slowdown of BG’s execution under two different control frame-
works.

threshold, the warning system alerts to the master controller,
and the reactive framework reduces the resource usage of
the BGs with a pre-defined step function. If the FG’s RT
violates the SLAs, the reactive one uses the resource capping
explained above to quickly restore the FG’s performance
with the SLA.

Figure 9 shows the RT (95%tile) of the FG applications
managed by Orchestra and reactive approach when the FGs
are running with the BGs. All results are normalized over
the SLA targets. If a result is equal to or less than 1.0,
then the RT meets the SLA goals and vice versa. As shown
in Figure 9, both frameworks can successfully control the
FGs’ RT with the SLAs. But Orchestra’s results are much
closer to the SLAs, and it only has 2 – 5% difference with
the SLAs. However, the reactive system has about 15%
differences with the SLA targets. These results indicate that
the FGs controlled by Orchestra consumes significantly less
amount of resources to meet the SLA targets as compared
to the FGs with the reactive system. Again, the goal of this
work is not maximizing a FG’s performance, rather meeting
the FG’s SLA as well as augmenting the performance of
a BG(s). These results have a significant impact on the
BGs’ performance since Orchestra enables the BGs to utilize
more resources to boost their execution (more importantly,
without SLA violations). Figure 10 reports the difference
between the BG(s)’s performance and obviously shows the
benefits from Orchestra. While Orchestra only has 1.25x (with
Web) and 1.39x (with MongoDB) slowdown25 of the BGs’
execution, the reactive approach requires more sacrifice to
the BGs, i.e., 1.73x (with Web) and 2.77x (with MongoDB)
slowdown of the BGs. These results are because Orchestra’s
predictive ability and optimization mechanism could suc-
cessfully determine the proper level of resource allocation
to multiple applications so that Orchestra allows the BGs to
consume as high resource as if the FG meets the SLAs.

Figure 11 shows resource utilization on the VMs with
both approaches. We only show CPU utilization since it
is the most representative resource of the VMs. For the
Web application case (Figure 11(a)), Orchestra utilizes over
90% of CPUs, which is leveraging 10% more resources
than the reactive approach. Interestingly, Orchestra uses a
similar amount of CPU (compared to the reactive one,
only 2% difference) for the Web (FG) and increases the

25. This is normalized over the BGs’ execution without FG work-
loads.

 0

 20

 40

 60

 80

 100

(with
ClamAV)

(with
Sync)

(with
Both)

75%
84% 82%

91%
83%

96%

RE OR RE OR RE OR

C
PU

 U
til

. (
%

)

(a) Web Application
FG-CPU(%) BG-CPU(%)

 0

 20

 40

 60

 80

 100

(with
ClamAV)

(with
Sync)

(with
Both)

86%
95%

87%
94%

88%
96%

RE OR RE OR RE OR

C
PU

 U
til

. (
%

)

(B) MongoDB
FG-CPU(%) BG-CPU(%)

Fig. 11. Resource utilization (CPU) of VM with two control frameworks.
(RE: reactive framework, OR: Orchestra)

overall utilization by allocating more resources to the BGs.
In the evaluation with MongoDB (Figure 11(b)), Orchestra
improves CPU utilization over 95% and provides balanced
resource allocations to the both, implying that Orchestra is
not only able to meet the FG’s SLAs, but also boost the BG’s
performance, resulting in high resource utilization on the
VMs. However, the reactive one allocates more than 75%
of CPU to the FG, indicating it overly assigns the resources
that lead to retard the BGs’ execution.

Figure 12 illustrates Orchestra’s behavior for managing
FG’s RT and controlling VM resources. Please note that we
determine SLA requirements for Web (3.0s) and MongoDB
(2.5s) in a similar manner with the evaluation results re-
ported in Figure 9, 10, and 11. We measured Orchestra’s
performance with different (both shorter and longer) SLA
requirements, but the results were similar to Figure 12.

The top graph in Figure 12 shows the changes in FG’s RT
and the SLA target. The middle graph reports the CPU con-
trol for the FG, and the bottom graph shows the CPU control
for the BG. For the use case of Web (Figure 12(a)), while
Orchestra controls the CPU resources based on its estimation
mechanism, the most critical SLA violation happens in the
first 100 seconds (the top-left graph). This violation is be-
cause the RT estimation model for FG does not have enough
training dataset to build a robust model. After this initial
training period, Orchestra performs the successful control
in the CPU resources. The middle and bottom graphs in
Figure 12(b) show that Orchestra increases CPU resources for
the FG and, at the same time, decreases the resource for the
BG when the FG’s RT is close to or violates the SLA target.
i.e., at 220, 250, 400, and 580 second. Similar behaviors are
shown in the MongoDB case (Figure 12(b)). The first 350
second period (top right graph) can be considered as the
training period. After this training period, Orchestra shows
stable adjustments in CPU resources for both applications
regarding SLA satisfaction. For instance, during the period
between 600- and 800-second, Orchestra reduces the CPU
allocation to the FG (middle graph) and allocates more to
the BGs (bottom graph) as the MongoDB’s RT is a lot faster
than the SLA goal. Another example can be shown in the
period between 900- and 1100-second. Orchestra increases
the CPU allocation to the FG while the CPU allocation for
the BG decreases since the MongoDB’s RT is close or slightly
violates the SLA goal. Then, the FG’s RT becomes stable.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 10

 0
 2
 4
 6
 8

 10

 0 100 200 300 400 500 600

Training
 Period

3.0s
SLA

W
eb

 R
T

(S
ec

.) (a) 95%tile RT

0
20
40
60
80

100

 0 100 200 300 400 500 600

Foreground (Web) CPU Control Points

C
PU

 (%
)

(b) FG CPU (%)

0
20
40
60
80

100

 0 100 200 300 400 500 600

Background CPU Control Points

C
PU

 (%
)

Time (Sec.)

(c) BG CPU (%)

(a) Web Application

 0
 1
 2
 3
 4
 5

 0 200 400 600 800 1000 1200

Training Period

2.5s
SLA

D
B

RT
 (S

ec
.)

(a) 95%tile RT

0
20
40
60
80

100

 0 200 400 600 800 1000 1200

Decreasing FG (MongoDB)
CPU Allocation

Increasing FG
CPU Allocation

C
PU

 (%
)

(b) FG CPU (%)

0
20
40
60
80

100

 0 200 400 600 800 1000 1200

Increasing BG
CPU Allocation Decreasing BG

CPU Allocation

C
PU

 (%
)

Time (Sec.)

(c) BG CPU (%)

(b) Mongo DB

Fig. 12. Change of CPU resources for both a FG and BGs from Orchestra and the changes of 95%tile RT of the FG. (a): Web (FG) and Sync (BG)
with a SLA of 3.0 sec.; (b): MongoDB (FG) and 2 BGs (Sync and ClamAV) with a SLA of 2.5 sec.

5.3 Orchestra Accuracy

Performance evaluations of Orchestra’s accuracy include the
overall model accuracy of Orchestra and the accuracy of two
predictive models. i.e., the RT estimator (FG) and the BG
performance model.

5.3.1 Overall Orchestra Accuracy
We first collect various system/application statistics (includ-
ing RT, utilization, and throughput from FGs, and BG’s
execution) with a set of different resource configuration
between a FG and a BG. We manually assign fixed resource
ratios to the FG and BG(s) from 1:1 to 1:5. We then generate
the identical FG workloads to Orchestra with SLA targets
obtained from the static resource allocation. We compare the
results/statistics from Orchestra with the ones from the static
resource allocation and calculate the accuracy (normalized
over the static allocation) of both cases.

First, we show the accuracy of Orchestra regarding FG
behaviors. The results are shown in Table 4 and Figure 13.
The changes in FG’s RT with Orchestra are very close to
the RT variations in static resource allocations. On average,
Orchestra can control a FG with 2.7% errors in RT and 1.95%
error for its throughput.

Then, we observe the difference in the resource utiliza-
tion of the VM instance between Orchestra and the static
resource allocations. Figure 14 illustrates the comparison
results. Figure 14(b) and (d) have a “NET” (network IO) filed
since the Sync (backup BG) is a network-bound application.
For all comparison cases, Orchestra shows only 3% errors
in CPU, 7% errors in disk IO (read), and 2% errors in disk
IO (write), indicating that Orchestra is very accurate for FG
applications. However, for the BGs, Orchestra shows slightly
different statistics. Especially when Orchestra manages the
Web application as a FG, it allows BGs to consume 17%

 0
 1.5

 3
 4.5

 6
 7.5

Avg. 90% 93% 95% 98%

W
eb

 R
es

. T
im

e
(S

ec
.)

Response Time Percentile

(a) Web Application

Static
Orchestra

 0
 0.5

 1
 1.5

 2
 2.5

Avg. 90% 93% 95% 98%
D

B
Re

s.
 T

im
e

(S
ec

.)
Response Time Percentile

(b) MongoDB

Static
Orchestra

Fig. 13. Accuracy for the FG’s RT; Comparison with the static resource
allocation.

to 20% more resources. This difference results in a distinct
execution time of BGs. With more resources, Orchestra could
reduce the execution time of BGs (15% – 17% reduction
for both BGs). The differences in BG’s utilization are due
to the following reasons. Orchestra mechanism to manage
BGs naturally allocates more resources to the BGs if the
FG’s RT meets a SLA, and the VM has residue resources
possibly being consumed by the BGs. Furthermore, this is
also related to FG’s workloads. The workloads generated
by CloudSuite have higher variation than DB workloads
from TPC-C. This high variance is not only relevant to
the changes in the number of requests but also associated
with the diverse types of requests, i.e., from simple web
renderings to complex social activities in web sites. Given
the high fluctuating workloads, it is evident that Orchestra
tries to minimize the execution duration of BGs, and this is
a clear indication that Orchestra works correctly under such
workloads. Similarly, the higher amount of network TX in
Figure 14(b) is because of the same reason that the BG (Sync)
sends the larger amount of backup data per second to S3
with more allocated resources.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 11

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW

Baseline (Static)

FG BG

N
or

m
. R

es
ou

rc
e

U
til

. (a) Web + ClamAV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW RX TX

Baseline (Static)

FG BG NET

(b) Web + Sync

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW

Baseline (Static)

FG BG

(c) MongoDB + ClamAV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW RX TX

Baseline (Static)

FG BG NET

(d) MongoDB + Sync

Fig. 14. Accuracy comparison of VM utilization between Orchestra and the static resource allocation. (NET: Network IO, DR: Disk Read bytes/sec.,
DW: Disk Write byte/sec., TX: Network TX bytes/sec., RX: Network RX bytes/sec.)

TABLE 4
Orchestra’s accuracy (MAPE) over the static resource allocation. The

results show FG statistics. (MDB: MongoDB, T-put: Throughput)

FG BG RT Statistics (%tile) T-put
(Req/s)Avg. 90% 95% 98%

Web ClamAV 0.050 0.061 0.038 0.011 0.007
Sync 0.132 0.008 0.029 0.028 0.020

MDB ClamAV 0.010 0.015 0.006 0.013 0.036
Sync 0.003 0.012 0.014 0.003 0.015

 0
 0.05
 0.1

 0.15
 0.2

 0.25

Web
(Clam)

Web
(Sync)

MDB
(Clam)

MDB
(Sync)

0.15 0.14
0.19 0.18

M
AP

E

(a) MAPE Accuracy

SVM
Orchestra

 0
 0.2
 0.4
 0.6
 0.8

 1

Web
(Clam)

Web
(Sync)

MDB
(Clam)

MDB
(Sync)

0.65 0.60

0.33
0.25

R
M

SE

(b) RMSE Accuracy

SVM
Orchestra

Fig. 15. Accuracy comparison of RT estimation of Orchestra with SVM.
Lower values mean better accuracy.

5.3.2 Accuracy of RT Estimator (FG)
Next, we measure the accuracy for the RT estimator (de-
scribed in Section 3.2) in Orchestra. We calculate the accuracy
of the RT estimator by comparing its prediction results with
the actual RT (the ground truth) from the FGs. The results
are that Orchestra shows 0.17 of MAPE and 0.45 of RMSE.

To validate these results are sufficient, we compare the
performance of the RT estimator with a SVM (Support
Vector Machine)-based predictor. SVM [39] is a well-known
classifier widely used in data mining and machine learning
area, but it shows very robust performance for regression
(prediction) problems, i.e., application performance mod-
eling [48]. To optimize the performance of the baseline,
we employ RBF (Radial Basis Function) as the kernel of
the SVM and test a broad set of (soft-margin and kernel)
parameters with a grid approach [49]. Figure 15 illustrates
the comparison results of both models. The RT estimator
of Orchestra outperforms the SVM and has approximately
40% lower prediction errors than the results from the SVM
model. The SVM model just shows 0.23 of MAPE and 0.64
of RMSE.

5.3.3 Accuracy of BG Performance Model
We also measure the accuracy of the BG performance model
(described in Section 3.3) in Orchestra. The model predicts

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Overall Critical
Section

Overall Critical
Section

0.14

0.07 0.06 0.04

ClamAV Sync

M
AP

E

(a) MAPE Accuracy

ASP
Orchestra

 0
 50

 100
 150
 200
 250
 300

Overall Critical
Section

Overall Critical
Section

150

59 73 55

ClamAV Sync

R
M

SE

(b) RMSE Accuracy

ASP
Orchestra

Fig. 16. Accuracy comparison of the BG performance model in Orches-
tra with the application-specific predictor.

the BGs’ execution time whenever Orchestra changes the
resource allocation to the FG and BGs. If the workloads
have high fluctuations, Orchestra predicts the BGs’ execution
time more often. Given the life-cycle of a BG’s execution, the
prediction model can show higher accuracy when the BG is
approaching the end of the execution. However, it is impor-
tant for Orchestra to accurately predict the BGs’ execution
time (or finishing time), particularly when it reconfigures
resource allocations to the BG in the middle of its life-cycle.
We thus measure accuracy at two different points, i.e., 1)
the overall accuracy – averaging all predictions during BG’s
execution and 2) the performance in the critical section.
We define “30% – 70%” of a BG’s execution as the critical
section. For this evaluation, we employ an application-
specific predictor as a baseline. This predictor only relies on
application-assisted hints (execution progress) and forecasts
the BG’s execution time by calculating the progress ratio.

Figure 16 shows the accuracy results. While both predic-
tors show good accuracy, Orchestra outperforms the baseline
in all cases. On average, Orchestra has 0.11 of MAPE and 112
of RMSE, indicating that it has 67% and 50% less error than
the baseline. More interestingly, Orchestra produces more
accurate predictions in the critical section, and it only makes
0.06 of MAPE and 59 of RMSE, showing 2x better accuracy
than the overall results.

5.4 Orchestra Overheads

Orchestra’s overhead is also a significant characteristic in
the evaluation. Since Orchestra dynamically controls VM
resources at runtime, it is also desired that the framework
should not interfere with the performance of FG and BGs.
In other words, Orchestra should not generate resource
storms. The overheads are measured from two different
components in Orchestra, i.e., the managed node and the
master controller.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 12

 0
 2
 4
 6
 8

 10

O
p.

/1
0

se
c.

O
p.

/9
 s

ec
.

O
p.

/8
 s

ec
.

O
p.

/7
 s

ec
.

O
p.

/6
 s

ec
.

O
p.

/5
 s

ec
.

O
p.

/4
 s

ec
.

O
p.

/3
 s

ec
.

O
p.

/2
 s

ec
.

O
p.

/1
 s

ec
.C

PU
 U

sa
ge

 (%
)

Node Agent
Master Controller

Fig. 17. Orchestra Overhead.

Figure 17 reports the overhead (CPU usage) in Orchestra.
The result measured in the managed node includes the
overhead in performance monitoring from the sidecar, and
resource usage monitoring and reconfiguring cgroups from
the node agent. The master controller’s results focus on
the computational overheads for the management including
prediction and optimization cost. The CPU consumption
increases as the frequency of management operation in
Orchestra increases. Orchestra consumes 1% – 5% of CPU
resources on the managed node and 2% – 7% on the master
controller. In the previous evaluation with FG workloads
(§5.2), while Orchestra performs such monitoring and con-
trol operations in every 5-seconds, it shows a desirable
performance in managing both FG and BG’s performance,
indicating that 1% – 2% of CPU resources is sufficient to
Orchestra. However, it is worth noting that using a fixed-
interval (e.g., every 5-seconds) for monitoring and control-
ling operation may not be the optimal approach. In particu-
lar, by considering temporal randomness of resource storms,
it would better to employ variable monitoring and control
intervals. Therefore, in the near future, we will investigate
a variable interval-based approach that can minimize the
management overhead as well as address the resource storm
more efficiently.

6 DISCUSSION

6.1 Comparison with Static Resource Allocation

To prevent the performance interference caused by resource
storm, users can consider static resource allocation scheme.
For example, by using cgroups or CPU hard-capping [12],
the users can allocate the fixed portion of resources to FG
and BGs. i.e., 60% of CPU to FG, 40% of CPU to BGs. One
benefit from this static allocation is that BGs’ resource storm
or heavy workload will not degrade the FG’s performance
because the BGs’ resource consumption is strictly controlled
by the limitation (e.g., 60%).

However, this static allocation is not efficient enough to
maximize the resource utilization of a VM. For example, it
often has an idle (unused) portion of resources while either
FG or BG has heavy workloads. Differing from the static
approach, Orchestra uses dynamic resource allocation based
on the SLA and workload changes. Orchestra is designed to
guarantee the performance SLA of FG as well as maximize
the execution of BGs. To satisfy these two goals, the dynamic
resource allocation is more desirable for Orchestra because it
enables to dynamically adjust the resource allocation to both
FG and BGs as per the performance changes.

6.2 Can Auto-scaling be a Solution for Resource
Storms?
Auto-scaling is a widely used approach for the application
management on the cloud that fully leverages the benefit
– elasticity – of cloud infrastructure. Intuitively, the auto-
scaling might be considered as an approach to address
resource storm by adding more resources to cloud appli-
cations when the resource storms happen. (Note that auto-
scaling is different from the resource over-provisioning in
Section 2.1.) The auto-scaling relies on VMs’ resource uti-
lization, and its scaling mechanism could be automatically
triggered with high peaks of resource utilization by the
resource storms. However, auto-scaling is not sufficient to
handle resource storm for the following two reasons.

First, resource storms can occur in any cloud instances
(VMs). The VMs, newly added by the auto-scaling, are often
exposed to the resource storms as well. The BG tasks –
security, compliance, and patch – are inevitable even for the
new VMs in practice. A worst-case scenario is that cascading
resource storms can incur poor QoS for the entire service
from a cloud application. Moreover, after finishing resource
storm, the resource provisioning state of the cloud ap-
plications quickly becomes over-provisioning, which hurts
the cost-efficiency of the cloud application by wasting the
resources.

Second, it is often very challenging for the auto-scaling
to immediately respond to the resource storms. According
to our personal communication with cloud practitioners,
the duration of resource storm tends to be short (often less
than 10 minutes) [36]. We also confirm the similar charac-
teristics of resource storm from the measurement reported
in Figure 2 (Section 2.1). However, the auto-scaling relies
on VM monitoring tools like CloudWatch that monitors
the resource utilization on the VMs and catches an un-
usual resource spike. Unfortunately, a previous work [50]
reported that CloudWatch has 1 to 5 minutes of delay
in obtaining proper monitoring results. Also, a VM pro-
visioning has a delay of 3 to 5 minutes [51]. Enterprise
cloud instances generally contain various SW stacks (e.g.,
web server, DBMS, Memcached) and would take a longer
provisioning time than that of vanilla VMs. Furthermore,
the research community proposed hybrid and/or predic-
tive autoscaling approaches [52–54] that can be considered
for addressing resources storm. However, as we discussed
in Section 2.1, resource storm often abruptly happens at
any time, so it is extremely challenging to provision more
VM resources a priori with an accurate prediction of the
occurrence of resource storm. This problem is even more
complicated when considering large-scale deployment and
multiple BGs. Therefore, it is more appropriate to design
an avoidance mechanism for resource storms inside VMs
instead of employing auto-scaling mechanisms.

6.3 Determining Optimal Parameters for Orchestra
Orchestra has three input parameters for addressing resource
storm; (1) degree of tail latency for FG applications, (2) SLA
requirement, and (3) monitoring and controlling interval.

Regarding the degree of the tail latency, while we used
95%tile as the latency requirement for FG applications in the
evaluation, this degree is a parameter that is provided by

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 13

Orchestra users, indicating that diverse values can be used
for the latency requirements such as 90%tile, 95%tile, or
99%tile. As shown in Figure 13 and Table 4 (in Section 5.3.1),
Orchestra can accurately estimate the different degrees of tail
latencies, and, based on the accurate prediction, Orchestra
can control VM resources and address resource storm. How-
ever, a tighter requirement of tail latency may require more
frequent operations of monitoring and resource control. We
will further discuss the overhead in the last paragraph of
this section.

The SLA requirement is another parameter provided by
the Orchestra users. In our evaluation, we determined the
SLA requirement between a possible lower bound of SLA
and an upper bound SLA. The lower bound can be mea-
sured when the target FG application is running without
any BG services, indicating that the FG can leverage all
the available resources in a VM. The upper bound can be
measured when the FG is running with BG services without
any resource control. Basically, Orchestra can manage the
performance of FG within this range. If the users set a too-
small value for SLA requirement (e.g., less than the lower
bound), Orchestra cannot support this SLA requirement. In
this case, the users need to consider migrating the FG appli-
cation to a higher performance VM (with more resources).

The last parameter is the monitoring/controlling inter-
val. As shown in Figure 17, a longer interval consumes
fewer CPU resources, and a shorter (more frequent) inter-
val consumes more CPU resources. Therefore, the users
should determine proper monitoring interval by consid-
ering the overhead as well as the degree of tail latency.
However, as we reported, the high frequency of the mon-
itoring/controlling operation may consume up to 10% of
CPU, but in general, Orchestra consumes fewer than 2% of
CPU resources. We believe 2% of resource consumption may
not be a significant overhead caused by Orchestra.

7 RELATED WORK

7.1 Infrastructure-Level Resource Management
There are significant works from the research community to
detect, prevent, mitigate, and manage the performance in-
terference caused by multiple co-located tasks/applications
on the same physical HW. One direction is to design an
intelligent QoS management framework that detects the
performance interference and schedules multiple tasks to
avoid a FG’s SLA violations. Q-Clouds [23] predicts a
SLA violation with a discrete-time MIMO (Multi-Input and
Multi-Output) model. DejaVu [20] employs a performance
index that determines the interference by comparing it with
the identical executions on a sandbox. DeepDive [21] detects
the performance interference with a warning system and
manages it with VM cloning and workload duplication.
Dirigent [25] controls is a FG’s QoS while improving batch
tasks’ throughput. Dirigent is relying on particular per-
formance isolation techniques. i.e., Intel’s cache allocation
technique.

The other direction is to determine safe task placement.
Bubble-up [3] finds a safe co-location of multiple tasks on
the same host with a sensitivity curve via offline profiling.
Bubble-Flux [26] dynamically creates the sensitivity curve
from online profiling with a short-term memory-intensive

workload. Paragon [5] performs minimal offline profiling
for new workloads (e.g., 1 min. on two different HWs) and
uses collaborative filtering to place such tasks on the par-
ticular HWs. CPI2 [12] suggests CPI (cycle-per-instruction)
as a performance indicator to detect performance interfer-
ence and manages the FG’s QoS with CPU hard-capping
to antagonists (source of the interference). Heracles [24]
finds a safe co-location of multiple tasks with a coordinated
isolation mechanism of shared resources.

However, the approaches mentioned above have the
following limitations and differences; they often require 1)
an on/off-line profiling to model the performance interfer-
ence, 2) HW information (e.g., CPI, cache miss rate.), and
3) an expensive VM cloning and sand-box executions. On
the other hand, Orchestra does not perform such profiling;
rather Orchestra employs an online model to determine the
optimal resource allocation to both FG and BGs on the
same VM. Orchestra does not collect HW information, but
periodically gathers system/application-level statistics. i.e.,
CPU, IO, and RT. This policy is because we consider that
our target users are consumers for public IaaS clouds where
provide limited access to the hypervisor layer and host
machines [29].

7.2 User-Level Application Management
There are several attempts to address this problem in the
user space. IC2 [28], ICE [55], and Amannejad et al. [56]
proposed systems to detect and mitigate the performance
interference for web applications. The performance interfer-
ence is detected by resource monitoring, statistic inference
model or collaborative filtering. Once the interference is
identified, the approaches often change application configu-
rations for increasing throughput of web services. However,
these approaches are commonly application-specific (web
service); on the other hand, the Orchestra framework sup-
ports diverse types of FGs. Moreover, Orchestra does not
change any application configuration. Such modifications
could result in high overhead and only mitigate short-
term performance interference [57]. Stay-away [55] manages
process containers (LCX or Docker) and mitigates the inter-
ference by throttling BGs. However, the control mechanism
depends on a diurnal pattern of user-workloads, having
a clear period of low intensity. This may not be true for
modern cloud applications [1, 30] and, more importantly,
Orchestra is agnostic to user workload patterns.

7.3 Intelligent Scheduling and Load Balancing
Chiang and Huang proposed an interference-aware sched-
uler called TRACON [58], which predicts interference in IO
operations in data-intensive applications and performs in-
telligent scheduling based on the predicted IO-interference
of VMs. Pu et al. [59] proposed a similar approach that
mitigates IO interference on VMs on the same physical
machine. MIMP [60] is a two-schedulers system to improve
the performance of both interactive and batch (Hadoop) ap-
plications by mitigating performance interference caused by
multiple VMs hosted on the same physical machine. Cloud-
Scope [61] is another interference-aware scheduling for Xen
to detect performance interference for multi-tenant cloud
systems. CloudScope predicts the performance interference

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 14

of VMs with a discrete-event Markov Chain model and
reconfigures the placement of VMs on physical machines.
However, these approaches do not consider co-running ap-
plications on the same VMs and require modification of the
hypervisor scheduler (e.g., Xen) to mitigate the performance
interference. Thus, none can be leveraged by public cloud
users because public cloud users do not have control over
the hypervisor layer.

Additionally, there are several load-balancing ap-
proaches to address performance interference in various
cloud applications. i.e., HPC [62, 63], storage systems [64],
web [65], and OLTP systems [52]. These approaches com-
monly try to detect or infer resource contention in un-
derlying cloud systems and mitigate the interference with
adopting improved load-balancing schemes. In particular,
DIAL [52, 65] is a user-centric interference-aware load-
balancing scheme for cloud applications. Similar to Orches-
tra, it is designed to be used in public cloud environments
and improve the tail latency of cloud applications. However,
these load balancing schemes do not solve the resource
storm problem targeted in this paper for two reasons. First,
many BG services, including backup and virus scans, cannot
be scheduled for other VMs to be executed. They must be ex-
ecuted on the VM (or server) to be maintained (e.g., backup
and virus scan). Second, most existing load balancing works
do not address the resource contention problem in a VM,
which has been a significant cause for performance degra-
dation under resource storms. For example, prior work has
shown that a contention-oblivious scheduling algorithm can
perform sub-optimally in contended environments [5].

8 CONCLUSION

Resource storms in enterprise cloud environments become
a significant challenge for managing the performance of
cloud applications. To improve this situation, we presented
Orchestra, cloud-specific framework for controlling both FG and
BGs in the user space to guarantee the FG’s performance
while minimizing the performance penalty of BGs. Orchestra
measures a FG’s performance (RT) in a real-time manner,
and it creates a lightweight RT estimation and performance
models for both applications on the fly. With the resource
statistics and such predictive models, Orchestra optimizes
the resource allocation to multiple cloud applications with
SLA targets.

We have implemented and evaluated Orchestra with real
workloads on Amazon EC2. Our primary workloads are a
web service and a NoSQL database (MongoDB) for FGs and
AWS Sync (backup) and ClamAV (virus and malware scan-
ner) for BGs. We also presented the performance of Orchestra
with a number of SLA constraints. Orchestra guarantees the
FG’s SLA satisfaction at all times with 70% performance
improvement of BGs. Moreover, Orchestra shows a very high
overall correctness (less than 5% error), 16.5% of MAPE for
the FGs’ response time estimation, and over 90% accuracy
for the BGs’ performance prediction.

REFERENCES
[1] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel.

Opportunistic Storage Maintenance. In 25th Symposium on Op-
erating Systems Principles (SOSP ’15), Monterey, CA, USA, October
2015.

[2] In Kee Kim, Jinho Hwang, Wei Wang, and Marty Humphrey.
Orchestra: Guaranteeing Performance SLA for Cloud Applications
by Avoiding Resource Storms. In IEEE International Symposium on
Parallel and Distributed Computing (ISPDC ’18), Geneva, Switzer-
land, June 2018.

[3] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In 44th Inter-
national Symposium on Microarchitecture (Micro ’11), Porto Alegre,
Brazil, December 2011.

[4] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou
Soffa. ReQoS: Reactive Static/Dynamic Compilation for QoS
in Warehouse Scale Computer. In 18th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13), Houston, TX, USA, March 2013.

[5] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13), Houston, TX, USA, March 2013.

[6] Francisco Romero and Christina Delimitrou. Mage: Online and
Interference-aware Scheduling for Multi-scale Heterogeneous Sys-
tems. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, 2018.

[7] Lingjia Tang, Jason Mars, and Mary Lou Soffa. Compiling for
Niceness: Mitigating Contention for QoS in Warehouse Scale Com-
puters. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, 2012.

[8] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju,
Jeongseob Ahn, Jason Mars, and Lingjia Tang. GrandSLAm: Guar-
anteeing SLAs for Jobs in Microservices Execution Frameworks. In
Proceedings of the Fourteenth EuroSys Conference 2019, 2019.

[9] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and
Mary Lou Soffa. The Impact of Memory Subsystem Resource
Sharing on Datacenter Applications. In Proceedings of the 38th
Annual International Symposium on Computer Architecture, 2011.

[10] Greg Linden. Make Data Useful. http://www.gduchamp.com/
media/StanfordDataMining.2006-11-28.pdf. [ONLINE].

[11] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video Stream
Quality Impacts Viewer Behavior: Inferring Causality Using
Quasi-Experimental Designs. In ACM SIGCOMM Internet Mea-
surement Conference (IMC ’12), Boston, MA, USA, November 2012.

[12] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo
Gokhale, and John Wilkes. CPI2: CPU Performance Isolation
for Shared Compute Clusters. In 8th ACM European Conference
on Computer Systems (Eurosys ’13), Prague, Czech Republic, April
2013.

[13] Jacob Leverich and Christos Kozyrakis. Reconciling High Server
Utilization and Sub-millisecond Quality-of-Service. In 9th ACM
European Conference on Computer Systems (Eurosys ’14), Amsterdam,
Netherlands, April 2014.

[14] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Im-
proving Performance Isolation on Chip Multiprocessors via an
Operating System Scheduler. In 16th International Conference on
Parallel Architecture and Compilation Techniques (PACT ’07), Brasov,
Romania, September 2007.

[15] Daniel Shelepov and Juan Carlos Saez Alcaide and Stacey Jeffery
and Alexandra Fedorova and Nestor Perez and Zhi Feng Huang
and Sergey Blagodurov and Viren Kumar. HASS: A Scheduler
for Heterogeneous Multicore Systems. ACM SIGOPS Operating
Systems Review, 43(2):66–75, April 2009.

[16] OpenSUSE, Tuning the Task Scheduler. https://doc.opensuse.
org/documentation/leap/tuning/html/book.sle.tuning/cha.
tuning.taskscheduler.html, 2019. [ONLINE].

[17] David Koufaty and Dheeraj Reddy and Scott Hahn. Bias Schedul-
ing in Heterogeneous Multi-core Architectures. In 5th ACM Eu-
ropean Conference on Computer Systems (Eurosys ’10), Paris, France,
April 2010.

[18] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. Large-scale Cluster Man-
agement at Google with Borg. In 10th ACM European Conference on
Computer Systems (Eurosys ’15), Bordeaux, France, April 2015.

[19] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In 8th ACM European Conference on Computer
Systems (Eurosys ’13), Prague, Czech Republic, April 2013.

[20] Nedeljko Vasic, Dejan Novakovic, Svetozar Miucin, Dejan Kostic,
and Ricardo Bianchini. DejaVu: Accelerating Resource Allocation

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 15

in Virtualized Environments. In 17th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’12), Bordeaux, France, December 2012.

[21] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kos-
tic, and Ricardo Bianchini. DeepDive: Transparently Identifying
and Managing Performance Interference in Virtualized Environ-
ments. In 2013 USENIX Annual Technical Conference (ATC ’13), San
Jose, CA, USA, June 2013.

[22] Harshad Kasture and Daniel Sanchez. Ubik: Efficient Cache
Sharing with Strict QoS for Latency-Critical Workloads. In 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14), Salt Lake City, UT,
USA, March 2014.

[23] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
Clouds: Managing Performance Interference Effects for QoS-
Aware Clouds. In 5th ACM European Conference on Computer
Systems (Eurosys ’10), Paris, France, April 2010.

[24] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In 42nd Annual International Symposium on
Computer Architecture (ISCA ’15), Portland, OR, June 2015.

[25] Haishan Zhu and Mattan Erez. Dirigent: Enforcing QoS for
Latency-Critical Tasks on Shared Multicore Systems. In 21st
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16), Atlanta, GA, USA,
April 2016.

[26] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-Flux: Precise Online QoS Management for Increased Uti-
lization in Warehouse Scale Computers. In 40th Annual Inter-
national Symposium on Computer Architecture (ISCA ’13), Tel-Aviv,
Israel, June 2013.

[27] The PMCs of EC2: Measuring IPC. http://www.brendangregg.
com/blog/2017-05-04/the-pmcs-of-ec2.html, 2019. [ONLINE].

[28] Amiya K. Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi,
and Akshat Verma. Mitigating interference in cloud services
by middleware reconfiguration. In 15th International Middleware
Conference (Middleware ’14), Bordeaux, France, December 2014.

[29] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and
Harsha Ellanti. The Unobservability Problem in Clouds. In
International Conference on Cloud and Autonomic Computing (ICCAC
’15), Cambridge, MA, USA, September 2015.

[30] Sadeka Islam, Srikumar Venugopal, and Anna Liu. Evaluating
the Impact of Fine-scale Burstiness on Cloud Elasticity. In ACM
Symposium on Cloud Computing (SoCC ’15), Hawaii, USA, August
2015.

[31] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H.
Katz, and Michael A. Kozuch. Heterogeneity and Dynamicity of
Clouds at Scale: Google Trace Analysis. In ACM Symposium on
Cloud Computing (SoCC ’13), San Jose, CA, USA, October 2013.

[32] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John
Wilkes. Long-term SLOs for Reclaimed Cloud Computing Re-
sources. In ACM Symposium on Cloud Computing (SoCC ’14),
Seattle, WA, USA,, November 2014.

[33] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In 19th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’14), Salt Lake City, UT, USA,
March 2014.

[34] In Kee Kim, Sai Zeng, Christopher C. Young, Jinho Hwang,
and Marty Humphrey:. A Supervised Learning Model for
Identifying Inactive VMs in Private Cloud Data Centers. In
ACM/IFIP/USENIX International Middleware Conference (Middleware
’16), Trento, Italy, December 2016.

[35] In Kee Kim, Sai Zeng, Christopher C. Young, Jinho Hwang,
and Marty Humphrey. iCSI: A Cloud Garbage VM Collector
for Addressing Inactive VMs with Machine Learning. In IEEE
International Conference on Cloud Engineering (IC2E ’17), Vancouver,
Canada, April 2017.

[36] Personal communication with the IBM enterprise data center
infrastructure team, 2019.

[37] Marius A. Eriksen. Trickle: A userland bandwidth shaper for unix-
like systems. In USENIX Annual Technical Conference, FREENIX
Track, 2005.

[38] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros
Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak,
Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi.
Clearing the Clouds – A Study of Emerging Scale-out Workloads

on Modern Hardware. In 17th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’12), Bordeaux, France, December 2012.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Element of Statistical Learning: Data Mining, Inference, and Pre-
diction. 2011.

[40] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical
Prediction models for Adaptive Resource Provisioning in the
Cloud. Future Generation Computer Systems, 28(1), 2012.

[41] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/
instance-types/, 2019. [ONLINE].

[42] Nginx Reverse Proxy. https://www.nginx.com/resources/
admin-guide/reverse-proxy/, 2019. [ONLINE].

[43] Nginx Load Balancing – TCP and UDP Load Balancer. https://
www.nginx.com/resources/admin-guide/tcp-load-balancing/,
2019. [ONLINE].

[44] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Yl-Jski,
and Pan Hui. Exploiting Hardware Heterogeneity within the Same
Instance Type of Amazon EC2. In USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud ’12), Boston, MA, USA, June 2012.

[45] In Kee Kim, Wei Wang, and Marty Humphrey. PICS: A Public
IaaS Cloud Simulator. In IEEE International Conference on Cloud
Computing (CLOUD ’15), New York, NY, USA, 2015.

[46] Philipp Leitner and Jrgen Cito. Patterns in the Chaos–A Study
of Performance Variation and Predictability in Public IaaS Clouds.
ACM Transactions on Internet Technology, 16(15), August 2016.

[47] Sen He, Glenna Manns, John Saunders, Wei Wang, Lori Pollock,
and Mary Lou Soffa. A Statistics-based Performance Testing
Methodology for Cloud Applications. In ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2019), Tallinn, Estonia, August
2019.

[48] Ron C. Chiang, Jinho Hwang, H. Howie Huang, and Timothy
Wood. Matrix: Achieving Predictable Virtual Machine Perfor-
mance in the Clouds. In 11th International Conference on Autonomic
Computing (ICAC ’14), Philadelphia, PA, USA, June 2014.

[49] James Bergstra, Remi Bardenet, Yoshua Bengio, and Balazs Kegl.
Algorithms for Hyper-Parameter Optimization. In Neural Informa-
tion and Processing Systems (NIPS ’11), Granada, Spain, December
2011.

[50] Michael Smit, BradleySimmons, and Marin Litoiu. Distributed,
application-level monitoring for heterogeneous clouds using
stream processing. Future Generation Computer Systems, 29(8), 2013.

[51] Ming Mao and Marty Humphrey. A Performance Study on the
VM Startup Time in the Cloud. In IEEE International Conference on
Cloud Computing (CLOUD ’12), Honolulu, HI, USA, June 2012.

[52] Seyyed Ahmad Javadi and Anshul Gandh. User-Centric
Interference-Aware Load Balancing for Cloud-Deployed Applica-
tions. IEEE Transactions on Cloud Computing, 2019.

[53] Waheed Iqbal, Abdelkarim Erradi, Muhammad Abdullah, and
Arif Mahmood. Predictive Auto-scaling of Multi-tier Applications
Using Performance Varying Cloud Resources. IEEE Transactions
on Cloud Computing, 2019.

[54] Shashank Shekhar, Hamzah Abdel-Aziz, Anirban Bhattacharjee,
Aniruddha S. Gokhale, and Xenofon D. Koutsoukos. Performance
Interference-Aware Vertical Elasticity for Cloud-Hosted Latency-
Sensitive Applications. In 11th IEEE International Conference on
Cloud Computing, (CLOUD), San Francisco, CA, USA, July 2018.

[55] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and
Vladimir Vlassov. Stay-Away, protecting sensitive applications
from performance interference. In 15th ACM/IFIP/USENIX Inter-
national Middleware Conference (Middleware ’14), Bordeaux, France,
December 2014.

[56] Yasaman Amannejad, Diwakar Krishnamurthy, and
Behrouz Homayoun Far. Managing Performance Interference
in Cloud-Based Web Services. IEEE Transactions on Network and
Service Management, 12(3):320–333, 2015.

[57] Amiya K. Maji, Subrata Mitra, and Saurabh Bagchi. ICE: An
Integrated Configuration Engine for Interference Mitigation in
Cloud Services. In IEEE International Conference on Autonomic
Computing (ICAC ’15), Grenoble, France, July 2015.

[58] Ron C. Chiang and H. Howie Huang. TRACON: Interference-
Aware Scheduling for Data-Intensive Applications in Virtualized
Environments. In International Conference on High Performance
Computing Networking, Storage and Analysis (SC ’11), Seattle, WA,
USA, November 2011.

[59] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 16

Koh, Calton Pu, and Yuanda Cao. Who Is Your Neighbor: Net I/O
Performance Interference in Virtualized Clouds. IEEE Transactions
on Services Computing, 6(3):314–329, 2013.

[60] Wei Zhang, Sundaresan Rajasekaran, Shaohua Duan, Timothy
Wood, and Mingfa Zhu. MIMP: Deadline and Interference Aware
Scheduling of Hadoop Virtual Machines. In 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid
’14), Chicago, IL, USA, May 2014.

[61] Xi Chen, Lukas Rupprecht, Rasha Osman, Peter R. Pietzuch, Felipe
Franciosi, and William J. Knottenbelt. CloudScope: Diagnosing
and Managing Performance Interference in Multi-tenant Clouds.
In 23rd IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Atlanta, GA, USA, October 2015.

[62] Abhishek Gupta, Osman Sarood, Laxmikant V. Kalé, and Dejan S.
Milojicic. Improving HPC Application Performance in Cloud
through Dynamic Load Balancing. In 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid), Delft,
Netherlands, May 2013.

[63] Hongyi Ma, Liqiang Wang, Byung-Chul Tak, Long Wang, and
Chunqiang Tang. Auto-tuning Performance of MPI Parallel Pro-
grams Using Resource Management in Container-Based Virtual
Cloud. In 9th IEEE International Conference on Cloud Computing
(CLOUD), San Francisco, CA, USA, June 2016.

[64] Ridwan Rashid Noel and Palden Lama. Taming Performance
Hotspots in Cloud Storage with Dynamic Load Redistribution.
In 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), Honolulu, HI, USA, June 2017.

[65] Seyyed Ahmad Javadi and Anshul Gandhi. DIAL: Reducing Tail
Latencies for Cloud Applications via Dynamic Interference-aware
Load Balancing. In IEEE International Conference on Autonomic
Computing (ICAC ’17), Columbus, OH, USA, July 2017.

In Kee Kim received a Ph.D. in Computer Sci-
ence from University of Virginia in 2018. He is
currently an Assistant Professor at the Depart-
ment of Computer Science of the University of
Georgia. His research areas include cloud com-
puting, large-scale distributed systems, IoT/edge
computing, and machine learning systems. He is
a member of the IEEE.

Jinho Hwang is a Research Staff Member at
IBM T.J. Watson Research Center. He received
the Ph.D. from The George Washington Univer-
sity in 2013. He was with The George Washing-
ton University from 2005 to 2006 as a visiting
scholar, and with POSCO ICT R&D center in
South Korea from 2007 to 2010. He interned
at IBM T.J. Watson Research Center and AT&T
Labs-Research in 2012 and 2013 summers, re-
spectively. He has published more than 50 pa-
pers, filed more than 50 patents, and has won

4 best paper awards. His research interests include cloud computing
optimization, network virtualization centered around software-defined
clouds to enable customers to adapt quickly to the heterogeneous cloud
environments. He is a member of the IEEE.

Wei Wang holds a Ph.D. in computer science
from University of Virginia in 2015. He is cur-
rently an Assistant Professor at the Computer
Science Department of the University of Texas
at San Antonio. His research interests include
system software, cloud computing, computer ar-
chitecture and software engineering. He is a
member of the IEEE.

Marty Humphrey is an Associate Professor in
the Department of Computer Science at the Uni-
versity of Virginia. He received a B.S. and M.S.
degree in Electrical Engineering from Clarkson
University in 1986 and 1989, respectively. He
received his Ph.D. degree in Computer Science
from the University of Massachusetts in 1996.
From 1996-1998, he was an Assistant Professor
of Computer Science and Engineering at the
University of Colorado at Denver. From 1998-
2002, he was a Research Assistant Professor at

UVA. He has co-authored over 75 publications and has been a principal
investigator on a number of projects funded through government agen-
cies (such as the National Science Foundation and the Department of
Energy) and private sector (such as Sun Microsystems and Microsoft
Corporation).

