
A Self-Optimized Generic Workload Prediction
Framework for Cloud Computing

Vinodh Kumaran Jayakumar Jaewoo Lee
Department of Computer Science Department of Computer Science

The University of Texas at San Antonio The University of Georgia
rvn028@my.utsa.edu jaewoo.lee@uga.edu

In Kee Kim Wei Wang
Department of Computer Science Department of Computer Science

The University of Georgia The University of Texas at San Antonio
inkee.kim@uga.edu wei.wang@utsa.edu

Abstract—The accurate prediction of the future workload, such
as the job arrival rate and the user request rate, is critical
to the efficiency of resource management and elasticity in the
cloud. However, designing a generic workload predictor that
works properly for various types of workload is very challenging
due to the large variety of workload patterns and the dynamic
changes within a workload. Because of these challenges, existing
workload predictors are usually hand-tuned for specific (types of)
workloads for maximum accuracy. This necessity to individually
tune the predictors also makes it very difficult to reproduce the
results from prior research, as the predictor designs have a strong
dependency on the workloads.

In this paper, we present a novel generic workload prediction
framework, LoadDynamics, that can provide high accuracy
predictions for any workloads. LoadDynamics employs Long-
Short-Term-Memory models and can automatically optimize its
internal parameters for an individual workload to achieve high
prediction accuracy. We evaluated LoadDynamics with a mix-
ture of workload traces representing public cloud applications,
scientific applications, data center jobs and web applications.
The evaluation results show that LoadDynamics have only 18%
prediction error on average, which is at least 6.7% lower than
state-of-the-art workload prediction techniques. The error of
LoadDynamics was also only 1% higher than the best predictor
found by exhaustive search for each workload. When applied
in the Google Cloud, LoadDynamics-enabled auto-scaling policy
also outperformed the state-of-the-art predictors by reducing the
job turnaround time by at least 24.6% and reducing virtual
machine over-provisioning by at least 4.8%.

Keywords-Cloud Computing; Workload Prediction; Long
Short-Term Memory; Self-Optimized Framework; Resource
Management;

I. INTRODUCTION

The accurate prediction of future workloads, such as the
number of jobs or user requests that will arrive in the next time
interval, has long been recognized as a primary requirement
for effective auto-scaling [1]–[3]. With accurate workload
prediction, users or cloud service providers can design better
auto-scaling policies or VM scheduling managers to properly
provision virtual machines (VM) or containers in advance to
avoid resource over- and under-provisioning, as well as the

negative performance impact from resource cold startup [4],
[5], which may lead to Service Level Agreement (SLA)
violations or excessive cloud usage cost.

However, accurate workload prediction has been a chal-
lenging problem due to the large variations in the workload
patterns (e.g., cyclic, bursty or increasing) across job types [6].
Fig. 1 shows the job workload traces from the Google data
centers [7], Facebook data centers [8] and Wikipedia [9]. As
shown in Fig. 1, the workload patterns drastically vary among
different cloud applications. For example, the Wikipedia work-
load indicates a strong seasonality, while other workloads do
not exhibit any clear periodicity. Moreover, the pattern within
a workload may also change over time, as illustrated by the
high spikes in the first half of the Google workload and the
high fluctuations in the Facebook workload. The large variety
of workload patterns demands that a workload predictor be
tuned and optimized for each workload to ensure high ac-
curacy. The changes within a workload require the predictor
being sophisticated enough to recognize and accurately predict
various patterns within one workload.

Ordinary cloud users, who usually do not have the expertise
in statistics, time series and machine learning, are most likely
hard-pressed to design such sophisticated predictors for their
own workloads [10]. Ideally, a generic workload prediction
framework, which can generate accurate predictors for various
dynamic workloads, should be provided (e.g., by the cloud
service providers) to help ordinary cloud users to maximize
the benefit of auto-scaling.

Workload predictors from prior studies were usually de-
veloped for specific workloads or specific types of work-
loads [11]–[16]. These predictors were not designed to be
generic and usually have low prediction accuracy when applied
to other workloads. Furthermore, the need to hand-tuned
predictors for each (type of) workload also made it difficult
to reproduce the prediction results presented by previous
research. We have also explored a generic workload prediction
framework previously [3]. However, the accuracy of this prior
framework still has room for improvement.



0 500 1,000
0

1

2

3
·106

Intervals

Jo
b

C
ou

nt

(a) Google Cluster (30min interval)

0 200 400
2

3.5

5

6.5
·106

Intervals

U
se

r
R

eq
ue

st
s

(b) Wikipedia (30min interval)

0 50 100
0

50

100

150

Intervals

Jo
b

C
ou

nt

(c) Facebook Cluster (10min interval)

Fig. 1. Traces for three workloads with different patterns.

In this paper, we present LoadDynamics, a generic workload
prediction framework that can generate highly-accurate work-
load predictors for various dynamic workloads. LoadDynamics
employs the machine-learning (ML) model, Long-short Term
Memory (LSTM) [17], to make predictions. Machine-learning
models, however, cannot automatically produce accurate pre-
dictors for any workloads without proper hyperparameter
tunning, such as tuning the number of layers of the model.
To address this issue and improve the prediction accuracy
for an individual workload, LoadDynamics further employs
Bayesian Optimization to automatically optimize the hyperpa-
rameters of the model trained for each workload. Through this
self-optimization, LoadDynamics is able to generate highly-
accurate predictors optimized for individual workloads. More-
over, unlike ordinary feedforward neural network and many
other machine-learning techniques, LSTM models can track
relatively long-term dependencies in the data, making them
potentially capable of detecting and predicting various patterns
within a workload, given that the hyperparameters are carefully
chosen [18], [19].

We applied the LoadDynamics to 14 workload configura-
tions from four different types of jobs on the cloud. The av-
erage prediction error for the workloads using LoadDynamics
is 18%, showing that LoadDynamics can provide predictions
with high accuracy for various types of workloads with dy-
namic changes. When compared to three state-of-the-art work-
load predictors, LoadDynamics have lower prediction errors by
6.7%, 14.1% and 14.5%, respectively. To demonstrate that the
higher accuracy from LoadDynamics can indeed benefit auto-
scaling, we also implemented a predictive auto-scaling policy
on Google Cloud with LoadDynamics. Experiment results
show that the auto-scaling with LoadDynamics reduced the
average turnaround time of the cloud applications by 24.6%
and 38.1%, when compared to two state-of-the-art predictors.
LoadDynamics can also improve cloud resource efficiency by
reducing VM over-provisioning by 4.8% and 17.2%.

The contributions of this paper include:
1) The design of LoadDynamics, a workload prediction

framework that automatically optimizes its predictors
for individual workloads to provide high accuracy pre-
dictions for various workloads with dynamic changes.
LoadDynamics provides significantly higher accuracy
than state-of-the-art workload prediction techniques.

2) A thorough evaluation of LoadDynamics with 14 work-

load configurations of different patterns and application
types to demonstrate that LoadDynamics can indeed
provide high accurate predictions for various workloads
with dynamic changes.

3) A case study to demonstrate that the highly-accurate
predictions from LoadDynamics can further improve the
effectiveness of auto-scaling on real public clouds.

The rest of this paper is organized as follows: Section II
formally formulates the workload prediction problem; Sec-
tion III presents the detailed design of LoadDynamics includ-
ing its LSTM model, hyperparameter optimization, and the
workflow; Section IV gives the experimental evaluation of
LoadDynamics; Section V discusses the limitations and future
work; Section VI discusses the related work; and Section VII
concludes the paper.

II. PROBLEM DEFINITION AND MOTIVATION

A. Problem Definition

For a typical cloud system that executes ML train-
ing/inference jobs, HPC applications and serving web requests,
a stream of jobs or requests arrive at different times. This
stream of jobs or requests can be partitioned into time intervals
and described with the number of jobs or requests arrived at
each interval. For instance, the Google workload shown in
Fig. 1a is partitioned into 30 minutes intervals. In the first
30-minutes internal, there were 814k jobs. In the second and
third intervals, there were 757k and 791k jobs, respectively.
The Wikipedia workload in Fig. 1b is also partitioned into 30-
minutes-long intervals, where the first three intervals had 5.4,
5.2 and 4.9 million user requests, respectively.

Consider that at a certain time interval, a user wants to
allocate VMs in advance for the jobs/requests arriving in the
next interval. It is for the best interest of the user to allocate
VMs that can exactly accommodate the jobs/requests at the
next interval. Allocating too few VMs (under-provisioning)
leads to additional VMs being created on-demand after the
jobs/requests already arrive, potentially violating performance
goals. Allocating too many VMs (over-provisioning) results
in some VMs running idle, wasting money. To allocate the
proper number of VMs, the user should know the number of
jobs/requests that will arrive in the next time interval.

In this paper, we address this problem of predicting the
number of jobs/requests that will arrive in the next time
interval(s). For the rest of this paper, we define Job Arrival



Google Facebook Wikipedia
0

20

40

60

80
E

rr
or

(%
)

CloudInsight CloudScale Wood et al.

Fig. 2. Prediction errors (MAPE) of several prior predictive methodologies.

Rate (JAR) at an interval as the number of jobs/requests arrived
in that interval. Without loss of generality, assume that at
the (i − 1)’th interval, the JARs at the current and previous
intervals are known, and the JAR for the i’th interval is to
be predicted. To ensure our prediction framework works for
various types of workloads, the JARs at the interval i is
predicted only based on the JARs from previous n intervals.
Let Ji−1 . . . Ji−n denote the actual JARs from the (i − 1)’th
interval to the (i− n)’th interval. Let Pi denote the predicted
JAR at the i’th interval. The prediction problem of Pi can then
be expressed as,

Pi = f(Ji−1, Ji−2, . . . , Ji−n+1, Ji−n) (1)

where f is a predictive model and n is the number of past
JARs used in the prediction. The main task of LoadDynamics
is to determine this function f for each workload. Note that,
an implicit assumption made here is that Ji correlates with and
depends on the previous n JARs, which is typically true for
real workloads [20]. However, the exact number of previous
JARs (i.e., the value of n) that correlates with Ji is workload-
specific. Therefore, the value of n also needs to be determined.

B. Motivation

Fig. 2 shows the prediction errors (MAPE, defined in
Section IV) for the three workloads shown in Fig. 1 using
three different predictive methodologies based on prior studies,
which are CloudInsight [3], CloudScale [1] and the predictor
from Wood et al. [2]. These prediction methodologies were
implemented the configurations recommended by their original
authors. Note that, CloudInsight is an ensemble predictor
that picks the best predictor from a group of predictive
models, such as Random Forest, ARIMA and SVR. Therefore,
CloudInsight represents the best prediction accuracy for the
past research that employed these models.

As the figure shows, none of these existing predictive
methodologies can always achieve less than 50% error for
all workloads. Some of these predictive methodologies were
designed for web workloads with clear seasonal trends. Conse-
quently, they have low accuracy for the non-seasonal data cen-
ter workloads. Such high errors often cause serious resource
under- and over-provisionings. These errors also indicate there
is room and necessity to improve the prediction accuracy.

III. THE DESIGN OF LoadDynamics
A. LSTM and Hyperparameter Optimization

A pattern in a workload can usually be represented with the
long-term and short-term trends/dependencies within the JARs

Ji−n

M

Ji−n+1

M

Ji−1

M T

Cinit Ci−n Ci−n+1 Ci−2

hinit hi−n hi−n+1 hi−2

hi−1 Pi

Fig. 3. Predicting JAR Pi with a one-layer LSTM model.

Jt

σ σ tanh σ

� +

� �
tanh

ht−1

Ct−1 Ct

ft it gt ot

ht

Fig. 4. Internal operation of a LSTM cell (M ) at time interval t (t ∈
{i− n, i− n+ 1, . . . , i− 1}).

of continuous time intervals. For example, the long-term trend
(JAR-dependency) of a workload may be that job counts con-
tinuously grow each day, whereas the short-term trend (JAR-
dependency) might indicate that job counts fluctuate following
the time-of-the-day. However, cloud workloads often yield
complex non-linear dependencies which traditional time series
prediction models (e.g., ARIMA and its variants) may not
be able to capture [21]. To capture these trends/depends, we
propose to use Long Short-term Memory (LSTM) network, as
it is developed to efficiently learn long-term dependencies [17].

Fig. 3 shows how the LSTM predicts the JAR at the i’th
interval, i.e., Pi. M represents a trained LSTM cell. C is a
cell memory that serves as a long-term memory for temporal
state information. h is a hidden state outputted from previous
LSTM cell (M ). Given the input sequence 〈Ji−n, . . . , Ji−1〉
of length n, the LSTM network recursively updates values to
obtain Ci−2 and hi−2. Finally, the lost output, hi−1, is fed
into a fully-connected layer T to produce the final output Pi.

Both C and h are determined by the internal operations
of the LSTM cell (M ), which are shown in Fig. 4. Let t be
a general form of time intervals in the LSTM network and
t ∈ {i − n, i − n + 1, . . . , i − 1}. Four gates (it, ft, ot, and
gt) in M calculate the values of Ct and ht by regulating the
amount of information to flow along the network. At time
interval t, the network takes Jt, ht−1, and Ct−1 as input and
updates the memory and gate values as follows:

it = σ(WiJt + Uiht−1 + bi) ,

ft = σ(WfJt + Ufht−1 + bf ) ,

ot = σ(WoJt + Uoht−1 + bo) ,

gt = tanh(WgJt + Ught−1 + bg) ,

Ct = ft � Ct−1 + it � gt ,
ht = ot � tanh(Ct) ,

where � denotes the Hadamard product of two matrices, σ is
the sigmoid function, and Wa, Ua and ba represent the weights
and bias for a gate, respectively. The input gate it determines



0 20 40 60 80 100
0

10

20

30

40

LSTM Models with a Different Set of Hyperparameters

E
rr

or
(%

)

Fig. 5. Predictions errors (MAPE) for the Google workload using various
LSTM modes with different hyperparameters.

how much new information from the input is written to the cell
memory, and the forget gate ft allows the network to erase past
information from Ct−1. The output gate ot controls how much
information is output from Ct. One can control the capacity
of an LSTM network to learn dependencies by adding more
LSTM layers or increasing the number of units (i.e., the size
of memory cell Ct) in an LSTM cell. This control means that
the accuracy of an LSTM network is dependent on the proper
choice of its hyperparameter values, such as the number of
the LSTM layers, the size of Ct and the actual length of the
history (the length n of input sequence).

However, finding a good set of these hyperparameters is a
non-trivial task [10]. For example, when the history length n
is too small, it is difficult for a model to learn a dependency
that spans for a longer period of time. On the other hand, when
n is too large, the model might learn irrelevant dependencies
and suffer from exploding/vanishing gradient problem [22],
resulting in poor prediction accuracy and yielding high com-
putation overhead. A similar issue arises with the size of the
cell memory C (the number of units) and the number of LSTM
layers. The cell memory is represented by a vector C ∈ Rs

of length s. If the size of the C vector and/or the number
of layers are too large, it increases the complexity of the
LSTM model. Complex models typically require larger data
set to train, which may be infeasible to collect in practice.
The increased model complexity may also increase the risk of
overfitting, where the trained LSTM model may correspond
too closely to the training data, losing the ability to reliably
predict future data, which do not necessarily closely resemble
the training data. The increased model complexity may also
lead to higher computational cost. On the other hand, if the size
of the C vector and/or the number of layers are too small, the
class of predictors represented by the LSTM model may not
be able to capture the complex temporal dependencies in the
data, resulting in poor prediction accuracy [23], [24]. Besides
the history length, the cell memory vector size and the number
of layers, a fourth hyperparameter may also significantly affect
the accuracy of the trained LSTM models, which is the size
of the training data batches. Although the batch size does not
affect the internal structure of the LSTM model like the other
three hyperparameters, it may affect the effectiveness of the
training process, and thus affect the accuracy of the trained
model [10]. Therefore, we also consider the batch size as a
hyperparameter in LoadDynamics.

The proper values of the hyperparameters, n (history

length), s (size of C vector), the batch size, and the number
of layers, depend on the workload and need to be determined
before training M . Fig. 5 compares prediction errors (MAPE)
of 100 different LSTM models on the Google workload
(Fig. 1a), where values on x-axis correspond to different
combinations of hyperparameters. It suggests that choosing
a better combination of hyperparameters can lead to three
times reduction in prediction errors. Unfortunately, manually
selecting the best hyperparameters for each workload is infea-
sible given the large variety of workloads and their dynamic
changes. The brute-force search of best hyperparameters is
also impractical due to the combinatorial explosion in the
number of combinations.

To address this challenge, we use Bayesian Optimization to
intelligently search for a better set of hyperparameters for each
workload and/or each portion of a workload [25]. Bayesian
Optimization (BO) searches for the better hyperparameters
with a non-linear regression technique called the Gaussian
Process (GP) [26]. BO is an iterative optimization process.
In each iteration, BO builds a regression model with GP
using the sets of hyperparameters that are already explored
and the accuracy of the LSTM models built with these sets.
The regression model is then used to predict a new set of
hyperparameters that is potentially better. This new set of
hyperparameters is then used to train a new LSTM model,
whose accuracy is evaluated with a cross-validation data set.
After a fixed number of iterations, the best LSTM model found
from these iterations is then chosen as the predictor.

Note that, besides BO, other optimization techniques were
also proposed by prior work to optimize hyperparameters. In
particular, we also experimented with random search and grid
search [27], [28]. However, grid search was less effective than
BO in improving the hyperparameters in our experiments.
Random search could find hyperparameters with similar ac-
curacy as those determined by BO. However, random search
typically had longer execution time than BO in our experience.
Therefore, LoadDynamics was designed to only employed BO.

B. Workflow of LoadDynamics
The general workflow of LoadDynamics is composed of

three phases; (i) the model training, (ii) the hyperparameter
optimization, and (iii) the prediction phase. Corresponding to
these three phases, the past and future JARs in a workload
consist of three parts; (a) the training data set with l samples
used for training the model M and T , (b) the cross-validate
data set with m samples used for hyperparameter optimization,
and (c) the prediction of JAR. The first two parts – (a) and (b)
– are from the past (known) JARs and the third part (c) is for
the future (unknown) JARs. Fig. 6 shows the overall workflow
of LoadDynamics. Note that each rectangle with a number in
Fig. 6 means an internal step in LoadDynamics. Fig. 7 shows
the three parts of the workload JARs.

As Fig. 6 shows, the training phase starts with a randomly
selected set of hyperparameters. This set of hyperparameters
is used to configure an initial LSTM model, which is then
trained using the training data set (step 1). After training, a



initial
hyper-
params

1. Train
A Model

Training
Data

2. Validate
Model

a new
model A

Cross-val
Data

Validated
Models

model A
& error

> maxIters?
3. Select New
Hyperparams

with BO.

No

a new set of hyperparameters

4. Select Best
Model M
Yes

all models Predictor f

M M M

5. Predict

Input JARs:
Ji−1 . . . Ji−n

Pi+1

Model Training Hyperparmeter Optimization Prediction

Fig. 6. The overall workflow of building a new predictor and making predictions with LoadDynamics.

timeP
i+
1

P
i

J
i−
1

J
i−
m

J
i−
m
−
1

J
i−
m
−
l

to predict
cross-val data

(size m)training data (size l)

Fig. 7. Partitioning of the training data cross-validation data sets.

TABLE I
WORKLOADS USED FOR EVALUATION.

Trace Type Intervals (mins)
Wikipeida (wiki) Web 5, 10, 30
LCG HPC 5, 10, 30
Azure (AZ) Public Cloud 10, 30, 60
Google (GL) Data Center 5, 10, 30
Facebook (FB) Data Center 5, 10

new LSTM model A is generated. This model A includes
both a new LSTM model M and a fully-connected layer T ,
as shown in Fig. 3. In step 2, A is then validated using the
JARs in the cross-validation sets. For this validation, for all
the JARs of Ji−1 . . . Ji−m, their corresponding predictions
Pi−1 . . . Pi−m are generated with A. Then the predicted JARs
are compared with the actual JARs to calculated the average
prediction error of A. After the validation, both A and its
prediction error are stored in a database. For step 3, the
hyperparameters of A and its error are also used to select
a new and potentially-more-accurate set of hyperparameters
using Bayesian Optimization from a predefined search space of
possible hyperparameters. The new set of hyperparameters is
then used to configure and train a new LSTM model in step 1.
This train and optimization process is repeated for maxIters
iterations. After these iterations, all of the validated models are
compared, and the model M with the lowest error is selected
as the actual workload predictor f (step 4). This predictor f
is then used to predict future JARs (step 5).

IV. EVALUATION

This section provides the experimental evaluations of Load-
Dynamics. These evaluations focused on the accuracy of
LoadDynamics, as well as its benefits on auto-scaling.

A. Experiment Setup

Workloads. Five workloads from four categories were used to
evaluate LoadDynamics. These workloads are: 1) Wikipedia
(web application) workload from Wikibench [9]; 2) the high

0 100 200 300 400 500 600 700
0

2,000

4,000

6,000

Intervals

Jo
b

C
ou

nt

(a) Azure (60min interval)

0 50 100 150 200 250
0

500

1,000

1,500

2,000

Intervals

Jo
b

C
ou

nt

(b) LCG (30min interval)
Fig. 8. Workload Traces for Azure and LCG workloads.

performance computing (HPC) workload from the LCG trace
of the Grid Workload Archive [29]; 3) the public cloud
workload from Microsoft Azure [30]; 4) the data center
workload from Google [7]; and 5) the data center workload
from Facebook [8]. The traces of the Google, Facebook and
the Wikipedia workloads were shown in Fig. 1, and the traces
of the Azure and LCG workloads are shown in Fig. 8. The
characteristics of these workloads are summarized in Table I.
To evaluate whether LoadDynamics works properly at different
time granularity (which may have different workload patterns),
these workloads were evaluated with varying interval lengths.
For the Wikipedia, Google and LCG workloads, the intervals
are 5, 10 and 30 minutes. For the Azure workload, as the
JARs are very small at 5-minute intervals, it is evaluated with
intervals of 10, 30 and 60 minutes. The Facebook workload
is relatively short (just covering one day). To allow enough
training samples, the Facebook workload is only evaluated
with intervals of 5 and 10 minutes. Overall, 14 combinations
of different workloads and intervals were used to evaluate
LoadDynamics. For the rest of this paper, we refer to a
workload with a specific interval as a workload configuration.

Metric. The prediction error is defined as the absolute percent-
age error of each prediction. For each workload configuration,
the mean absolute percentage error (MAPE) of all prediction
errors is reported. MAPE is formulated as 100%

n

∑
i |

Pi−Ji

Ji
|.



TABLE II
THE 21 PREDICTORS USED IN CLOUDINSIGHT [3] BASELINE.

Category (Preds #) Workload Predictors
Naive (2) mean and kNN

Regression (6) Both local and global regression with linear,
quadratic, and cubic models.

Time-series (7) WMA, EMA, Holt-Winters DES, Brown’s DES,
AR, ARMA, and ARIMA.

ML (6) Linear and Gaussian SVMs, Decision Tree,
Random Forest, Gradient Boosting, and Extra Trees

TABLE III
THE HYPERPARAMETER SEARCH SPACE AND MAXIMUM ITERATIONS OF

OPTIMIZATIONS.

Workload Hist Len (n) C size Layers # Batch #
Wiki

[1-512] [1-100] [1-5] [16-1024]LCC
Azure
Google
Facebook [1-100] [1-50] [8-128]

Baselines. For comparison, we also report the prediction
errors from three state-of-the-art workload predictors, includ-
ing CloudInsight [3], CloudScale [1] and Wood et al. [2].
CloudInsight is an ensemble model that dynamically chooses
the best predictor from a pool of 21 predictors each built
a different modeling techniques. Many of these techniques
were employed by prior work in workload prediction, such
as [13], [15], [16], [31], [32]. All the 21 predictors are listed in
Table II. CloudInsight also dynamically rebuilds its predictors
after every five intervals. CloudScale is based on Fast Fourier
transform (FFT) and a discrete-time Markov chain. It uses
FFT to detect repeating patterns in the workload. The detected
pattern is then used with the Markov chain to predict the
workload. Wood et al. employed robust linear regression to
predict workloads. The model built with the linear regression
is refined online to adapt with changes.
Implementation. LoadDynamics was implemented using Ten-
sorflow 1, Scikit-learn 2 and GpyOpt 3. The training and
inference of LoadDynamics were executed on a 16-core Intel
Xeon Platinum 8153 CPU. For LSTM model training, we
used “mean square error” as the loss function and the Adam
Optimization Algorithm [33] as the optimizer. For Bayesian
Optimization, the Gaussian process [26] were used as the prob-
abilistic model to conduct the regression and the “expected
improvement” [34] was used as the acquisition function to
select the next set of hyperparameters to examine/validate.

The sizes of the training sets (l) and cross-validation sets
(m) are defined as follows. The first 60% JARs of each
workload is set to be the training set, the next 20% is used as
the cross-validation set, and the last 20% is used to test the
accuracy of LoadDynamics.

Using Bayesian Optimization to search for the more-
accurate hyperparameters requires defining the search space.
This search space is expressed as the ranges of the potential

1https://www.tensorflow.org/
2https://scikit-learn.org/
3https://sheffieldml.github.io/GPyOpt/

TABLE IV
MINIMUM AND MAXIMUM HYPERPARAMETER VALUES SELECTED BY

LoadDynamics.

Workload Hist Len n c size Layers Batch size
Wiki 35-102 7-98 2-4 18-400
LCG 12-176 5-69 1-4 16-250
Google 5–472 8-99 1-3 18-371
Azure 68-79 8-47 1-4 18-700
Facebook 17-38 1-78 1-4 16-521

hyperparameter values, including the ranges for the history
length (i.e., the value of n), the C vector size, the number of
LSTM layers and the batch size, as discussed in Section III.
Table III gives the ranges of the potential values for each hy-
perparameter. Except for the Facebook workload, all other four
workloads used the same ranges. These ranges are selected as
they are large enough to cover the potentially more-accurate
hyperparameter values. As shown later in the evaluation re-
sults, the best hyperparameters selected by LoadDynamics
were typically smaller than the range maximums. Therefore,
these ranges are likely to be sufficiently large even for the
workloads that are not evaluated in this paper. For the Face-
book workload, as it is short and thus cannot support a large
history length, its ranges for the history length and C vector
sizes were scaled down to be compatible the training data size.
Besides the search space, employing Bayesian Optimization
also requires defining the number of optimization iterations
(i.e., the maxIters Fig. 6). This iteration count represents the
number of hyperparameter sets that will be generated with
the BO. While the more sets generated, the better chance
of finding high accuracy sets, more iterations also take more
execution time. In our implementation of LoadDynamics, the
iteration count was set to 100 for all workloads

B. Evaluation of LoadDynamics’s Accuracy

As stated previously, the workload predictor obtained by
LoadDynamics for each workload was then tested on the
last 20% JARs of the workload for this accuracy evaluation.
The MAPEs of LoadDynamics for the last 20% testing data
are reported in Fig. 9 for each workload configuration. The
MAPEs of the baseline predictors from prior work were also
included in Fig. 9 for comparison. Fig. 9 also includes the
MAPE of the best LSTM predictor for each workload (the bar
labeled with “LSTMBruteForce”) obtained through brute-force
searches in the hyperparameter optimization spaces (similar to
the search spaces shown in Table III). One execution of brute-
force search for one workload might take up to 6 weeks.

As Fig. 9 shows, LoadDynamics can provide highly ac-
curate predictions for the evaluated workload configurations.
The lowest MAPE of LoadDynamics was only 1%, when
predicting for the three Wikipedia configurations. Except for
Azure with 10-minutes intervals, LoadDynamics’s MAPEs
were always lower than those from CloudScale and Wood
et al. predictors. Except for Azure with 10-minutes intervals,
LoadDynamics’s MAPEs were also either lower or similar to
the prediction errors of CloudInsight. On average, LoadDy-
namics’s MAPE is about 6.7% lower than CloudInsight, 14.1%



FB-5m FB-10m LCG-5m LCG-10m LCG-30m AZ-10m AZ-30m AZ-60m
0

10
20
30
40
50
60
70
80
90

100

M
A

PE
(%

)
LoadDynamics LSTMBruteForce CloudInsight CloudScale Wood et al.

(a) Prediction errors for the Facebook (FB), LCG grids and Azure (AZ) workloads.

Wiki-5m Wiki-10m Wiki-30m GL-5m GL-10m GL-30m Overall Avg
0
5

10
15
20
25
30
35

M
A

PE
(%

)

LoadDynamics LSTMBruteForce CloudInsight CloudScale Wood et al.

(b) Prediction errors for the Wikipedia (Wiki) and Google (GL) workloads, as well as the overall average MAPE for all workload configurations.

Fig. 9. Prediction errors (MAPE) of LoadDynamics and the baseline predictors.

lower than CloudScale and 14.5% lower than the Wood et al.
predictors. CloudScale and the Wood et al. predictor employ
predictive methodologies that were less capable of tracking
complex workload patterns/dependencies, leading to higher
errors than LoadDynamics. CloudInsight employs multiple
predictive techniques to handle various patterns. However,
these predictive techniques in CloudInsight are also heavily
affected by their hyperparameters. As CloudInsight uses fixed
hyperparameters, its accuracy is negatively affected if the fixed
hyperparameters do not fit the current workload. Moreover,
LoadDynamics’s overall average MAPE is only 1% higher
than the average MAPE of the brute-force-searched predic-
tors, suggesting that our hyperparameter optimization method
was capable of determining hyperparameters that are nearly
optimal within the search pace. This near-optimal accuracy
was also obtained with a much lower cost. Comparing to
the 1-day to 6-weeks search time required by the brute-force
search, LoadDynamics only spent at most three hours on each
workload configuration. Note that, the time it took to make
an inference with LoadDynamics’s models was much smaller,
which was less than 4.78ms.

Overall, except for a few cases with 5-min or 10-min
intervals, the majority of LoadDynamics’s MAPEs were less
than 30%. The average MAPE of all 14 workload configura-
tion is only 18%. These low errors show that LoadDynamics
can indeed generate high accuracy predictions for various
types of workloads. Moreover, as illustrated in Fig. 1 and
Fig. 8, the Google, Facebook, Azure and LCG workloads
all have pattern changes. Even with these pattern changes,
LoadDynamics could still provide high accuracy predictions,
showing the design of LoadDynamics allows it to detect and
predict multiple patterns within one workload.

The highest MAPE of LoadDynamics was 43% for pre-
dicting the Facebook workload with 5-minutes interval and
the Azure workload with 10-minutes intervals (both workload
configurations had 43% error with LoadDynamics). This high
error was mainly caused the relatively low JARs at each 5-
min or 10-min interval. In general, we observed the Load-
Dynamics’s MAPEs were higher when the time interval is
smaller, for the Facebook, LCG and Azure workloads. For
these workloads, smaller time intervals typically have small
JARs. These smaller JARs are more susceptible to the random
burstiness, making them more difficult to predict (random
fluctuations typically lacks track-able patterns/dependencies).
For larger workloads, such as Google and Wikipedia, the
JARs are still fairly large at small intervals. Therefore, their
prediction errors remained low even when predicted at small
intervals with LoadDynamics.

Table IV gives the values of the hyperparameters that
were selected by LoadDynamics (through BO). Due to space
limitations, we could not provide the hyperparameters selected
for each workload configuration. Instead, the minimum and
maximum of the selected hyperparameters of all the intervals
for a workload were reported. As Table IV shows, the selected
hyperparameter values had very high variation, suggesting
that it could be very challenging and time-consuming if the
hyperparameters were to be determined manually. Therefore,
the automatic hyperparameter optimization process provided
by LoadDynamics is indispensable for building accurate and
generic workload prediction techniques. This high variation
also shows the necessity to individually optimize the LSTM
model for each workload. Moreover, for the majority of the
workload configurations, the selected hyperparameter values
were typically below the maximums of the search space,



0 20 40 60 80 100 120 140

LoadDynamics CloudInsight Wood et al.

(a) Turnaround time (seconds)

0 5 10 15 20 25 30 35

(b) Under-provisioning Rate (%)

0 5 10 15 20 25 30 35

(c) Over-provisioning Rate (%)

Fig. 10. Performance, VM underprovisioning rates and overprovisioning
rates of different prediction techniques.

indicating the search space is likely to be sufficiently large.

C. Evaluation of LoadDynamics with Auto-scaling

To demonstrate that the higher accuracy brought by Load-
Dynamics can indeed improve the performance and resource
efficiency of cloud systems, we applied the LoadDynamics to
an auto-scaling policy that managed the VMs executing in the
Google Cloud. For simplicity, in this auto-scaling evaluation,
we assumed all jobs arrived at the beginning of an interval. The
algorithm of this auto-scaling policy is described as follows.
At each interval, the JAR for the next interval is predicted.
Without loss of generality, assume the next interval is the i’th
interval and Pi is predicted at the (i−1)’th interval. Right after
the prediction, Pi VMs are created in advance in the (i−1)’th
interval with the anticipation that Pi jobs will arrive at interval
i. At the beginning of interval i, arrived jobs are sent to the
created VMs to execute, with one VM for each job. If there are
more than Pi jobs arrive at interval i (i.e., Ji > Pi), then VM
under-provisioning occurs and more VMs will be created on-
demand to accommodate the extra jobs. In this case of VM
under-provisioning, the extra jobs require additional time to
finish due to the VM startup time. If there are fewer than Pi

jobs arrive (i.e., Ji < Pi), then VM over-provisioning occurs
with the extra VMs running idle. In this case of VM over-
provisioning, the extra VMs incur unnecessary costs.

For this auto-scaling evaluation, we used Google Cloud’s
n1-standard-1 VMs, due to financial limitations. Because of
the same cost issue, only a subset of the workloads and
predictive techniques were evaluated. For the workload, only
the Azure workload with 60-minutes intervals was evaluated.
Additionally, to comply with the Google Cloud’s resource
quota and to ensure reasonable experiment cost, the JARs from
the Azure workload were scaled down by 100 times so that at
each interval there were less than 50 jobs arrived (i.e., less than
50 VMs needed to be created at each interval). We verified
that this scale-down of JARs did not affect the predictions
and the accuracy of the evaluated predictive techniques. For

the predictive techniques, only LoadDynamics, CloudInsight
and Wood et al. were evaluated. CloudScale’s accuracy was
similar to the Wood et al. predictor, and was thus dropped for
this evaluation. Cloud Suite’s In-Memory Analytics benchmark
was used as the jobs to execute, mimicking a system serving
machine-learning training and inference requests [35]. At each
time interval, the time it took to finish all arrived jobs were
recorded (i.e., the turnaround time), and the percentages of
the under- and over-provisioned VMs (over the actual required
VMs) were recorded.

Fig. 10 gives the average job turnaround time for all inter-
vals, as well as the average under- and over-provisioning rates.
As the figure shows, the jobs managed under LoadDynamics
finished 24.6% faster than CloudInsight and 38.1% faster
than the Wood et al. predictor. This improved performance
was mainly due to the lower under-provisioning rates under
LoadDynamics, as shown in Fig. 10b. More specifically,
the under-provisioning rate of LoadDynamics was 4% lower
than CloudInsight and 10% lower than the Wood et al.
predictor. Besides performance, LoadDynamics also improved
resource efficiency by having lower over-provisioning rates.
The LoadDynamics’s over-provisioning rate was 4.8% less
than CloudInsight and 17.2% less than the Wood et al. pre-
dictor. These results indicate that the high prediction accuracy
brought by LoadDynamics can indeed translate into actual
performance gains and resource efficiency improvements.

V. DISCUSSION AND FUTUREWORK

Other Hyperparameters. In addition to the four hyperparam-
eters explored in this paper, there are other hyperparameters
related to the training and the structure of the LSTM models.
For example, activation functions other than the tanh function
may be used. Other loss functions and training/optimization
algorithms may also affect the accuracy of the trained model.
Although in our experiments, we observed that tuning these
hyperparameters did not improve the prediction accuracy for
the evaluated workloads, these additional hyperparameters
may affect the accuracy of LoadDynamics when it is applied to
other workloads. These additional hyperparameters may also
be optimized with LoadDynamics’s current auto-optimization
process. However, it may take a longer time to build predictors
as the search space is much larger.

Online Adaptive Modeling LoadDynamics may experience
high prediction errors if the workload completely changes to
a new pattern that is not represented by any of the training
data. In such a case, a completely new predictive model needs
to be built to achieve high accuracy predictions. To handle
such cases, LoadDynamics needs to be capable of detecting
that a previously-unobserved new workload pattern occurs. It
also needs to be able to adaptively retrain its model to handle
such drastic pattern changes. We plan to explore this adaptive
variant of LoadDynamics in the future.

VI. RELATED WORK

There is a large body of works, proposed to predict diverse
workloads (e.g., job arrival rates, resource demands) from



Cloud [7], [30], [36], HPC/Grid [29], and web applications [9].
The most common approach is to represent such workloads as
time series data so that a set of various time series models has
been applied. i.e., ES/WMA [13], [32], [37]–[39], AR [40]–
[42], ARMA [14], [16], ARIMA [12], [15]. Moreover, ML and
statistical-analysis based approaches (e.g., LR [2], [11], [43],
[44], SVR [31], Random Forest [30], Gradient Boosting [30],
and FFT [1]) have been adopted to forecast future workloads
and to design proactive resource management mechanisms.
However, the workload predictors from prior works tend to
be optimized/trained on workloads of interests. As evaluated
in [6], different predictors yield accurate prediction results
only for particular workloads, indicating that it is very chal-
lenging to apply such predictors to different or unknown
workload patterns due to the lack of generality.

To overcome the limitation from the above approaches,
multi-predictor based approaches have been explored [3], [20],
[45]–[49]. The approaches employed a set of predictors, such
as multiple time series and ML models, and tried to improve
adaptability to different workloads or sudden changes in a
workload by intelligently using/combining the predictors. In
particular, CloudInsight [3] employs any predictors of users’
choice, leverages multi-class regression to estimate the future
accuracy of the predictors, and allocates more weights to the
predictors that perform best in the near future. Unfortunately,
the multi-predictor based approaches need to process several
predictors in parallel, so they have unnecessary computation
overhead for making predictions. Furthermore, the predictors
used in these approaches have to be chosen by the users,
so selecting the predictors used in the frameworks is chal-
lenging for ordinary users who do not have a background
in workload prediction and characterization. Additionally, the
hyperparameter tuning problem also exists in these studies.
Poorly chosen hyperparameters can still negatively affect the
prediction accuracy for these multi-predictor approaches.

Due to the proliferation of deep learning [50], there are
several attempts to apply deep learning models to predict
cloud workloads [51]–[56]. These works are in spirit similar
to LoadDynamics in terms of considering LSTM [17] or
LSTM-variants as a base predictor. Unfortunately, the ap-
proaches commonly have the following drawbacks. First, the
LSTM model is narrowly trained from limited workloads,
often resulting in overfitting to the training dataset, and the
evaluations with real-world traces are not comprehensive.
Also, it is unclear how the approaches tune/update the model
hyperparameters, which often changes the prediction accuracy.
In fact, without knowing these hyperparameters, it becomes
very difficult to reproduce the prediction accuracy from prior
studies. Differing from the prior works, LoadDynamics lever-
ages Bayesian Optimization for the hyperparameter tunning,
thus LoadDynamics becomes more adaptive and can quickly
adjust the LSTM predictor, resulting in effectively address-
ing different cloud workloads. In Section IV, we evaluated
LoadDynamics with multiple workloads from Google, Azure,
HPC, and web applications, and the results showed that
LoadDynamics always outperforms state-of-the-art workload

predictors, indicating that LoadDynamics is generic enough
to handle diverse workloads. Employ model self-optimization
within the LoadDynamics framework also makes it easier to
reproduce the results of LoadDynamics.

VII. CONCLUSION

In this paper, we present the design of LoadDynamics, a
generic workload predictor for cloud computing. The goal
of LoadDynamics is to provide a generic and automated
predictive technique to allow accurate predictions for the
large variety of dynamically-changing workloads that user
applications may experience on the cloud. To achieve this goal,
LoadDynamics employs Long Short-term Memory (LSTM)
models with automatically tuned hyperparameters, allowing
it to build workload-specifically optimized predictors. We
evaluated LoadDynamics with five real-world workload traces
from four types of cloud applications. The evaluation results
showed that the predictors built by LoadDynamics had low
prediction errors for all workloads. The average prediction
error of LoadDynamics is only 18%, which was considerably
lower than state-of-the-art workload predictors. We also ap-
plied LoadDynamics to an auto-scaling policy in a real cloud.
The LoadDynamics-enable auto-scaling reduced turnaround
time by at most 38.1% than state-of-the-art predictors.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation under grant CCF-1617390. The views and conclu-
sions contained herein are those of the authors and should not
be inter-preted as necessarily representing the official policies
or endorse-ments, either expressed or implied of NSF. The
authors would also like to thank the anonymous reviewers for
their insightful comments.

REFERENCES

[1] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems.
In ACM Symposium on Cloud Computing (SoCC), 2011.

[2] Timothy Wood, Ludmila Cherkasova, Kivanc M. Ozonat, and Prashant J.
Shenoy. Profiling and Modeling Resource Usage of Virtualized Applica-
tions. In ACM/IFIP/USENIX 9th International Middleware Conference
(Middleware), 2011.

[3] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. CloudInsight:
Utilizing a Council of Experts to Predict Future Cloud Application
Workloads. In IEEE Int’l Conf. on Cloud Computing (CLOUD), 2018.

[4] M. Mao and M. Humphrey. A Performance Study on the VM Startup
Time in the Cloud. In IEEE Int’l Conf on Cloud Computing, 2012.

[5] Supreeth Shastri and David Irwin. HotSpot: Automated Server Hopping
in Cloud Spot Markets. In ACM Symp. on Cloud Computing, 2017.

[6] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Empirical
Evaluation of Workload Forecasting Techniques for Predictive Cloud
Resource Scaling. In IEEE Int’l Conference on Cloud Computing, 2016.

[7] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and
Michael Kozuch. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In ACM Symp. on Cloud Computing, 2012.

[8] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The
Case for Evaluating MapReduce Performance Using Workload Suites.
In IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2011.

[9] Erik-Jan van Baaren. Wikibench: A Distributed, Wikipedia-based Web
Application Benchmark. VU University Amsterdam, 2009.



[10] Leslie N. Smith. A Disciplined Approach to Neural Network Hyper-
parameters: Part 1 – Learning rate, Batch size, Momentum, and Weight
decay, 2018.

[11] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Zexiang Mao, and Junliang
Chen. Workload Predicting-Based Automatic Scaling in Service Clouds.
In IEEE International Conference on Cloud Computing (CLOUD), 2013.

[12] Hao Lin, Xin Qi, Shuo Yang, and Samuel P. Midkiff. Workload-Driven
VM Consolidation in Cloud Data Center. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2015.

[13] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. AutoScale: Dynamic, Robust Capacity Management for Multi-
Tier Data Centers. ACM Trans. on Computer Systems, 30(4), 2012.

[14] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D.
Schlichting, and Calton Pu. Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud Infrastructures. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2010.

[15] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Trans. on Cloud Computing, 3(4), 2015.

[16] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient
Autoscaling in the Cloud using Predictive Models for Workload Fore-
casting. In IEEE International Conference on Cloud Computing, 2011.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8), 1997.

[18] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Mod-
eling long- and short-term temporal patterns with deep neural networks.
In ACM SIGIR Conference on Research & Development in Information
Retrieval (SIGIR), 2018.

[19] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient Flow
in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies.
In A Field Guide to Dynamical Recurrent Networks, 2001.

[20] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
Characterization and Prediction in the Cloud: A Multiple Time Series
Approach. In IEEE International Symposium on Network Operations
and Management (NOMS), 2012.

[21] Sadeka Islam, Srikumar Venugopal, and Anna Liu. Evaluating the
Impact of Fine-scale Burstiness on Cloud Elasticity. In ACM Symposium
on Cloud Computing (SoCC), 2015.

[22] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Int’l
Conf. on Machine Learning, 2015.

[23] Douglas M Hawkins. The Problem of Overfitting. J. of Chemical
Information and Computer Sciences, 44(1), 2004.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. of Machine Learning Research, 15(1), 2014.

[25] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. In Annual Conference
on Neural Information Processing Systems (NIPS). 2012.

[26] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 1st edition, 2006.

[27] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. of Machine Learning Research, 13(Feb):281–305, 2012.

[28] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in Neural
Information Processing Systems 24, pages 2546–2554. 2011.

[29] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Du-
mitrescu, Lex Wolters, and Dick H.J. Epema. The Grid Workloads
Archive. Future Generation Computer Systems, 24(7), 2008.

[30] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource Central: Understanding
and PredictingWorkloads for Improved Resource Management inLarge
Cloud Platforms. In ACM Symp. on Operating Systems Principles, 2017.

[31] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
Wrangler: Predictable and Faster Jobs using Fewer Resources. In ACM
Symposium on Cloud Computing (SoCC), 2014.

[32] Eyal Zohar, Israel Cidon, and Osnat Mokryn. The Power of Prediction:
Cloud Bandwidth and Cost Reduction. In ACM SIGCOMM 2011
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), 2011.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In Int’l Conf. on Learning Representations, 2015.

[34] Jonas Mockus. On bayesian methods for seeking the extremum and their
application. In 7th IFIP Congress on Information Processing, 1977.

[35] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[36] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. Who limits the resource efficiency of my
datacenter: an analysis of Alibaba datacenter traces. In IEEE/ACM
International Symposium on Quality of Service (IWQoS), 2019.

[37] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement
of Virtual Machines for Managing SLA Violations. In IFIP/IEEE Int’l
Symp. on Integrated Network Management (IM), 2007.

[38] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. Online Self-reconfiguration with Performance Guarantee for
Energy-efficient Large-scale Cloud Computing Data Centers. In IEEE
International Conference on Services Computing (SCC), 2010.

[39] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys,
David E. Culler, and Randy H. Katz. NapSAC: Design and Im-
plementation of a Power-Proportional Web Cluster. ACM Computer
Communication Review, 41(1), 2011.

[40] Peter A. Dinda and David R. O’Hallaron. Host Load Prediction using
Linear Models. Cluster Computing, 3(4), 2000.

[41] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin
Xiao, and Feng Zhao. Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services. In USENIX
Symposium on Networked Systems Design & Implementation, 2008.

[42] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic Re-
source Allocation for Shared Data Centers Using Online Measurements.
In International Symposium on Quality of Service (IWQoS), 2003.

[43] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical
Prediction models for Adaptive Resource Provisioning in the Cloud.
Future Generation Computer Systems, 28(1), 2012.

[44] Peter Bodik, Rean Griffith, Charles A. Sutton, Armando Fox, Michael I.
Jordan, and David A. Patterson. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. In USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2009.

[45] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen,
Bo Cheng, and Junliang Chen. An Adaptive Prediction Approach based
on Workload Pattern Discrimination in the Cloud. Journal of Network
and Computer Applications, 80, 2017.

[46] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. In ACM/SPEC International Confer-
ence on Performance Engineering (ICPE), 2013.

[47] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. ASAP:
A Self-Adaptive Prediction System for Instant Cloud Resource Demand
Provisioning. In IEEE Int’l Conf. on Data Mining, 2011.

[48] Joao Loff and Joao Garcia. Vadara: Predictive Elasticity for Cloud
Applications. In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2014.

[49] Shuja ur Rehman Baig, Waheed Iqbal, Josep Lluis Berral, Abdelkarim
Erradi, and David Carrera. Adaptive Prediction Models for Data Center
Resources Utilization Estimation. IEEE Trans. on Network and Service
Management, 2019.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning.
Nature, 521, 2015.

[51] Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate LSTM-
Based Location-Aware Workload Prediction for Edge Data Centers. In
Int’l Symp. on Cluster, Cloud and Grid Computing, 2019.

[52] Siddhant Kumar, Neha Muthiyan, Shaifu Gupta, Dileep A.D., and Aditya
Nigam. Association Learning based Hybrid Model for Cloud Workload
Prediction. In Int’l Joint Conf. on Neural Networks, 2018.

[53] Xiaoyong Tang. Large-Scale Computing Systems Workload Prediction
Using Parallel Improved LSTM Neural Network. IEEE Access, 7, 2019.

[54] Jing Bi, Shuang Li, Haitao Yuan, Ziyan Zhao, and Haoyue Liu. Deep
Neural Networks for Predicting Task Time Series in Cloud Computing
Systems. In IEEE Int’l Conf. on Networking, Sensing and Control, 2019.

[55] Qingchen Zhang, Laurence T. Yang, Zheng Yan, Zhikui Chen, and Peng
Li. An Efficient Deep Learning Model to PredictCloud Workload for
Industry Informatics. IEEE Trans. on Industrial Informatics, 14, 2018.

[56] Hoang Minh Nguyen, Gaurav Kalra, and Daeyoung Kim. Host load
prediction in cloud computing using Long Short-Term Memory En-
coder–Decoder. Journal of Super Computing, 2019.


