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Abstract—This paper presents Orchestra, a cloud-specific
framework for managing both foreground applications (e.g.,
Web, DBMS) and background services (e.g., backup, security
check, batch jobs) in the user space. Orchestra is designed to
address “resource storms” caused by sudden executions of the
background services on the cloud instances. The resource storms
significantly degrade the performance of foreground applications
by interfering in the preemption of the shared resources, resulting
in frequent SLA violations and poor user experience. Orchestra
takes an online approach using lightweight monitoring and
creates performance models for multiple cloud applications on
the fly. It then optimizes the allocations of shared resources to
meet SLAs. We evaluate the performance of Orchestra on a
production cloud (Amazon EC2) with a diverse range of SLA
requirements. The experiment results show that Orchestra suc-
cessfully guarantees the foreground application’s performance to
meet its SLA targets at all times. Moreover, Orchestra maintains
the background’s performance by minimizing its performance
penalty with proper allocation of the shared resources.

Index Terms—Cloud Computing; Resource Storms; Guaran-
teeing Performance SLA; Enterprise Cloud Management

I. INTRODUCTION

Many enterprise cloud instances (e.g., Virtual Machines)
often run both foreground applications (FGs) and background
services (BGs) at the same time. The FG applications are
latency-sensitive and user-facing applications like Web and
DBMS. The BG services are executed to securely manage
the cloud instances/data centers as well as to improve overall
utilization/cost efficiency of cloud resources. These BGs in-
clude backup, security compliance, virus scan, patching, and
batch tasks. Because the BG services frequently perform very
critical operations for the management purposes, the BGs have
to be executed as planned in many cases [1]. This requirement
incurs resource storms that create high peaks of resource usage
without knowing when the FGs need more resources. Such
resource storms can retard processing time of FG applications
and in turn the response time.

Figure 1 (blue-line) illustrates the performance (response
time) degradation of a web application when the application
co-runs with BGs. We observe that the tail latency (98%tile)
of response time could show 36x slowdown. The degraded
performance has a tremendous impact on the QoS of the FGs,
resulting in frequent SLA violation and poor user experiences.
For instance, Amazon has reported that every 100ms delay
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Fig. 1. Performance variation of FG and BG applications. The blue-line
indicates the response time (98%tile) slowdown of a FG (Web) application
response time when running together with BGs; The red-bar the slowdown
of a 10G data backup duration as the FG workloads increase.

loses 1% of the sales profit [2], and video streaming (e.g.,
YouTube) users start abandoning videos after 2 seconds of
buffering time [3].

However, the current cloud instances are not well designed
to handle the resource storms. Specifically, stock operating
system schedulers such as completely or weighted fair sched-
uler (CPU, IO) and network queueing (FIFO) mechanisms
are designed without considering the resource storms [4, 5],
so that SLAs of FGs suffer while parts of shared resources
are consumed by BGs [6, 7]. OS modifications – changing
task priority [8] or designing a biased OS scheduler [9] –
have been proposed, but such tweaks are not feasible for
normal users in the cloud environments due to the technical
difficulties. Moreover, intuitive approaches – terminating or
suspending the BGs – to guarantee the FGs’ SLA are not
sufficient in practice since particular BG tasks (e.g., backup
and security checks) could have SLAs to finish the tasks due
to the significance of such services [1]. As shown in Figure 1
(red-bar), the BG’ execution time is also highly affected by
the number of co-running FG workloads. Such coarse-grained
approaches – minimizing the resource allocation – are hard
to guarantee the BG’s SLAs (or completion of the tasks) and
often lead to under-utilization the cloud instances by overly
controlling the BGs.

To solve this problem, we have created Orchestra, a frame-
work for controlling the FG applications and BG services
in the user space, aiming at meeting both SLAs. Orchestra



relies on an online approach with very lightweight perfor-
mance/resource monitoring at runtime. With the monitor-
ing, Orchestra estimates the response time of FGs using
a multivariate polynomial model with a wide range of re-
source options and predicts a BG’s execution time from a
multivariate linear regression powered by its resource usage
and application-assisted hints [10, 11]. It then optimizes the
allocations of diverse resources on cloud instances to both FG
and BGs for guaranteeing their SLAs. The resource control
by Orchestra leverages the knobs provided by modern OS’s
improvement such as cgroups [12]. Orchestra is complemen-
tary to widely used approaches for cloud application man-
agement. Orchestra components of performance monitoring
and resource controlling offer finer-grained mechanisms than
off-the-shelf monitoring/management tools like cloud auto-
scaling1 and CloudWatch2 and help cloud users automatically
determine when to scale.

We have implemented and evaluated Orchestra with real-
world workloads on the production cloud. Our main workloads
are a web service and a NoSQL database (MongoDB [13])
for FG applications, and backup (AWS Sync [14]) and
virus/malware scanner (ClamAV [15]) for BG services. Our
evaluation shows that Orchestra can comply with various SLA
targets for FG applications with 70% performance improve-
ment of the BG services.

We structure the rest of this paper as follows. Section-II
reviews the state-of-the-art approaches that manage the perfor-
mance of cloud applications. We then present the framework
details of Orchestra in Section-III. In Section-IV, we evaluate
Orchestra on a production cloud (AWS) with real-world FG
and BG workloads. Finally, Section-V concludes this paper.

II. RELATED WORK

A. Provider-centric approach

There are significant works from the research community to
detect, prevent, and mitigate the resource storms/performance
interference caused by multiple co-located tasks/applications
on the same physical HW. One direction is to design an intelli-
gent QoS management framework that detects the performance
interference and schedules multiple tasks to avoid a FG’s
SLA violations. Q-Cloud [16] predicts a SLA violation with
a discrete time MIMO (Multi-Input and Multi-Output) model.
DejaVu [17] employs a performance index that determines the
interference by comparing with the identical executions on a
sandbox. DeepDive [18] detects the performance interference
with a warning system and manages it with VM cloning and
workload duplication. Dirigent [19] controls is a FG’s QoS
while improving batch tasks’ throughput. Dirigent is relying on
particular performance isolation techniques. i.e., Intel’s cache
allocation technique.

The other direction is to determine the safe task placement.
Bubble-up [20] finds a safe co-location of multiple tasks on
the same host with a sensitivity curve via offline profiling.

1https://aws.amazon.com/autoscaling/
2https://aws.amazon.com/cloudwatch/

Bubble-Flux [21] dynamically creates the sensitivity curve
from online profiling with a short-term memory intensive
workload. Paragon [22] performs minimal offline profiling
for new workloads (e.g., 1 min. on two different HWs)
and uses a collaborative filtering to place such tasks on the
particular HWs. CPI2 [4] suggests CPI (cycle-per-instruction)
as a performance indicator to detect performance interference
and manages the FG’s QoS with CPU hard-capping to an-
tagonists (source of the interference). Heracles [23] finds a
safe co-location of multiple tasks with a coordinated isolation
mechanism of shared resources.

B. User-centric approach

There are several attempts to address this problem in the
user space. IC2 [24] and DIAL [25] mitigate the performance
interference for web server clusters. The performance interfer-
ence is detected by resource monitoring or statistic inference
model. Once the interference is identified, the approaches
change application configurations or reduce request flows to
the low-performed web nodes. However, these approaches are
application-specific (web service), but the current version of
Orchestra supports diverse types of FGs. Moreover, Orchestra
does not change any application configuration. Such modifica-
tions could result in high overhead and only mitigate a short-
term performance interference [26]. Stay-away [27] manages
process containers (LCX or Docker) and mitigates the inter-
ference by throttling BGs. However, the control mechanism
depends on a diurnal pattern of user-workloads, having a clear
period of low intensity. This may not be true for modern
cloud applications [1, 28] and, more importantly, Orchestra
is agnostic to user workload patterns.

III. Orchestra FRAMEWORK

A. Orchestra Overview

Overall Architecture: We design Orchestra with a two-
layer, distributed architecture, of managed nodes and a master
controller. Figure 2 illustrates the architecture of Orchestra.

A managed node (VM instance) has two components in
Orchestra – sidecar and node agent. The sidecar – an online
performance monitor – is designed to watch performance
variations of the FGs, i.e., a response time of web requests
and DB transactions. It measures the FG’s processing time by
capturing the ingress and egress time of user requests.

The node agents are used for the following purposes;
• Monitoring the resource usage of the target applications.
• Monitoring the progress of BG’s execution.
• Reconfiguring resources allocation for both FG and BG.
The monitoring of the resource usage focuses on collecting

the general system statistics, i.e., vCPU, memory, disk and
network IO. The BG’s execution progress is relying on probing
the application-assisted hints such as retrieving log files. All
the collected statistics – resource utilization and application
progress – are reported to the data collector in the master
controller. The resource reconfiguration is to manage subsys-
tems of control knobs (e.g., cgroups) with the decision made
by the master controller.
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Fig. 2. Overall architecture of Orchestra

The master controller plays the most important role in
Orchestra framework by determining the adjusted resource al-
locations to both FG and BGs with the goal of satisfying FG’s
SLA requirement and maximize BG’s executions. To this end,
with various statistics – response time, resource utilization,
and application progress – from the node agents, the master
controller creates a response time estimator (Section-III-B)
and performance model (Section-III-C) for both applications
on the fly. With these models, the master controller optimizes
the resource allocations to achieve the management goal
(Section-III-D).

B. Response Time Estimator for FG Applications

A key component of the master controller is the RT (Re-
sponse Time) estimator that predicts (the near future) web
response time or DB transaction time with a broad range of
resource utilization.

Regarding the feature selection of the RT estimator, we
observe the behaviors of two FGs (Web and MongoDB) by
running benchmark tools (CloudSuite [29] and TPC-C [30])
without BGs’ execution. We then calculate the Pearson Cor-
relation Coefficient between the FG’s RT and the resource
metrics including the number of requests and various system
resources – CPU, memory, disk and network IOs.

Figure 3 reports the measured correlation. Three factors
show the highest correlation with the RT of the web appli-
cation (FG) – CPU, MEM (Memory) and NRX (Network
RX Bytes). The coefficients are between 0.6 and 0.75. In the
MongoDB benchmark, the all features show relatively weaker
correlations. Four factors – REQN (the request numbers/sec.),
CPU, NRX, and NTX (Network TX Bytes) – show a moderate
correlation with the MongoDB’s RT. The coefficients are
slightly over 0.3. While the MongoDB has weaker factors, we
decide to consider all these (correlated) factors to model the
RT estimator because the RT estimator aims to handle both
or potentially more types of FGs. The selected factors are
CPU, MEM, NRX, and NTX. We exclude REQN from this
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Fig. 3. Correlation coefficient of factors that could affect FG’s response time
(NRX: Network RX Bytes/sec. NTX: Network TX Bytes/sec., DWT: Disk
Write Bytes/sec., DRD: Disk Read Byte/sec.)

feature selection since NRX is a more comprehensive metric
that covers REQN. For the other FGs, users may add other
factors if necessary.

Moreover, we measure the correlation coefficient among
these four factors since there could be a certain possibility
that one factor can be correlated with other factors. i.e., a
correlation of CPU and Network IO. We report the correla-
tions among the factors represented by 1 to 3 of scale (1:
weak, 2: moderate, and 3: strong correlation) and the results
are reported in Table I. CPU and Network IO are strongly
correlated each other for both FGs. MEM is moderately (Web)
or lightly (MongoDB) correlated with other two factors. MEM
also shows low variance over the RT’s fluctuation. i.e., (µ of
13, σ of 11) for Web, (µ of 23, σ of 2) for MongoDB.

TABLE I
CORRELATION BETWEEN THE SELECTED FACTORS (1: WEAK, 2:

MODERATE, 3: STRONG CORRELATION)

CPU MEM NRX NTX
CPU – 1 3 3

MEM 1 – 1 1
NRX 3 1 – 3
NTX 3 1 3 –

Based on the above observation, we chose MVPR (Multi-
variate Polynomial Regression) [10] approach to model the RT
estimator because MVPR considers both 1) multiple factors’
contribution to the estimation target and 2) the correlation
among the selected factors. The MVPR model is expressed
as below:

f(x1, x2, ..., xp) =

N∑
i=0

βiφi (1)

where p indicates the number of independent variables, βi is
coefficient, φ1 = 1, φN = xn1 ·xn2 ·xn3 · · ·xnp , and n is the order
of the MVPR. Moreover, to simplify the model computation,
we use a harmonic mean (2/(1/NTX + 1/NRX)) of NTX



and NRX, both representing network-IO statistics and it helps
to reduce the number of equation terms.

C. Performance Model for BG Services

Orchestra requires a performance model that predicts BGs’
execution time. The model is essential for monitoring and
controlling BGs services because Orchestra needs to assure
BGs’ SLA satisfaction and/or minimizing their execution time.
So this model performs a critical role in optimizing the
resource allocation with an accurate prediction of difference
resource usages. To create such a model, we consider the
following BG services for this work.

• ClamAV [15] is an open-source anti-virus engine used to
defend user instance (e.g., VM) from computer viruses,
Trojan, and other malicious threats.

• AWS Sync [14] is a backup application for Amazon EC2
instances similar to rsync. Sync recursively copies new or
updated files from a source directory on an EC2 instance
to S33 storage.

To select features for the BG performance model, we first
perform a profiling study on two different Amazon EC2
instances4 – m3.medium and c4.large – of Ubuntu 16.04 LTS
without FGs’ executions. We also use two different datasets
of 35G (10K files) and 106G (50K files) for this profiling
study. In this measurement, we use the default configuration
of Ubuntu OS and run these two BG services individually
without any FGs’ execution. The statistics and results from
this profiling are shown in Table II. ClamAV is observed as
a CPU and Disk-IO (Read) bound application and moderately
consumes memory resources. Sync mostly consumes CPU,
Disk-IO (Read) and Network (TX) resources on the instances.
Since both CPU and Disk-IO (Read) are common resource
factors that can potentially affect the performance of the
BGs, we decide these two resources as main features for the
performance model of these two BGs.

TABLE II
STATISTICS OF MEASUREMENT RESULTS FOR UNDERSTANDING BG

APPLICATIONS’ CHARACTERISTICS ON TWO EC2 INSTANCES

(a) ClamAV (b) Sync
Dataset 35G 106G 35G 106G
CPU5 73.8% 86.5% 78.6% 95.2%

Memory 14.2%
(0.53G)

19.5%
(0

73G)

3.3%
(0.12G)

3.9%
(0.15G)

Disk Read 8.3 MB/s 40 MB/s 51 MB/s 133 MB/s
Disk Write 79 KB/s 301 KB/s 2.2 KB/s 159 KB/s

Network TX - 55 MB/s 141 MB/s
Network RX - 1.4 MB/s 3.7 MB/s

Also, we consider leveraging application-assisted hints from
these two applications. Intuitively, the BGs’ performance could

3https://aws.amazon.com/s3/
4m3.medium instance has 1 vCPU, 3.75G RAM, and SSD drive. c4.large

instance has 2 vCPUs, 3.75G RAM, and SSD Drive.
5100% of CPU means the full usage of 1 vCPU.
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be highly related to the size and number of files they manage.
Fortunately, the BGs, like many other applications, support a
capability to write log files that saved how many files they
scanned or backed up. To test such hints’ applicability, we
measure the correlation between the size and numbers of files
saved in the logs and the execution progress of two BGs. Fig-
ure 4 represents the progress of file size and numbers scanned
by ClamAV according to the BGs’ execution. Compared to the
ideal progress (black line in Figure 4), while the progress of
the processed numbers and size of files are slightly different
from the progress of the ideal case, it is obvious that the
processed files (numbers and size) are correlated with the ideal
progress of BGs. On average, the progress by the number
and size of processed files has 4.85 and 4.93 of MAE (Mean
Absolute Error)6 and a harmonic mean7 of two factors has just
2.9 of MAE over the ideal progress. Thus, we consider such
hint as a feature for the performance model of BGs and use
the harmonic mean of them.

With the above observation, we design the performance
model with a multivariate linear regression [10] that models
the linear relationship between independent variables (the
features) and the corresponding variable y (BG’s execution
time). The model is formulated as below:

y =

n∑
i=1

αixi + β (2)

where x is the independent variables (x ∈ [CPUbg, DRDbg,
HINTbg]) and β is a constant. The corresponding variable
y means the (predicted) execution time of the BGs. In this
work, we consider three features to design the performance
model, and users can add/remove more features according to
the performance characteristics of other BGs.

D. Orchestra Resource Optimizer and Controller

Orchestra determines the resource allocation to both appli-
cations with two predictive models described in the previous
sections. The primary objective of this decision is to satisfy
the FG’s SLA, so the RT estimation model (Equation (1) in

6|Progressideal − Progresslog |
72/(1/file size+ 1/file numbers)



Section-III-B) should have the following condition. Suppose
SLAfg indicates a SLA target for a FG:

f(CPUfg,MEMfg, NET fg) ≤ SLAfg (3)

To simplify this equation, we can consider MEMfg as a
constant because the memory resource has a weak correlation
with other factors (shown in Table I) as well as it has no
significant variance with the fluctuations of FG’s performance.
We replace MEMfg with the average memory utilization of
the FG. We can also estimate NET fg from EMA (Exponential
Moving Average) [19]. This estimation may result in slightly
inaccurate prediction for the RT estimation, but it greatly
reduces the computation overhead for the RT estimation. i.e.,
O(n2) to O(n). Now we transform the RT estimation model
from multivariate to univariate model, depending on CPUfg .
We can obtain the minimum value of CPUfg that satisfies
the SLAfg from the below equation:

ˆCPUfg = argmin
CPUfg

f(CPUfg) ≤ SLAfg (4)

where 0 < CPUfg < CPUmax. CPUmax is the maximum
amount of CPU resources in the VM. If CPUfg from Equa-
tion (4) is greater than CPUmax, this means that the FG is im-
possible to meet SLA requirement with 100% CPU utilization
on the instance. Thus, in this case, Orchestra provisions more
resources to the FG by collaborating with cluster or application
management techniques (e.g., auto-scaling) to ensure the SLA
satisfaction. With CPUfg , Orchestra can determine the CPU
allocation for the BGs by:

CPUbg = CPUmax − (CPUfg + ε) (5)

where ε is the CPU utilization for a third application or the
reserved amount of CPU for unknown processes.

Next, Orchestra performs an optimization to minimize
Equation (2), which is the performance model of the BGs.

minimize:
3∑

i=1

αixi + β, where

xi ∈ {CPUbg, DRDbg, HINTbg}
(6)

subject to: CPUbg = CPUmax − (CPUfg + ε) (7)
0 ≤ DRDbg ≤ DRDmax (8)
HINTbg = 1, (100% prog. of BG) (9)

The solution of this optimization determines the desired
utilization of Disk IO for the BGs. From Equation (3) to (9),
Orchestra determines all resource allocations to both FG and
BGs. The set of resource allocation to both the FG and the
BGs are sent to a node agent on the VM instance, which
reconfigures resource allocation with cgroups.

E. Orchestra Implementation

The main components of Orchestra architectures include a
master and nodes to manage and orchestrate virtual machines,
and the sidecar component is used in the micro-service archi-
tecture such as Netflix OSS and Istio8 as a packet forwarder
in both/either ingress and/or egress. In the master controller
of Orchestra, two predictive models – the RT estimator (FG)
and performance model (BG) – are implemented with various
statistics and machine learning libraries.

The implementation of node agent focuses on the resource
monitoring and control. Sysstat9 is used to periodically mon-
itor the changes of resource utilization on the VM instances.
To control multiple resources, Orchestra consults with two
subsystems of cgroups [12] – cpu and blk io – to control
the CPU and disk IO.Whenever the new resource allocations
are decided, Orchestra reconfigures a different set of tunable
values to cpu.shares and cfs period us (for CPU control) and
read iops in blk io (for disk IO control).

The sidecar – a performance monitor for the FG – is based
on Nginx’s reverse proxy10 and load-balancing11 functionality.
Currently, the sidecar supports multiple protocols for the
FG workloads – HTTP and data stream (TCP and UDP)
requests – and it forwards the requests to the corresponding
FG applications. With the Nginx’s recent improvement, the
sidecar can capture ingress and egress time of each request,
and the statistics of the FG’s RT are reported to the master
controller in a real-time manner.

IV. PERFORMANCE EVALUATION

We evaluate Orchestra on the real cloud environment. We
first demonstrate the performance of Orchestra for controlling
both FG and BGs to satisfy the FG’s SLA goals under the
resource storms. We then present how Orchestra minimizes
the slowdown of BG’s execution time. We further investigate
both Orchestra’s resource allocation for both the FGs and
the BGs and the performance of dynamic resource control by
Orchestra.

A. Evaluation Setup

Evaluation Infrastructure: We use general purpose m412

instances of Amazon EC2 clouds since Orchestra aims to pro-
vide fine-grained control mechanisms of various VM resources
to general cloud users (of course, all controls are performed in
the user space). As several works reported [31–33], Amazon
EC2 has performance variance due to the resource contentions
and HW heterogeneity on the base infrastructure. We use EC2
spot instances in this evaluation. Since spot instances have
even higher level of the performance variance, multiple runs
and averaging them offset the variance.

8https://istio.io/
9http://sebastien.godard.pagesperso-orange.fr/
10https://www.nginx.com/resources/admin-guide/reverse-proxy/
11https://www.nginx.com/resources/admin-guide/tcp-load-balancing/
12m4 instances are the latest generation of VM instances and have balanced

resource combinations, i.e., the ratio between CPU and memory is 1:4.



FG Workloads: We consider Web application and MongoDB
as representatives of FG workloads and use two different
benchmarks for each FG to generate real workloads; Cloud-
Suite 3.0 [29] - Web Serving benchmark and TPC-C [30]
for MongoDB. For the Web application, we generate web
serving workloads from 50 to 250 concurrent users to create
a sufficient level of workload fluctuation. We set up different
VMs for the web server (m4.large13) and back-ends – Mem-
cached and DBMS – (m4.xlarge14) and focus on the resource
controls for the front-end (web server) VM. For MongoDB,
we install the latest version of MongoDB on m4.large instance
and continuously change the number of concurrent users from
2 to 20 to generate the realistic workloads.

BG Workloads: A dataset with 5GBytes is used for BG
workloads. i.e., ClamAV (virus scan) and AWS Sync (backup).
This dataset has approximately 25K of files with various sizes
(µ of 1024K, σ of 1495.6). We use a different dataset from
the dataset we used in Section-III-C for a fair comparison.

Performance Metric: In Section-IV-B, meeting a broad range
of SLA targets is the primary metric for the FG control. We
focus on tail latency – 95%tile – for this measurement and
define that a SLA requirement is satisfied if a 95%tile of a
FG’s response time is equal to or less than the SLA target. In
Section-IV-B, we measure the slowdown of BG’s execution
time by:

BG Slowdown =
BG Exec T imewith FG Workload

BG Exec T imeStandalone
(10)

where the denominator indicates a BG’s execution time with-
out co-runners and the numerator means the BG’s execution
time with FG workload.

B. Meeting FG’s Response Time SLA under Resource Storms

This section focuses on the overall performance of Orches-
tra. The objective of this evaluation is meeting the SLA targets
for FG applications by controlling the FGs’ RT as close as the
given SLA targets. The ideal case for this evaluation is that
the FG’s RT is the same as the SLA targets.

Before we start this evaluation, we recognize the range (the
upper and lower bound) of SLA targets that Orchestra should
meet. We quantify RTs (Table III) of three different scenarios
when a FG runs with BGs (resource storms) and without BGs.
We pick SLAs for each case within the range of between “RT
without a BG” and “RT with BG”.

TABLE III
95%TILE RESPONSE TIME (RT) OF WEB AND MONGODB WITH AND

WITHOUT RESOURCE STORMS FROM BGS.

Number of BGs Web MongoDB
FG Only 0 0.92s 0.86s
FG + ClamAV

1
5.88s 2.71s

FG + Sync 8.65s 3.57s

13m4.large has 2 vCPUs, 8GB RAM, and SSD storage.
14m4.xlarge has 4 vCPUs, 16GB RAM, and SSD storage.
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Fig. 5. Normalized RT (95%tile) of Web and MongoDB over a set of SLA
targets (The best result should be 1.0.)

As the baseline, we use a reactive approach from other
works [4, 21]. This reactive system relies on a dynamic
adjustment of maximum resource capping. The reactive one
sets a low value of the maximum cap (e.g., 5% of CPU
utilization) for BGs’ resource consumption when the FG’s
RT violates the SLA goals, and it allocates more resources
to the BGs by releasing this cap when the FG shows a stable
performance. Also, we add a warning system to this baseline,
and the warning system sets a threshold (e.g., 10% gap from
the SLAs). When the FG’s 95%tile RT exceeds the threshold,
the warning system alerts to the master controller, and the
reactive framework reduces the resource usage of the BGs
with a pre-defined step function. If the FG’s RT violates the
SLAs, the reactive one uses the resource capping explained
above to quickly restore the FG’s performance with the SLA.

Figure 5 shows the RT (95%tile) of the FG applications
managed by Orchestra and reactive approach when the FGs
are running with the BGs. All results are normalized over the
SLA targets. If a result is equal to or less than 1.0, then the RT
meets the SLA goals and vice versa. As shown in Figure 5,
both frameworks can successfully control the FGs’ RT with
the SLAs. But Orchestra’s results are much closer to the SLA
targets, and it only has 2 – 5% difference with the SLAs.
However, the reactive system has about 15% differences with
the SLA targets. These results imply that the FGs controlled by
Orchestra maintain the application performance by consuming
potentially less amount of resources as compared to the FGs
with the reactive system.

C. Minimizing BG’s Execution Slowdown

Next, we measure the slowdown of BGs’ execution. As we
confirmed in the previous evlation, Orchestra’s FG control,
maintaining the FG’s RT as close as the SLA target, is
beneficial to minimize the BGs’ execution time. Orchestra
allows the BGs to utilize more resources to boost their exe-
cution (more importantly, without SLA violations). Figure 6
reports the difference of the BG’s execution time controlled
by two approaches. While Orchestra only has 1.25x (with
Web) and 1.39x (with MongoDB) slowdown (as expressed in
equation-(10)) of the BGs’ execution, the reactive approach
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Fig. 6. Slowdown of BG’s execution under two different control frameworks

requires more sacrifice to the BGs, i.e., 1.73x (with Web) and
2.77x (with MongoDB) slowdown of the BGs. These results
are because Orchestra’s predictive ability and optimization
mechanism could successfully determine the proper level of
resource allocation to multiple applications so that Orchestra
allows the BGs to consume as high resource as if the FG meets
the SLAs.
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Fig. 7. Resource utilization (CPU) of VM with two control frameworks (RE:
reactive framework, OR: Orchestra)

Figure 7 shows resource utilization on the VMs with both
approaches. We only show CPU utilization since it is the most
representative resource of the VMs. For the Web application
case (Figure 7(a)), Orchestra utilizes over 90% of CPUs,
which is leveraging 10% more resources than the reactive
approach. Interestingly, Orchestra uses the similar amount
of CPU (compared to the reactive one, only 2% difference)
for the Web (FG) and increases the overall utilization by
allocating more resources to the BGs. In the evaluation with
MongoDB (Figure 7(b)), Orchestra improves CPU utilization
over 95% and provides balanced resource allocations to the
both, implying Orchestra is not only able to meet the FG’s
SLAs, but also boost the BG’s performance, resulting in high
resource utilization on the VMs. However, the reactive one
allocates more than 75% of CPU to the FG, indicating it overly
assigns the resources that lead to retard the BGs’ execution.
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D. Orchestra’s Dynamic Resource Control

Figure 8 illustrates Orchestra’s behavior for the perfor-
mance (RT) management of FG (Web Application) and dy-
namic control of VM resources. The top graph (Figure 8(a))
shows the changes in the FG’s RT and the SLA target. The
middle graph (Figure 8(b)) reports the dynamic CPU allocation
for the FG, and the bottom graph (Figure 8(c)) shows the
CPU allocation for the BG. As shown in the top graph (at the
beginning of Orchestra control), while Orchestra controls the
CPU resources based on its estimation mechanism, the most
significant SLA violation happens in the first 100 seconds.
However, this violation is expected and is mostly because of
that the RT estimation model for FG does not have enough
training dataset to build a robust FG RT estimator. After
this initial training period, Orchestra performs the successful
control in the CPU resources. The middle and bottom graphs
show that Orchestra increases CPU resources for the FG and,
at the same time, decreases the resource for the BG when the
FG’s RT is close to or violates the SLA target. i.e., at 220,
250, 400, and 580second. Also, when the FG’s RT is stable,
Orchestra always allocates more resources to the BG to boost
its execution.



V. CONCLUSION

Resource storms in enterprise cloud environments become
a significant challenge for managing the performance of cloud
applications. To improve this situation, we presented Orches-
tra, cloud-specific framework for controlling both FG and
BGs in the user space to guarantee the FG’s performance
while minimizing the performance penalty of BGs. We have
implemented and evaluated Orchestra with real workloads
on Amazon EC2. Our primary workloads are a web service
and a NoSQL database (MongoDB) for FGs and AWS Sync
(backup) and ClamAV (virus and malware scanner) for BGs.
We also presented the performance of Orchestra with a
number of SLA constraints. The results show that Orchestra
guarantees the FG’s SLA satisfaction at all times with 70%
performance improvement of BGs.
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