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Abstract—For higher processing and computing power, chip
multiprocessors (CMPs) have become the new mainstream ar-
chitecture. This shift to CMPs has created many challenges for
fully utilizing the power of multiple execution cores. One of these
challenges is managing contention for shared resources. Most
of the recent research address contention for shared resources
by single-threaded applications. However, as CMPs scale up to
many cores, the trend of application design has shifted towards
multi-threaded programming and new parallel models to fully
utilize the underlying hardware. There are differences between
how single- and multi-threaded applications contend for shared
resources. Therefore, to develop approaches to reduce shared
resource contention for emerging multi-threaded applications, it
is crucial to understand how their performances are affected by
contention for a particular shared resource. In this research,
we propose and evaluate a general methodology for charac-
terizing multi-threaded applications by determining the effect
of shared-resource contention on performance. To demonstrate
the methodology, we characterize the applications in the widely
used PARSEC benchmark suite for shared-memory resource con-
tention. The characterization reveals several interesting aspects
of the benchmark suite. Three of twelve PARSEC benchmarks
exhibit no contention for cache resources. Nine of the benchmarks
exhibit contention for the L2-cache. Of these nine, only three
exhibit contention between their own threads–most contention is
because of competition with a co-runner. Interestingly, contention
for the Front Side Bus is a major factor with all but two of the
benchmarks and degrades performance by more than 11%.

I. INTRODUCTION

Large scale multicore processors, known as chip multi-

processors (CMPs), have several advantages over complex

uniprocessor systems, including support for both thread-level

and instruction-level parallelism. As such, CMPs offer higher

overall computational power which is very useful for many

types of applications, including parallel and server applica-

tions. Consequently, these machines have become the new

mainstream architecture and are now being widely used in

servers, laptops and desktops. This shift to CMPs has created

many challenges for fully utilizing the power of multiple

execution cores. One of these challenges is the management

of contention for shared resources. As there are multiple

cores and separate hardware execution modules for each core,

the contention among applications for a computing resource

has been reduced. However, there are several resources in

CMPs which are shared by several and/or all processing

cores, including on-chip shared and last-level caches (LLC),

Front Side Bus (FSB), memory bus, disk, and I/O-devices. In

particular, contention for the shared resources in the memory

hierarchy can dramatically impact the performance of applica-

tions, as shown in several recent studies [13, 17, 21, 22, 30].

Contention is especially critical for real-time, high priority and

latency sensitive applications as timing is crucial for these

applications.

There are several approaches for addressing contention for

shared resources. One approach is to characterize the appli-

cations to better understand their interactions and behaviors

on CMPs by performance analyses for shared-resource con-

tention. Such understanding can lead to techniques for reduc-

ing shared-resource contention, improving system throughput

and realizing scalable performance. For example, Xie and

Loh characterize and classify applications based on cache

miss-rate and propose dynamic cache partitioning policy with

this classification [26]. Another approach is to detect shared-

resource contention dynamically and take counter measures to

mitigate the contention [8, 11, 15, 21, 24, 30]. Several other

recent studies address contention for shared LLC by using

different hardware techniques [7, 12, 16, 19, 23, 25].

As the hardware scales up to many cores, the trend of appli-

cation design has shifted towards multi-threaded and parallel

programming to fully utilize the underlying hardware. Most

of the recent studies address contention for shared resources

mainly by single-threaded applications. However, there are dif-

ferences between how single- and multi-threaded applications

contend for shared resources. For example, single-threaded

applications suffer from shared cache contention when there

is another application (co-runner) on the neighboring core

sharing the same cache. In this case, the application suffers

from contention for one shared cache. On the other hand,

multi-threaded applications have multiple threads running on

multiple cores, sharing more than one cache with multiple

co-runners. A multi-threaded application can also suffer from

shared-resource contention among its own threads even when

it does not have any co-runner.

Additionally, when threads from multi-threaded applications

run on cores that have separate caches and have true sharing,

they suffer from additional cache misses to maintain the cache

coherency. When one of the data-sharing threads writes the

shared data, all shared copies cached by the other threads

are invalidated following the cache coherency protocol. When



one data-sharing thread reads the data again, a cache miss

occurs because of the invalid cache-line. These additional

cache misses can also lead to performance degradation. There-

fore, multi-threaded applications suffer from shared-resource

contention differently than single-threaded applications, for

both solo-execution and execution with co-runners.

For multi-threaded applications, there are two categories of

contention for shared resources. Intra-application contention

can be defined as the contention for a resource among threads

of the same application when the application runs solely

(without co-runners). In this situation, application threads

compete with each other for the shared resources. Inter-

application contention can be defined as the contention for

shared resources among threads from different applications. In

this case, threads from one multi-threaded application compete

for shared resources with the threads from its co-running

multi- or single-threaded application.

Both types of contention can severely degrade a multi-

threaded application’s performance [14, 30]. To develop ap-

proaches for reducing contention for shared resources, it

is crucial to understand how the performance of a multi-

threaded application is affected because of such contention. A

standard methodology to characterize these applications, based

on contention, would facilitate such understanding.

In this research, we propose and evaluate a general method-

ology for characterizing emerging multi-threaded applications

by determining the effect of shared-resource contention on its

performance. Using the methodology, we are able to determine

the performance implications of multi-threaded applications

and characterize them with regard to both intra- and inter-

application shared-resource contention. Previous research ef-

forts demonstrate that the contention for shared resources in

the memory hierarchy cause significant loss of performance

and quality of service [21, 30]. Therefore, we characterize

the multi-threaded applications from the PARSEC (Prince-

ton Application Repository for Shared-Memory Computers)

benchmark suite [5], based on shared-resource contention in

the memory hierarchy to demonstrate the methodology. The

PARSEC benchmark suite is especially designed for modern

CMPs, incorporating benchmarks having diverse character-

istics and using different programming models. From the

performance analyses and characterization of the benchmarks,

it is possible to determine precisely the sensitivity of a bench-

mark’s performance to a particular resource in the memory

hierarchy.

The contributions of the work are:

• We propose a general methodology to characterize multi-

threaded applications based on performance analyses for

both intra- and inter-application shared-resource con-

tention.

• Using the methodology, we perform thorough perfor-

mance analyses and characterization of the multi-threaded

PARSEC benchmarks based on contention for several

resources in the memory hierarchy on real hardware.

• The characterization reveals several interesting aspects of

the benchmark suite. Three of twelve PARSEC bench-

marks exhibit no contention for cache resources. Nine of

the benchmarks exhibit contention for the L2-cache. Of

these nine, only three exhibit contention between their

own threads–most contention is because of competition

with a co-runner. Interestingly, contention for the FSB is

a major factor with all but two of the benchmarks and

degrades performance by more than 11%.

The paper is organized as follows: Section II describes

the methodology to determine intra- and inter-application

contention of multi-threaded applications for shared resources.

Section III describes the experiments conducted to characterize

the PARSEC benchmarks for shared-resource contention in the

memory hierarchy. The experimental results are analyzed in

Section IV and discussed in Section V. Section VI discusses

related work and Section VII concludes the paper.

II. METHODOLOGY

In this section, we describe the methodology to measure

intra- and inter-application contention along with the choices

of machine architecture.

A. Measuring intra-application contention

To measure intra-application contention of a multi-threaded

application for a shared (targeted) resource, we need to an-

alyze how sharing the targeted resource among threads from

the same multi-threaded application affects its performance,

compared to when they do not share. To accomplish this

measurement, the application is run solely with at least two

threads in two configurations. The first or baseline configu-

ration maps the threads such that the threads do not share

the targeted resource and run using two separate dedicated

resources. The second or contention configuration maps the

application threads such that the threads do share the targeted

resource and execute while using the same resource. Because

the contention configuration maps the threads to use the same

resource, it creates the possibility that the threads compete

with each other for that resource causing intra-application

contention that degrades the application’s performance. In both

configurations, the mapping of threads keeps the effect on

other related resources the same. For example, if we measure

intra-application contention for L1-caches, the mapping of

threads in both configurations must maintain the same effect

on the rest of the memory hierarchy, including L2/L3-cache

and the FSB. When we compare the performances of the two

configurations, the difference indicates the effect of contention

for that particular resource on the application’s performance.

If the performance difference between the baseline and the

contention configuration is negative (degradation), then there

is intra-application contention for that resource among the

application threads. However, if the performance difference

is positive (improvement), there is no intra-application con-

tention for the targeted resource.

B. Measuring inter-application contention

To measure the inter-application contention for a shared

(targeted) resource, we need to analyze the performance dif-

ferences when threads from different applications run together



sharing that resource, compared to when the resource is

not shared. To accomplish this measurement, multi-threaded

applications are run with a co-runner which can be an-

other multi- or single-threaded application. Similar to the

approach for characterizing intra-application contention, pairs

of applications are run in two configurations. The baseline

configuration maps the application threads such that each

application has exclusive access to the targeted resource. In

this configuration, the applications do not share the resource

and there is no interference or contention for that resource

from the co-running application. The contention configuration

maps the application threads such that threads from one

application share the targeted resource with the co-runner’s

thread creating the possibility of inter-application contention.

Similar to the intra-application contention, both configurations

map the application threads such that the thread-mapping to

the other related shared resources remains the same so the

effect of contention for the targeted resource can be precisely

determined. When we compare the performance of both con-

figurations, the difference indicates the effect of contention for

the targeted resource on each application’s performance. If the

performance difference between the baseline and contention

configuration is negative (degradation), then the application

suffers from inter-application contention for that resource.

If the performance difference is positive (improvement), the

intra-application contention for the targeted resource domi-

nates the performance more as performance does not degrade

due to contention caused by the co-runner’s threads.

C. Additional methodology requirements

Choosing machine architecture: To determine the

effect of contention for a particular shared resource on an

application’s performance, we use a machine architecture that

supports the necessary experiments according to the methodol-

ogy. The methodology is flexible enough that either a simulator

or real hardware can be used. In general, when we consider

a resource for contention analysis, the experiments are run on

such platforms which have a multiple number of that targeted

resource with the same parameter values. For example, if we

plan to measure the contention for L3-cache, we need a system

which has three levels of caches and at least two L3-caches so

that we can apply the methodology. In this case, parameters

values are cache parameter, including cache size, number of

ways, and cache block size. Additionally, we have to ensure

that the mapping and capacity sizes of the other related shared

resources are the same. For the above example, the sizes of

L1-, L2-cache and how they share the L3-cache must be the

same.

Collecting performance information: For both intra- and

inter-application contention analyses, we need to compare

application’s performance of both configurations. This infor-

mation can be collected using any appropriate techniques, for

example, reading hardware performance counters, the time

command, the real-time clock, counting cycles or clock-ticks

etc. In our experiments, we use hardware performance counters

to gather this information, as described in Section III.

III. CHARACTERIZATION OF PARSEC BENCHMARKS

According to the methodology, to characterize multi-

threaded benchmarks based on both types of contention,

we perform two categories of experiments: (1) we run the

benchmarks solely, and (2) we run each benchmark with a

co-runner which is another multi-threaded benchmark. Each

category contains three sets of experiments in which each set is

designed to target a specific resource in the memory hierarchy

and measures the impact of contention on performance for

that resource. The resources in the memory hierarchy that are

considered in the experiments are: L1-cache, L2-cache and

FSB.

The multi-threaded workloads that we use in our exper-

iments are from the latest PARSEC2.1 benchmark suite. It

consists of thirteen benchmarks. For our experiments, we use

twelve benchmarks which use the POSIX-thread (pthread)

library for creating threads. We keep profiling overhead as

low as possible and employ a simple technique to instrument

the benchmarks by identifying pthread-create system calls.

By detecting new thread creation, we gather each thread’s

threadID information which is necessary to get the per-thread

profile information. We do not include the benchmark freqmine

in our analysis because it uses OpenMP to create threads. We

can intercept thread creation for OpenMP, but require using

software dynamic translators to detect the thread creation,

which causes higher run-time overhead.

To collect different run-time statistics, as each benchmark

in each experiment is run, profile information is collected by

reading hardware performance counters using the Perfmon2

tool [10]. The interfaces defined in the tool’s library allow

user-space programs to read hardware performance counters

on thread-basis (per-thread) and system-basis (per-core). These

interfaces enable users to access the counters’ values with very

low run-time overhead. The initial set up for the counters takes

318µsec and reading one counter’s value takes 3.5µsec, on

average. After the initialization of the performance counters

for each thread, the values of the counters are read via signal

handlers when periodic signals are sent (every second) to each

thread by using the threadID information. As performance is

a direct measure of contention [22], we collect the counter,

UNHALTED CORE CYCLES’s sampling values for each

thread in both configurations in all experiments to determine

both intra- and inter-application contention.

We use statically linked binaries for our experiments, com-

piled with GCC 4.2.4. We do not include any additional

compiler optimization flag other than the ones used in the

benchmarks’ original makefiles. The threads are affinitized by

pinning them to cores via Linux sched setaffinity() system

call. When we are co-scheduling two applications and one

application finishes before the rest, we immediately restart it.

We perform this restart until the longest running application

completes five iterations. We collect profile information for

five iterations to ensure low variability in the collected values.

In modern processors, the prefetchers use very sophisticated

techniques (e.g., stride pattern detection) to fetch data into
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Fig. 1. Experimental Platforms (CX stands for the processor core, L1 HW-PF and L2 HW-PF stand for hardware prefetcher for L1- and L2-caches, respectively
and FSB and MB stand for Front Side Bus and Memory Bus, respectively.)

the cache in advance which can affect the count of cache

misses. Therefore, we also disable prefetching to eliminate

any effects that it might cause so we could precisely measure

cache contention.

A. Experimental platforms

To measure the contention among threads for different levels

of caches, we require a machine which has at least two levels

of cache. Because we need to map the application threads

to the cores sharing one cache to determine the effect of

cache contention, the platform must have both private (per-

core) L1- and shared L2-caches. It must have single socket

memory connection, so the contention for the FSB is expected

to be the same and we are able to measure only contention for

the caches. Intel Q9550 (“Yorkfield”), shown in Figure 1(a),

satisfies the requirements for such experiments and we use this

platform to measure cache contention. This platform has four

cores and each core has private L1-data and L1-instruction

cache, each of size 32KB. It has two 6MB 24-way L2-caches

and each L2-cache is shared by two cores. It has 2 GB of

memory connected by single socket to the L2-cache, so there

is one FSB. It runs Linux kernel 2.6.25.

Similarly, to measure contention for the FSB among threads,

we need a platform which has multiple socket connections to

memory, i.e., multiple FSBs. The cache hierarchy in each FSB

connection must be the same so that we can isolate contention

for the FSB by keeping the other factors (L1-/L2-cache con-

tention) unchanged. Dual Intel Xeon E5462 (“Harpertown”),

shown in Figure 1(b), fulfills these requirements. Therefore,

we choose this platform to measure contention for FSB. It

has two processors each having four cores. Each core has

private L1-data and L1-instruction cache each of size 32 KB.

Each pair of cores share one of the four 6MB 24-way L2-

caches. This platform has dual sockets and each processor

has a separate bus connected to 32GB memory. It runs Linux

kernel 2.6.30.

B. Measuring intra-application contention

To measure intra-application contention for the memory

hierarchy resources, we run each PARSEC benchmark solely

with native input set. The experiments are described below.
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Fig. 2. Configurations for measuring intra-application L1-cache contention

L1-cache: According to the methodology, to measure the

effect of intra-application contention for L1-cache on perfor-

mance, we run each PARSEC benchmark in two configura-

tions. In each configuration, the number of threads to run

equals the number of cores sharing one L2-cache. In the

baseline configuration, two threads from a benchmark use

their own private L1-caches and there is no intra-application

L1-cache contention. These threads are mapped onto the two

cores which share one L2-cache, e.g., C0 and C1 (shown

in Figure 2(a)). In the contention configuration, two threads

from the benchmark share one L1-cache compared to the

exclusive access. In the presence of intra-application L1-cache

contention, the threads compete for L1-cache space when they

share the L1-cache and access conflicting cache-lines. Here,

these threads are mapped onto one core, e.g., C0 (shown in



Figure 2(b)) or C1. As we measure contention for the L1-

cache, we keep the effect of L2-cache contention the same

by mapping threads to the cores that share the same L2-

cache. Furthermore, we make sure that contention for FSB

remains unchanged and choose Yorkfield which has one FSB,

for this experiment. The only difference between these two

configurations is the way L1-cache is shared between the

threads and we are able to measure how L1-cache contention

affects the benchmark’s performance.

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

Application�

Thread

(a) Baseline Configuration

C0 C1 C2 C3

L2 L2

Memory

L1 L1L1 L1

(b) Contention Configuration

Fig. 3. Configurations for measuring intra-application L2-cache contention
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Fig. 4. Configurations for measuring intra-application FSB contention

L2-cache: Similar to L1-cache contention, to measure the

effect of intra-application contention for L2-cache on perfor-

mance, we run each PARSEC benchmark in two configura-

tions. Each configuration runs threads equal to the number of

L2-caches sharing one FSB. In the baseline configuration, two

threads from a benchmark use their own L2-cache, avoiding

intra-application contention for L2-cache. The threads are

mapped onto the two cores which have separate L2-cache, e.g.,

C0, C2 (shown in Figure 3(a)) or C1, C3. In the contention

configuration, two threads from the benchmark share one

L2-cache and contend for L2-cache with each other. Here,

the threads are mapped onto the two cores sharing one L2-

cache, e.g., C0, C1 (shown in Figure 3(b)) or C2, C3. As we

measure contention for L2-caches, we avoid intra-application

L1-cache contention by allowing only one thread to access one

L1-cache and keep the FSB contention unchanged between

configurations by choosing Yorkfield which has one FSB.

Front side bus: To measure the effect of intra-application

contention for the FSB on performance, we need to understand

how sharing the FSB among application/benchmark threads

affects its performance compared to using separate FSB. For

this experiment, we use Harpertown as it has more than one

FSB. According to the methodology, we run each PARSEC

benchmark in two configurations. In each configuration, the

number of threads equals the number of cores sharing one FSB

to fully utilize its bandwidth. In the baseline configuration,

four threads from a benchmark use separate FSB equally and

do not compete for this resource. Four threads are mapped

onto the four cores which have separate socket connections

(separate bus) to memory (via shared L2-cache), e.g., C0,

C2, C1 and C3 (shown in Figure 4(a)). In the contention

configuration, four threads use only one FSB and there is

potential contention among them for this resource. In this case,

four threads are mapped onto the four cores sharing one socket

connection to memory, e.g., C0, C2, C4 and C6 (shown in

Figure 4(b)). As both configurations use the same number of

threads as cores and L1-caches are private to each core, there is

no intra-application contention for L1-cache. Similarly, as both

configurations use two L2-caches shared by an equal number

of threads, the contention for L2-cache remains the same. So

comparing the performance output of the configurations, we

are able to determine how bus bandwidth and FSB contention

affect the performance of each benchmark.

For the performance analysis of a multi-threaded application

for intra-application contention for a particular resource, we

use the following formula:
Percent Performance Difference =

(Sum Cycles Base− Sum Cycles Contend) ∗ 100

Sum Cycles Base
(1)

Here, Sum Cycles Base and Sum Cycles Contend are

the sum of the sampling values of the hardware performance

counter, UNHALTED CORE CYCLES, in the baseline and

contention configuration, respectively.

C. Measuring inter-application contention

To understand the effect of inter-application contention for

a particular resource in the memory hierarchy on performance,

each PARSEC benchmark is run with another PARSEC bench-

mark (co-runner) in two configurations with native input set.

As we consider twelve benchmarks, there are 66 distinct

benchmark pairs in each experiment. The experiments for each

shared resource are described below.
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Fig. 5. Configurations for measuring inter-application L1-cache contention



L1-cache: To measure the effect of inter-application con-

tention for L1-cache on performance, we run pairs of PARSEC

benchmarks each with two threads in two configurations. In

the baseline configuration, two threads of each benchmark

get exclusive L1-cache access. There is no inter-application

contention for L1-cache between them because L1-cache is

not shared with the co-runner’s threads. Two threads of one

benchmark are mapped onto one core, e.g., C0 and two

threads of the co-running benchmark are mapped onto the

other core, e.g., C1 (shown in Figure 5(a)). In the contention

configuration, two threads from both benchmarks share the L1-

caches and there is potential contention for L1-cache among

them. Here, two threads from both benchmarks are mapped

onto the two cores which share the same L2-cache, e.g., C0

and C1 (shown in Figure 5(b)). As we measure contention

only for L1-caches, we keep the effect of L2-cache contention

the same by using the same L2-cache and choose Yorkfield,

having one FSB, to make sure that the contention for the FSB

remains unchanged.
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Fig. 6. Configurations for measuring inter-application L2-cache contention

L2-cache: Similar to L1-caches, to determine the effect of

inter-application contention for L2-caches, we run pairs of

PARSEC benchmarks each with two threads in two config-

urations. In the baseline configuration, two threads of each

benchmark get exclusive L2-cache access. There is no inter-

application L2-cache contention among them as L2-cache is

not shared with the co-runner’s threads. On Yorkfield, two

threads of one benchmark are mapped onto two cores, e.g.,

C0, C1 (shown in Figure 6(a)) or C2, C3 and two threads

of the co-running benchmark are mapped onto the remaining

cores, e.g., C2, C3 (shown in Figure 6(a)) or C0, C1. In the

contention configuration, one thread each from both bench-

marks shares the L2-caches and there is potential contention

for L2-cache between them. As shown in Figure 6(b), one

thread from both benchmarks are mapped onto the two cores

which share one L2-cache, e.g., C0, C1 and the second threads

from both benchmarks are mapped onto the remaining two

cores which share the second L2-cache, e.g., C2, C3. Both

configurations use the same L1-cache size and single socket

memory connection. So we are able to measure how L2-cache

contention affects each benchmark’s performance because the

only difference between these configurations is how the L2-

cache is shared.

Front side bus: We run two PARSEC benchmarks each

with four threads on Harpertown in two configurations to

measure the effect of inter-application contention for FSB. In
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Fig. 7. Configurations for measuring inter-application FSB contention

the baseline configuration, each benchmark gets its exclusive

FSB access and there is no FSB interference/contention from

the co-running benchmark. Four threads from one benchmark

are mapped onto four cores sharing one socket connection to

memory, e.g., C0, C2, C4, C6 and four threads from the other

benchmark are mapped onto the remaining four cores sharing

the second socket connection to memory, e.g., C1, C3, C5, C7

(shown in Figure 7(a)). In the contention configuration, both

benchmarks share both FSB and there is potential contention

for this resource between them. Here, four threads from one

benchmark are mapped equally onto the four cores which

have separate socket connections (separate bus) to memory,

e.g., C0, C2, C1 and C3 and the remaining threads on the

remaining cores (shown in Figure 7(b)). The only difference

between these two configurations is how applications share

the FSB connected from the memory controller to the chipset,

i.e., whether it is connected by the same or separate bus. As

both configurations use the same sized L1- and L2-cache, the

contention for L1- and L2-cache remains unchanged and we

are able to determine how separate FSB usage affects the

performance of each benchmark.

For the performance analysis for inter-application con-

tention for a particular resource, we use Equation ?? to

calculate the percentage performance difference between the

application’s performances in two configurations with each of

its 11 co-runners.

IV. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we present and analyze the experimental re-

sults for intra- and inter-application contention of the PARSEC

benchmarks. The twelve benchmarks used in the experiments

are: blackscholes (BS), bodytrack (BT), canneal (CN), dedup

(DD), facesim (FA), ferret (FE), fluidanimate (FL), raytrace

(RT), streamcluster (SC), swaptions (SW), vips (VP) and x264

(X2).



A. Intra-application contention analyses

Figure 8-10 gives the results of measuring intra-application

contention for L1-, L2-cache and FSB. The positive and

negative performance difference indicates performance im-

provement and degradation respectively.

L1-cache: The results of intra-application contention of the

PARSEC benchmarks for L1-caches are shown in Figure 8.

We observe in the figure that all the benchmarks except

blackscholes, ferret and vips show performance improvement.

This improvement is because when two threads from the same

benchmark are mapped to use one L1-cache, data sharing

among the threads causes fewer cache misses as they share

more than they contend for L1-cache. The fewer number

of cache misses reduces the number of cycles to complete

execution, improving the performance. Additionally, as the

benchmark’s threads share data, when they are mapped to

use the same L1-cache, there are up to 99% reduced cache-

snooping operations, decreasing the cache coherency pro-

tocol’s overhead. These benchmarks, showing performance

improvements, do not suffer from intra-application contention

for L1-cache. As facesim and streamcluster show performance

improvements of 8.6% and 11% respectively, they have a large

amount of data sharing. Dedup and fluidanimate show perfor-

mance improvement of 0.9% and 1.6% respectively. Canneal,

raytrace and x264 show very small performance improvements

of 0.5%, 0.28% and 0.31% respectively. Although bodytrack

and swaptions show performance improvement, the magnitude

of improvement is very close to zero, less than 0.1%. So the

data sharing in these benchmarks yields minimal improve-

ments. On the other hand, ferret and vips have fewer number of

sharers compared to other benchmarks [5], causing contention

when the threads share L1-cache. This characteristic results in

more cache-misses and performance degradation by approxi-

mately 1% and 7%, respectively. Because these benchmarks

show performance degradation when the threads only share

L1-cache, they suffer from intra-application contention for L1-

caches. Blackscholes shows the lowest and almost negligible

performance degradation of 0.4% and is not much affected by

L1-cache contention.
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Fig. 8. Experimental results of measuring intra-application L1-cache con-
tention

L2-cache: The results of intra-application contention of the

PARSEC benchmarks for L2-caches are shown in Figure 9. In

the figure we observe that performance degrades for dedup,
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Fig. 9. Experimental results of measuring intra-application L2-cache con-
tention

ferret and x264. The rest of the benchmarks show performance

improvements because of sharing and do not suffer from

intra-application L2-cache contention. Among these, canneal,

streamcluster and vips’ performance improvements are among

the highest, respectively 4%, 10% and 15%. Although vips

does not show performance improvement due to sharing in

L1-caches, it shows better sharing in L2-cache, reducing the

cache misses up to 43%. Bodytrack, facesim, fluidanimate and

swaptions show small performance improvements of 1.16%,

1.11%, 0.60% and 0.34% respectively. Raytrace’s performance

improvement is negligible, approximately 0.02% showing very

small amount of sharing. Dedup, ferret and x264 show perfor-

mance degradation close to 1%, on average and suffer from

some intra-application contention for L2-caches. Blackscholes

has the lowest and almost negligible performance degradation

of 0.09% for intra-application L2-cache contention.
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Fig. 10. Experimental results of measuring intra-application FSB contention

Front side bus: The results of intra-application contention

of the PARSEC benchmarks for the FSB are shown in Fig-

ure 10. We observe from the graph that the performances of

most of the benchmarks except bodytrack and vips degrade

when we map the threads to use one FSB. Because there is

performance degradation for the reduced bus bandwidth, we

conclude that there is intra-application contention for the FSB

among the threads of these benchmarks. Facesim suffers the

most performance degradation (nearly 12%), thereby showing

the highest intra-application contention for the FSB. Canneal

and streamcluster suffer nearly 4% performance degradation.

The performances of dedup, ferret, fluidanimate and raytrace

degrade on average by 2%. The performance degradation of

swaptions and blackscholes is negligible, less than 0.05%.

In contrast, vips and bodytrack show performance improve-



ments of 2% and 0.15% respectively and do not show intra-

application contention for the FSB.

B. Inter-application contention analyses

The experimental results of measuring the inter-application

contention for L1-, L2-cache and the FSB are given in

Figure 11(a)- 11(c). In each figure, the X-axis corresponds

to each benchmark in alphabetical order. Each column is a

percentage stacked graph, where the stacks or segments show

the performance results of a benchmark with each of its 11 co-

runners in alphabetical order from the bottom to the top. The

lighter shade segments represents performance improvement

and darker shade represents performance degradation. For

example, in Figure 11(a) for BS, the first segment from

the bottom shows performance improvement with BT, the

next segment shows performance degradation with CN while

measuring inter-application L1-cache contention. Similarly, for

BT, the first and second segment from the bottom shows

performance degradation respectively with BS and CN.

If a particular segment in a benchmark’s column is in

the lighter shade, it means that the benchmark’s perfor-

mance improves in the contention configuration. A perfor-

mance improvement results when the benchmark’s threads

show lower contention for the resource with its co-runner’s

threads compared to the contention among its own threads

for that resource. For example, in Figure 11(b), FE’s (Ferret)

performance improves when running with RT (Raytrace) as

its co-runner which means FE’s threads do not have much

sharing among themselves and have more L2-cache contention

among themselves than the contention with the co-running

RT’s threads. On the other hand, if a particular segment

in a benchmark’s column is in the darker shade, it means

that the benchmark’s performance degrades in the contention

configuration and the benchmark’s threads suffer from higher

contention with its co-runner’s threads than the contention

among its own threads. For example, in Figure 11(b), FE’s

performance degrades when running with SC (Streamcluster)

as its co-runner which means FE’s threads have more L2-

cache contention with the co-running SC’s threads than the

contention among its own threads.

The number on top of each column (Absolute Performance

Difference Summation (APDS)) is sum of the absolute percent-

age performance differences of each benchmark with each of

its 11 co-runners. The height of each segment in the columns

represents percentage performance difference of a benchmark

with one of its co-runners, normalized with respect to this

summation to keep the total height of its column at 100%.

To get the actual percentage performance difference for a

benchmark with any co-runner, we multiply the height of

the appropriate segment in the benchmark’s column with the

APDS value above the column. For example, to get the actual

percentage performance improvement for BS with BT for L1-

cache contention, we multiply the height of first segment of

first column in Figure 11(a) with 1.96, which is 0.1173*1.96

= 0.23.
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(a) Inter-application contention for L1-cache
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(b) Inter-application contention for L2-cache
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(c) Inter-application contention for the FSB

Fig. 11. Experimental results of inter-application contention. APDS is sum
of the absolute percentage performance differences of each benchmark with
its 11 co-runners. The segments in each column shows performance results
for a benchmark with its 11 co-runners in alphabetical order and the actual
percentage performance difference is obtained by multiplying the height of
the appropriate segment with its APDS value.



L1-cache: From the results of inter-application contention

of the PARSEC benchmarks for L1-cache (shown in Fig-

ure 11(a)), we can categorize the benchmarks into three

classes. This classification depends on how much they suffer

from inter-application contention for L1-cache resulting in

performance degradation or number of the darker shaded seg-

ments in each column. The first class includes the benchmarks

whose column has most of its segments in the darker shade

and shows highest inter-application contention for L1-cache.

This class includes bodytrack, facesim, fluidanimate, raytrace,

streamcluster, swaptions and x264. Among these benchmarks,

facesim, streamcluster, x264 and raytrace, swaptions show,

respectively, the most and least contention as the APDS values

are among the highest and lowest of all benchmarks in this

class. The next class includes the benchmarks whose columns

have almost half of its height in the lighter and the other

half in the darker shade. This class includes blackscholes and

dedup. From the magnitude of APDS, we infer that dedup has

more performance impact for L1-cache contention compared

to blackscholes. The third category includes the benchmarks

whose columns have most segments in the lighter shade. This

class includes canneal, ferret and vips which suffer more from

intra-application than inter-application contention for L1-cache

as their performance improve with most of the co-runners. Vips

suffers the most due to intra-application contention as it has the

highest APDS value among these benchmarks (also validated

by the Figure 8 results).

L2-cache: Figure 11(b) shows the experimental results of

the inter-application contention of the PARSEC benchmarks

for L2-cache. Similar to L1-cache contention results, we can

categorize the benchmarks in three classes. In this case, we

categorize them based on the APDS values as we observe

in the figure that most of the benchmarks have all the

column-segments in the darker shade, denoting performance

degradation due to inter-application L2-cache contention. The

first class includes the benchmarks which have the highest

APDS values representing greater impact on the performance.

This class includes canneal, dedup, streamcluster and vips.

All the segments of these benchmarks’ columns are in the

darker shade showing performance degradation due to high

inter-application contention for L2-cache. The next category

includes the benchmarks which have lower APDS than that

of the previous class. This class includes bodytrack, facesim,

ferret, fluidanimate and x264. These benchmarks have most

column segment in the darker shade showing performance

degradation for L2-cache contention except x264 and ferret.

X264 shows more intra-application contention for L2-cache

with blackscholes, canneal, dedup and swaptions as co-runner.

Ferret shows more intra-application L2-cache contention with

raytrace and swaptions as co-runner. The last class includes

the rest of the benchmarks which show very small APDS

values. This class includes blackscholes, raytrace and swap-

tions. For each co-runner, these three benchmarks show on

average 0.24%, 0.07% and 0.31% performance differences re-

spectively, which is very small compared to those of the other

benchmarks. So we can conclude that these three benchmarks’

performances are not much affected by the inter-application

L2-cache contention.

Front side bus: From the results of inter-application con-

tention of the PARSEC benchmarks for the FSB (shown in

Figure 11(c)), we can categorize the benchmarks into three

classes. Similar to L1-cache, the classification depends on

how much they suffer from inter-application contention for

the FSB resulting in performance degradation (i.e., the total

length of darker segments in each column). The first class

includes the benchmarks dedup, swaptions and vips which

have the most column area in the darker shade. Dedup and vips

show the highest APDS values in this class and suffer more

from inter-application contention for the FSB. The second

class includes benchmarks which have both the lighter and

darker shaded segments of almost equal length. This class

includes blackscholes, ferret, raytrace and x264. Among these

benchmarks, blackscholes and raytrace have very small APDS

values, so their performance is not much affected because of

the FSB contention. The third class includes the benchmarks

whose columns have most of the segments in the lighter shade.

These benchmarks’ performances improve because of the

increased bandwidth and they have more intra-application than

inter-application contention for the FSB. This class includes

bodytrack, facesim, fluidanimate, canneal and streamcluster.

Among these benchmarks, facesim and streamcluster have the

highest APDS values which indicate they have higher intra-

application contention for the FSB which is also validated by

the results in Figure 10. We include canneal in this category

as for most of its co-runners, it improves performance when

it uses increased bandwidth and it also has high APDS value.

All benchmarks suffer from inter-application contention for the

FSB when they run with streamcluster as co-runner in con-

tention configuration. From this we infer that streamcluster has

a higher memory requirement for which its co-runners suffer.

Only facesim does not degrade performance with streamcluster

as it suffers more due to intra-application contention.

V. DISCUSSION

Table I summarizes the performance sensitivity of the PAR-

SEC benchmarks by contention for L1-, L2-cache and FSB.

Each entry of the table indicates the type of contention for

the corresponding resources that affect the benchmarks’ per-

formance the most, considering all the results in Figure 8-11.

Analyzing the percentage performance difference and APDS

values respectively in all intra- and inter-application contention

results, we infer that the performances of blackscholes and

swaptions are not affected much and they do not have any

performance sensitivity to contention for the considered re-

sources in the memory hierarchy.

In the inter-application FSB contention results (Fig-

ure 11(c)), the white segments in bodytrack’s column rep-

resents that there is performance improvement (on average

31.9/10= 3.19%) with its co-runners when the threads share the

FSB in the contention configuration. Observing this improve-

ment, we can infer that bodytrack has more contention among

its own threads than the contention with its co-runner’s threads



Benchmarks L1-cache L2-cache FSB

blackscholes none none none

bodytrack inter inter intra

canneal intra inter intra

dedup inter intra, inter intra, inter

facesim inter inter intra

ferret intra intra, inter intra

fluidanimate inter inter intra

raytrace none none intra

streamcluster inter inter intra

swaptions none none none

vips intra inter inter

x264 inter intra, inter intra

TABLE I
PERFORMANCE SENSITIVITY OF THE PARSEC BENCHMARKS DUE TO

CONTENTION IN THE MEMORY HIERARCHY RESOURCES

for the FSB. Bodytrack’s performance does not degrade in the

intra-application FSB contention experiment. However, when

we compare the magnitude of the performance results between

intra- and inter-application FSB contention, the performance

result for inter-application (3.19%) is higher than that for

intra-application contention (0.14%). Therefore, bodytrack is

affected by intra-application FSB contention the most, espe-

cially in the presence of the co-runners. Similarly, canneal

suffers from intra-application L1-cache contention (on average

by 10.04/7=1.43%) when it runs with co-runners. But its

performance does not degrade in intra-application L1-cache

contention experiment. When we compare the magnitude of

the performance results between intra- and inter-application

L1-cache contention, we observe that the performance result

for inter-application (1.43%) is higher than that for intra-

application contention (0.34%). Therefore, canneal is affected

by intra-application L1-cache contention in the presence of the

co-runners. Canneal’s performance is degraded the most when

it shares L2-cache with its co-runners.

Dedup is the only benchmark which suffers from inter-

application contention for all the resources considered in

the memory hierarchy. Fluidanimate and ferret suffer the

most performance degradation from intra-application FSB con-

tention. Facesim and streamcluster show the highest perfor-

mance sensitivity to intra-application FSB contention among

all the benchmarks. Although raytrace does not show signif-

icant performance degradation due to any cache contention,

shows intra-application contention for the FSB. Vips suffers

the most due to intra-application contention for L1-cache and

inter-application contention for L2-cache. X264 suffers the

most performance degradation due to inter-application L1-

cache contention.

VI. RELATED WORK

There has been prior work addressing shared-resource con-

tention. Zhuravlev et al. analyzes the effect of cache contention

created by co-runners and provides a comprehensive analy-

sis of different cache-contention classification scheme [30].

Chandra et al. proposes analytical probabilistic models to

analyze inter-thread contention in the shared L2-cache in

hyper-threaded CMPs for the SPEC benchmarks [6]. Mars

et al. synthesizes and analyzes cross-core performance in-

terference for LLC on two architectures [20, 22]. Zhao et

al. investigates low overhead mechanisms for fine-grained

monitoring of shared cache, along with the usage, interference

and sharing [29]. Xu et al. proposes a shared cache aware

performance model [27]. These works mainly consider cache

contention for single-threaded applications. In contrast, we

propose a general methodology to characterize any multi-

threaded application for not only LLC contention, but also

contention for private cache and the FSB. Jin et al. character-

izes parallel workload for resource contention in the memory

hierarchy, but they mainly focus on comparing the systems

and run applications solely [14]. Whereas we mainly focus on

characterizing multi-threaded applications, both when running

alone and with a co-runner and determine its sensitivity to

contention for a particular resource-contention.

There also has been prior work on characterizing PAR-

SEC. In the original PARSEC paper [5], the authors provide

several characteristics of the benchmarks including working

set, locality, effects of different cache block size, degree

of parallelization, off-chip traffic, and programming models.

A more recent paper [4] includes the description of a new

benchmark (raytrace), the revisions and improvements made

in the newer version, PARSEC2.0. Bhaduria et al. describes

cache performance, sensitivity with respect to DRAM speed

and bandwidth, thread scalability and micro-architectural de-

sign choices for the benchmarks over a wide variety of

real machines [2]. The authors describe temporal and spatial

behavior of communication characteristics among the PAR-

SEC benchmarks’ threads [1]. Bhattacharjee et al. describes

TLB behavior of these benchmarks and provides many useful

insights about redundant and predictable inter-core I- and D-

TLB misses, useful for better and novel TLB designs for

emerging parallel workloads [3]. The authors transform the

PARSEC benchmarks in cache-sharing-aware manner during

compilation time [28]. Lakshminarayana and Kim categorize

these benchmarks into three classes based on execution time

variability and analyze synchronization barrier and critical

sections affect [18]. Performance portability is analyzed for

a subset of the PARSEC benchmarks by thread building block

environment [9]. Most of the work analyze and characterize

each benchmark for solo-execution. Our work complements

the above research as we characterize the benchmarks both for

solo-execution and execution with co-runners on real hardware

in contrast to simulators.

VII. CONCLUSION

As CMPs have become the default computing fabric, charac-

terization of multi-threaded applications’ contention for shared

resources has become very important. We believe that our pro-

posed methodology for intra- and inter-application contention

analyses will be useful for providing insight and understand-



ing of multi-threaded applications’ execution behaviors. The

provided insights and understanding will help designer build

more efficient systems as well as execution environments for

improved performance and throughput.
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