EdgeFaaSBench: Benchmarking Edge Devices Using
Serverless Computing

Kaustubh Rajendra Rajput*$, Chinmay Dilip Kulkarni*®, Byungjin Chof, Wei Wang?, and In Kee Kim*
*University of Georgia, Computer Science, {kaustubh.rajput, chinmay.kulkarni, inkee.kim} @uga.edu
tAalto University, Communications and Networking, byungjin.cho@aalto.fi
1The University of Texas at San Antonio, Computer Science, wei.wang@utsa.edu

Abstract—Due to the development of small-size, energy-
efficient, and powerful CPUs and GPUs for single board com-
puters, various edge devices are widely adopted for hosting
real-world applications, including real-time object detection,
autonomous driving, and sensor stream processing. At the same
time, serverless computing receives increasing attention as a
new application deployment model because of its simplicity,
scalability, event-driven processing, and short-lived computation.
Therefore, there is a growing demand for applying serverless
computing to edge computing environments. However, due to the
lack of characterization of serverless edge computing (e.g., ap-
plication performance and impact from resource heterogeneity),
researchers and practitioners have to conduct tedious measure-
ments to understand the performance of serverless applications
on edge devices in non-systematic ways.

We create EdgeFaaSBench, a novel benchmark suite for
serverless computing on edge devices, to bridge this gap.
EdgeFaaSBench is developed on top of Apache OpenFaaS with
Docker Swarm and can run various serverless benchmark
workloads on edge devices with different hardware specifications
(e.g., GPUs). EdgeFaaSBench contains 14 different benchmark
workloads running on heterogeneous edge devices and captures
various system-level, application-level, and serverless-specific
metrics, including system utilization, response time, cold/warm
start times, and impact of concurrent function executions. Exper-
imental studies are conducted on two widely used edge devices,
Raspberry Pi 4B and Jetson Nano, to show EdgeFaaSBench’s
capabilities to benchmark serverless computing on edge devices.

Index Terms—Benchmarking and Performance Evaluation;
Edge Computing; Serverless Computing;

I. INTRODUCTION

The proliferation of IoT devices has been generating an
exponential amount of sensing data, often requiring real-time
processing near data sources [1]-[3]. The edge computing
paradigm is emerging because the edge cluster can be de-
ployed near data sources, e.g., IoT sensors, and process the
data without relying on traditional data-center computing [4]-
[6]. In particular, the development of small, energy-efficient,
and capable CPU and AI accelerators for edge devices fa-
cilitates the adoption of edge computing to servicing various
real-world applications, e.g., autonomous driving, drone-based
surveillance systems, and environmental sensing [7]-[10].

At the same time, serverless computing and Function-
as-a-Service (FaaS) have gained increasing attention as the
next-generation application deployment model because of its

$Equal contribution

simplicity, event-based processing, scalability, and short-lived
computation [11]-[17]. Various user-facing and data-intensive
applications have been converted into serverless architec-
ture [18]-[22]. Furthermore, there are increasing attempts
to apply serverless computing to edge computing environ-
ments [23]-[26], and it is widely recognized as serverless
computing models are well suited for edge computing’s service
offerings [27]-[32].

When serverless applications are designed and developed
for edge computing environments, specifically if the serverless
applications are intended to be hosted on resource-constrained
edge devices, software developers wish to know the potential
performances and behaviors of their serverless applications on
edge devices. Given the heterogeneity and constrained capacity
of resources on edge devices, understanding performance
limitations and bottlenecks of serverless applications on edge
devices are particularly challenging.

A standard approach to understanding an application’s per-
formance is to use benchmark suites that are designed for
a target environment [33], [34]. There are several bench-
mark suites available for either serverless computing [35]-
[38] or edge computing [39]-[44]. Unfortunately, none of the
existing benchmark suites was tailored for comprehensively
benchmarking characteristics of serverless computing on edge
devices. The lack of benchmarks for serverless on edge devices
makes it difficult to understand the performance of the target
applications and their execution environments. For example,
desired serverless applications on edge devices [24], [29], [30]
can be significantly different from serverless applications for
cloud computing [14]-[16], and serverless edge applications’
workload arrival patterns [45], [46] may also be different from
those of serverless computing in clouds [47], [48]. As a result,
existing benchmark tools [35]-[44] may not correctly capture
the necessary performance and characteristics for serverless
deployment on edge devices, and developers and practitioners
have to conduct tedious and time-consuming measurement
processes to understand the performance of serverless appli-
cations on edge devices.

To address this problem, we create EdgeFaaSBench, a
novel benchmark suite for serverless computing on edge
devices. EdgeFaaSBench is developed on top of a widely
used open-source FaaS framework and container orchestration
tool, OpenFaaS [49] and Docker Swarm [50], and can perform
various benchmark tests on edge devices with different hard-

ware specifications, i.e., arm64/aarch64 devices with GPUs.
EdgeFaaSBench has 14 different serverless workloads per-
forming micro- and application-level benchmarking on edge
devices. Micro-benchmark workloads focus on measuring the
performance of a specific resource type on the devices, e.g.,
CPU, memory, network bandwidth, and disk I/O. On the other
hand, application-level benchmark workloads are developed
based on real-world serverless computing use-cases to capture
the performances and characteristics of serverless applications
on edge devices. In particular, various machine learning and Al
FaaS applications, e.g., image classification, object detection,
are developed for EdgeFaaSBench. With 14 benchmark work-
loads, EdgeFaaSBench can measure various system-level,
application-level, and serverless-level performances, including
system utilization, application response time, cold/warm start
times, and impact of concurrent function executions.

To show the effectiveness of EdgeFaaSBench, a thorough
benchmark study is performed on two edge devices; Raspberry
Pi 4B [51] and Jetson Nano [52]. Raspberry Pi 4B is a widely
used device in edge computing settings, and Jetson Nano
is an edge device equipped with small yet powerful GPU
accelerators. The evaluation results report application response
time, system utilization, cold and warm start times, the impact
of concurrent function executions, and the performance com-
parison between GPU and GPU-based inferences.

The contributions of this work are as follows.

1. Novel benchmark suite. We present EdgeFaaSBench,
the first comprehensive benchmark suite centered on evalu-
ating the performance and characteristics of serverless ap-
plications on heterogeneous edge devices to the best of our
knowledge. EdgeFaaSBench software is publicly available at
https://github.com/kaustubhrajput46/EdgeFaaSBench.

2. Comprehensive FaaS benchmark workloads. 14 dif-
ferent workloads are employed for EdgeFaaSBench to collect
various performance aspects of edge devices. EdgeFaaSBench
can measure both system-level and application-level metrics,
such as utilization and response times, as well as serverless-
specific metrics, such as cold/warm startup time variations and
the impact of concurrent function executions.

3. A thorough evaluation with practical edge devices.
EdgeFaaSBench is tested on two widely used edge devices,
Raspberry Pi 4B and Jetson Nano, to demonstrate the effective-
ness and feasibility in performance benchmarking of serverless
computing on edge devices.

We structure the rest of the paper as follows. Section II
describes the design of EdgeFaaSBench by emphasizing our
benchmark focus. Section III discusses 14 benchmark work-
loads in EdgeFaaSBench. Section IV reports the results from a
benchmark study on two edge devices with EdgeFaaSBench.
Section V describes related work regarding this work. Finally,
Section VI concludes this paper.

II. DESIGN OF EDGEFAASBENCH

A. Edge Computing Architecture and the Focus of Benchmark

Edge Computing Architecture. Fig. 1 illustrates the general
architecture of edge computing. Edge computing architecture

Cloud Infrastructure

Top Layer:
Cloud Servers

Middle Layer:
Edge Servers

Bottom Layer:
loT Sensors and Devices

Fig. 1. Edge Computing Architecture

is commonly composed of three layers; 1) IoT sensor and
device layer, 2) Edge server layer, and 3) Cloud layer.

IoT sensor and device layer (“bottom layer” in Fig. 1) has
various IoT sensors and user devices, which perform diverse
sensing operations, and user devices (including edge devices)
are used to host lightweight applications to perform real-time
on-board processing, including sensing data filtering and noise
removal [53], lightweight Al inference tasks [10], [54], and
stream processing [55].

Edge server layer (“middle layer” in Fig. 1) is the main
computing component in the edge computing environment.
Typically, the edge server layer is placed near data sources
(IoT sensor and device layer) to provide low-latency comput-
ing services that process the data collected by IoT sensors. The
edge servers host heavier-weight applications that cannot be
executed on computing elements in the IoT sensor and device
layer. The applications hosted on edge server layer perform
deep learning (DL) inference [7] and big data analytics [56]
operations, which tend to require high-performance proces-
sors, GPUs, and edge Al accelerators.

The last layer is cloud server layer (“top layer” in Fig.
1). Cloud server layer leverages the scalability and elasticity
of cloud infrastructure to provide large-scale data storage
and perform computation-intensive tasks with specialized HW
accelerators, e.g., DL model training with TPU [57], that
cannot be performed on the other two layers.

Benchmark Focus of EdgeFaaSBench. While edge comput-
ing has three different layers, EdgeFaaSBench focuses on
benchmarking the performance of edge devices, explicitly
adopting the idea of the FaaS paradigm [15], [16]. More-
over, existing edge benchmark suites, e.g., DeFog [41] and
others [39], already offer the capability of end-to-end edge
benchmarks. Please refer to Section V for more information.

Benchmarking the edge device performance has received
significant attention from the research and development com-
munity because of the faster improvement of the small but
powerful edge devices. In addition, HW developers and man-

https://github.com/kaustubhrajput46/EdgeFaaSBench

i / App, App,
B _ /
,’ EdgeFaaSBench
@)/ Controller
Data-In /
—_—

FaaS Layer
OpenFaaS

o

Data \

@, KE
) . .
: . Container Engine &
Act \
fon Processing ‘\ Orchestration Layer
and . \ Docker Swarm
f_ Analysis \
() \ HW and OS Layer
B\ N = \ [OS: Ubuntu 18.04 LTS
%» @» | HW: Edge Devices
EdgeFaaSBench
on Edge Device

loT Sensors

& User Devices Edge Devices

Fig. 2. The overview of EdgeFaaSBench on edge devices

ufacturers recently released high-performance edge devices,
often equipped with GPUs [52], [58], [59], and Edge TPU
accelerators [60]. Thanks to this development, understanding
the performance and behaviors of edge applications running on
such devices is particularly challenging due to the variety of
resource models and their heterogeneity, and it has become a
significant research task. Moreover, the development of edge
devices opens up a new opportunity to leverage application
deployment models recently developed by the cloud comput-
ing community; serverless computing and FaaS models [15],
[16]. Therefore, benchmarking with the FaaS applications will
provide essential indications to develop more flexible and
lightweight applications models, which are more suitable for
edge computing [27]-[32]. It is worth noting that edge devices
can be deployed in both middle (edge server) and bottom
(IoT sensor and device) layers. Generic and low-end edge
devices like Raspberry Pi can be used in the IoT sensor and
device layer, and high-end edge devices with GPU resources
are typically deployed in the edge server layer.

B. Overview of EdgeFaaSBench

Fig. 2 illustrates the overview of EdgeFaaSBench on edge
devices. EdgeFaaSBench on edge devices is composed of four
different hierarchical components.

HW and OS Layer. This layer refers to the edge devices
and OS running on the devices. While there are some differ-
ences with devices, edge devices like Raspberry Pi 4B [51]
and Nvidia’s Jetson series [52], [58], [59] commonly have
multi-core ARM CPU designed based on armé64/aarch64
architecture, 4GB to 8GB of RAM, and storage with portable
micro-SD card. Moreover, some edge devices, designed for
facilitating Al inference tasks at the edge, are equipped with
GPU accelerators. For example, Jetson Nano [52] has a 128-
core Nvidia Maxwell GPU accelerator, and Jetson Xavier
NX [59] is equipped with a Volta GPU with 384 CUDA cores
and 48 Tensor cores. We also selected Ubuntu 18.04 LTS (64-
bit) for the OS of the edge devices because this version of
Ubuntu is commonly running on most edge devices.

Container Engine and Orchestration Layer. Docker [61]
and Docker Swarm [50] are used for EdgeFaaSBench. Docker
is the most widely used container engine, and Docker Swarm

is the container orchestration framework for Docker. Both
are used to support OpenFaaS (in the FaaS layer) and host
serverless applications managed by OpenFaaS. Among the
multiple capabilities Docker Swarm supports, the auto-scaling
mechanism is particularly beneficial for benchmarking edge
devices. For example, EdgeFaaSBench can leverage Docker
Swarm’s auto-scaling to characterize the performance with
concurrent executions of serverless applications on the devices.

FaaS Layer. This layer uses OpenFaaS [49] as a primary
serverless framework to manage various serverless benchmark
workloads. OpenFaaS is selected for EdgeFaaSBench for
the following reasons. First, OpenFaaS offers convenient and
comprehensive capabilities of managing serverless applica-
tions with minimal HW requirements, various programming
languages to write serverless applications, and packaging
the applications in a containerized manner. Moreover, the
programmable APIs and CLI of OpenFaaS allow convenient
scaling-out and scaling-in operations for serverless functions
on edge devices. EdgeFaaSBench uses faas-cli! with
version 0.13.13 and OpenFaaS with version 0.20.5.

EdgeFaaSBench Controller Layer and Benchmark Work-
loads. These two layers comprise the core of EdgeFaaSBench.
The controller layer is responsible for running the bench-
mark tasks and measuring system statistics (e.g., resource
utilization) on edge devices. To start and stop a benchmark
workload, EdgeFaaSBench collaborates with APIs and CLI
functionality of OpenFaaS. Moreover, EdgeFaaSBench uses
diverse system monitoring techniques, including sysstat?
and docker stats?, to monitor the changes in resource uti-
lization and application performance. The detailed information
on collected metrics and procedures from EdgeFaaSBench
will be described in the following subsection (Section II-C).

EdgeFaaSBench offers both micro-benchmark and
application-level benchmark capabilities to capture diverse
aspects of edge devices. All the benchmark workloads used
in EdgeFaaSBench will be discussed in Section III.

C. Benchmark Metrics and Procedure of EdgeFaaSBench

As illustrated in Fig. 3, EdgeFaaSBench is composed of
1) benchmark client and 2) device manager. The benchmark
client runs on a client machine that triggers the benchmark
process, analyzes performance statistics collected by both de-
vices and the client machine, and generates the final report for
the benchmark. EdgeFaaSBench uses a workload generator
(e.g., Apache bench* to send requests to serverless benchmark
workloads on an edge device and measure the performance
statistics (e.g., application’s response time) from the client-
side. The device manager controls the benchmark process on
the device-side. The main component in the device manager
is the system monitor that captures performance statistics

Uhttps://github.com/opentaas/faas-cli
Zhttp://sebastien.godard.pagesperso-orange. ft/
3https://docs.docker.com/engine/reference/commandline/stats/
“https://httpd.apache.org/docs/2.4/programs/ab.html

https://github.com/openfaas/faas-cli
http://sebastien.godard.pagesperso-orange.fr/
https://docs.docker.com/engine/reference/commandline/stats/
https://httpd.apache.org/docs/2.4/programs/ab.html

EdgeFaaSBench EdgeFaaSBench
Benchmark Client Device Manager
Start Benchmark - { Device Controller
2) Starting
4) Start Device i
3) Starting
. Workload
1) Starting G;)r:e;?or Controller Device-side
Logging System Monitor
Daemon Workload I
Generator | System Monitor
N
8) Update 7) Notify the End of
Client-side Executions
Log
N\ @a
Logging Daemon \ OPENFAAS
9) Starting
Log Analyzer
Analyze Client Logs 10) Update Device-side Logs

and Device Logs

l1 1) Post Processing

Report Generator

Fig. 3. Benchmark Procedure of EdgeFaaSBench

during the benchmark execution and reports the collected
metrics/statistics to the benchmark client.

Benchmark Metrics. EdgeFaaSBench can measure three
different categories of metrics for the performance benchmark.
1) System Resource Utilization: Four main resource utiliza-
tion metrics, e.g., CPU, memory, disk I/O, and network band-
width, can be measured by EdgeFaaSBench. To accurately
collect CPU and memory usage on edge devices, a particular
challenge for EdgeFaaSBench is to differentiate the resource
consumption by FaaS containers (hosting serverless bench-
mark workloads) managed by OpenFaaS and that by other pro-
cesses (e.g., EdgeFaaSBench system monitor on the device).
Therefore, EdgeFaaSBench employs two different system
monitoring techniques, docker stats and sysstat, to
collectively measure separate resource consumption by FaaS
containers and other processes. In particular, docker stats
allows EdgeFaaSBench to measure resource utilization per
each FaaS container. Other system metrics, e.g., disk /O
and network bandwidth, are measured using micro-benchmark
serverless workloads developed based on dd and iPerf3>.

2) Serverless Application Performance: The response times
of the benchmark workloads are the main performance metric
to understand the behavior of serverless applications. The
response times are measured by both on benchmark client
and device manager (edge devices) of EdgeFaaSBench. The
benchmark client measures client-side response times. i.e., the
actual execution time on the devices and the transmission
latency. Furthermore, the device manager can collect the
execution time of serverless applications inside the OpenFaaS
docker container. EdgeFaaSBench can provide multiple types
of statistics of the response time, including the average, tail
(e.g., 99%ile), and distribution of the response time.

Shttps://iperf.fr/iperf-download.php

3) Serverless-related Metrics: To measure the performance
and behavior of serverless applications on edge devices,
EdgeFaaSBench can collect cold and warm start times of
serverless applications. The cold start time represents the delay
when the first function (serverless application) is invoked,
and it includes both container creation and application de-
ployment overhead. The cold start time is an initialization
delay caused when the first function (serverless application) is
invoked, and it includes both container creation and application
deployment overhead. On the other hand, the warm start
time is the function invocation delay when a request arrives
in an existing serverless container. In particular, the cold
start time is the primary performance bottleneck of serverless
applications because the cold start time can be up to an
order of magnitude slower than the warm start time [62],
[63]. Therefore, it is critical to measure such overhead on
edge devices. To measure the cold start time, EdgeFaaSBench
leverages OpenFaaS CLI and customized ym1 files for bench-
mark workloads to intentionally create cold start cases (e.g., set
com.openfaas.scale.min® to zero). Moreover, the cold
start time can be further amplified with concurrent function
executions. To measure such impact, EdgeFaaSBench dynam-
ically changes the request rates in the workload generator
and auto-scaling configuration in OpenFaaS to support more
function executions.

Benchmark Procedure. Fig. 3 also shows the benchmark
procedure of EdgeFaaSBench. EdgeFaaSBench begins by
starting the logging daemon in the benchmark client (step
#1). The logging daemon is responsible for collecting all the
logs from both the benchmark client and system monitor on
the target edge device. The benchmark client then notifies
the device controller on the edge device about the start of
the benchmark (step #2). The device controller initializes the
system monitor (step #3), and the system monitor becomes
ready to collect system statistics of the edge device (e.g.,
resource utilization).

The workload generator in the client is started (step #4), and
then it sends benchmark requests to the serverless benchmark
workloads in the OpenFaaS framework on the device (step
#5). When the benchmark workload receives the requests from
the workload generator, it starts conducting the performance
benchmark on the device. At the same time, the system
monitor starts data collection of the edge device’s system
statistics (e.g., the change of CPU usage). Once the benchmark
workload processes the request from the workload generator,
the application sends a response back to the workload gener-
ator (step #6). The workload generator measures the response
time by calculating the difference between the time to send
the request and the time to receive the response. When the
benchmark workload finishes its execution, it notifies the end
of the benchmark to the system monitor (step #7).

Then, the logging daemon in the benchmark client collects
the client-side logs and measured statistics, including the ap-
plication’s response time (step #8), and starts the log analyzer

Shttps://docs.openfaas.com/architecture/autoscaling/

https://iperf.fr/iperf-download.php
https://docs.openfaas.com/architecture/autoscaling/

TABLE I
SUMMARY OF BENCHMARK WORKLOADS IN EDGEFAASBENCH. (H: HIGH, M: MEDIUM, L: Low)

Workload Type

Description

’ Category ‘Workload Name

{CPU{MEMU/O{NET{GPU{

Matrix

Performing matrix multiplication of different matrix sizes multiple

Multiplication (MM) H H B B . times.
Fast Fourier H H Reading a random seed number and performing its Fast Fourier
Micro- Transform (FFT)])) Transform operations multiple times.
Benchmark | Floating Point Operation
Sine (FPO-STNE) H M - - - Calculating the sine value of all 360 degrees multiple times.
Floating Point Operation H M Calculating the square root value of random numbers, ranging from
Square Root (FPO-SQRT) - - B 10,000 to 30,000 multiple times
Sorter (SORT) M H L _] Rgadmg a ﬁle covntammg random text data and sorting the text data
using the Linux sort command.
Performing random read/write operations on storage (micro-SD) on
dd (bD) L L H)) edge devices using the Linux dd command.
. Leveraging the iPerf3 tool to measure the achievable bandwidth of
iPerf3 (IPERF) L L) H) the IP network of edge devices.
Image Processing (TP) M M L L _ Resm_ng random images (from benchmark client) to a size of 400X
400 pixels.
Application- | Sentiment Analysis (SA) H M j L . Dgwnloadlqg_ JSON files qbout different topics and calcqlatmg the
Level]r;no (;f pgsmve ani negatldv.e ef;llgaﬁements abOlilt the topics.]
ownloading a random audio file from external storage, generating
Benchmark Speech to Text (ST) M M L M B translated text, and sending it back to the benchmark client.
Imace Classification Receiving random images from the benchmark client, performing
on (%PU (Tc-cpu) H M-H L L - image classification tasks using pre-training CNN models on CPU,
and transferring the classification results to the benchmark client.
Image Classification Performing a similar task with IC—-CPU. But this benchmark enables
on (%PU (i‘(} GPU) M M-H L L H GPU resources to perform the DNN inference task faster. It can be
run on edge devices with GPU. i.e., Nvidia Jetson series
Object Detection H L L Receiving random images from the benchmark client, and performing
on CPU (0OD-CPU)) object detection tasks with YOLOv3 on CPU.
Object Detection M H L L H Performing the similar task with OD-CPU, but enabling GPU for
on GPU (OD-GPU) faster inference. This workload can run on GPU-equipped edge devices.

(step #9), which collects the device-side benchmark logs and
statistics (step #10) and conducts further analysis of both client
and device logs to understand the performance of the serverless
benchmark workloads on the device. The results from the log
analyzer will be given to the report generator to create the
final performance benchmark reports for the user (step #10).

III. BENCHMARK WORKLOADS IN EDGEFAASBENCH

This section describes serverless benchmark workloads in
EdgeFaaSBench. The benchmark workloads can be catego-
rized into two types; 1) micro-benchmark and 2) application-
level workloads. The summary of benchmark workloads in
EdgeFaaSBench is shown in Table L.

Micro-benchmark. Micro-benchmark workloads are em-
ployed to benchmark the performance of specific resources
on edge devices. i.e., CPU, memory. MM and FFT generate
high workloads for both CPU and memory resources on edge
devices by performing mathematical operations. MM uses three
different matrix sizes (300 x 300, 400 x 400, and 450 x450) and
performs the matrix multiplication operations 300 times. FFT
calculates a Fast Fourier Transform of a random seed number.
Both FPO-SINE, and FPO-SQRT are workloads to generate
high CPU stress and moderate memory stress. FPO-SINE
calculates the sine value of all 360 degrees, and FPO-SQRT
calculates square root values of random numbers (ranging from
10,000 to 30,000) multiple times to generate stress to CPU.

Moreover, the micro-benchmark workloads incorporate off-
the-shelf Linux commands and tools. SORT tests the memory

(a) Raspberry Pi 4B

(b) Nvidia Jetson Nano

Fig. 4. Two edge devices, Jetson Nano and Raspberry PI 4B, used for
evaluation with EdgeFaaSBench

performance on edge devices by generating high memory
pressure from the sort operation of random text data with sort
command. DD uses dd Linux command to benchmark Disk
I/O performance of edge devices. IPERF uses the iPerf3 tool
to measure the achievable network bandwidth of edge devices.

For the micro-benchmark workloads, python3-debian
template in OpenFaaS is commonly used to implement the
workloads as a form of serverless applications on edge devices.

Application-level Benchmark. Application-level benchmark
workloads employ realistic serverless application models to
benchmark the performance of edge devices. IP is an image
processing serverless application that receives random images
from EdgeFaaSBench benchmark client and resizes them to
400 x 400 pixel size images. IP is implemented using the

(a) Response Time

(b) CPU Utilization

(c) Memory Utilization

T T 7 400 T T T 701 400 T T T T T T

30 B RPI E==E || 7

i J.Nano EEEE | | 2

_ S 300 H| 4 8300 -

< S 200 [4 & 200 f

E N g
BEEEEEEE IR BEEEEEEEE R R EEEE R
2E338Y 7T 447 E33RT 7T 548° 233 8Y 7T 44°

g = g 2 g = s 2 g - g 2

2 zz g 2z z Gz

Fig. 5. Benchmark results of response time, CPU utilization, and memory utilization. Please note that IC—-CPU (S) is the image classification workload with
SqueezeNet, and IC-CPU (A) is the image classification workload with AlexNet.

python-pillow’ library, which provides extensive image
file format support, an efficient internal representation, and
powerful image processing capabilities. SA is a sentiment
analysis application that detects the ratio of positive and neg-
ative engagements about multiple random topics provided by
benchmark client. To implement SA, NLKT® and TextBlob’
libraries for Python3 are used. ST is an application that
generates text data by transcribing the random audio files
provided from EdgeFaaSBench benchmark client and sends
it back to the client. Two Python3 libraries, pyttsx3'? and
SpeechRecognition!!, are used to implement ST.
Moreover, since the Al at the edge is increasingly adopted
in edge computing, EdgeFaaSBench also employs four server-
less benchmark workloads that perform DL inference tasks
on edge devices. Both IC-CPU and IC-GPU perform image
classification tasks on edge devices using two pre-trained DL
models; AlexNet [64] and SqueezeNet [65]. The difference
between IC-CPU and IC-GPU is as follows. IC-CPU uses
the CPU of edge devices for performing image classification
tasks to benchmark edge devices without GPU accelerator like
Raspberry Pi. On the other hand, IC-GPU can perform the im-
age classification tasks on GPU, which offers faster inference
time. In particular, IC-GPU is designed to benchmark edge
devices with GPU accelerators. i.e., Nvidia’s Jetson series [52],
[58], [599]. Also, both workloads generate slightly different
memory pressure on edge devices with various models. For
example, SqueezeNet is a lightweight DL model, and image
classification with SqueezeNet shows moderate memory uti-
lization. On the other hand, the image classification tasks with
AlexNet, which is heavier than SqueezeNet, can generate high
memory pressure. For both IC-CPU and IC-GPU, we use
PyTorch12 for the main DL framework. In addition, both
OD-CPU and OD-GPU generate object detection workloads
on edge devices. Similar to the previous workloads, OD—-GPU
is to benchmark GPU performance on edge devices. The

https://pillow.readthedocs.io/en/stable/
8https://www.nltk.org/index.html
9https://textblob.readthedocs.io/en/dev/
10https://pypi.org/project/pyttsx3/
https://pypi.org/project/SpeechRecognition/
Zhttps://pytorch.org/

object detection workloads use an open-source darknet!?
framework, which is written in C and CUDA, and it employs
YOLOV3 [66] for performing the object detection tasks.

All seven application-level workloads are also implemented
based on a python3-debian template to be run as server-
less applications on OpenFaaS in edge devices.

IV. BENCHMARK RESULTS

This section describes our initial benchmark results mea-
sured by EdgeFaaSBench to show its effectiveness.

A. Benchmark Edge Devices

This benchmark study uses two widely used edge devices
shown in Fig. 4. Raspberry Pi 4B (RPI, shown in Fig. 4a) [51]
is a small, low-cost, representative computing board for edge
and IoT devices. RPI uses Broadcom BCM2711 SoC and has
a quad-core ARM Cortex-A72 (1.5 GHz) and 4 GB LPDDR4
RAM. RPI can be deployed for various use cases, such
as IoT sensor control, sending data collection and filtering,
and lightweight data processing. RPI devices are typically
deployed in the bottom (IoT sensor and device) layer in Fig.
1 in Section II.

Jetson Nano (J.Nano, shown in Fig. 4b) has a slightly
older version of ARM cores (a four-core Cortex-A57 at 1.5
GHz) and 4 GB LPDDR4 RAM. However, J.Nano is equipped
with a 128-core Nvidia Maxwell GPU and can provide faster
DL inference time with various DL frameworks like PyTorch
and TensorFlow [10]. Because J.Nano is specialized in Al
processing, the device can be deployed in both the middle
(edge servers) and the bottom (IoT sensor and device) layers
in Fig. 1 in Section II

B. Benchmark Results

We report four benchmark results with two edge devices,
including response time and resource utilization, cold and
warm start times, concurrent function executions, and the CPU
and GPU performance comparison.

Response Time and Resource Utilization. Fig. 5 shows
EdgeFaaSBench’s benchmark results on response time and

Bhttps://pjreddie.com/darknet/

https://pillow.readthedocs.io/en/stable/
https://www.nltk.org/index.html
https://textblob.readthedocs.io/en/dev/
https://pypi.org/project/pyttsx3/
https://pypi.org/project/SpeechRecognition/
https://pytorch.org/
https://pjreddie.com/darknet/

Raspberry Pi 4B Jetson Nano

S0 T T T T T S0 T T T T T
S 40f S 400
5 30+ 2 30
£ £
& 20r : E 20k 11
& &
oatlllI gl
0 m o ol ol o Il 0 m m o ol Tl Bl) D
246 8101214161820 246 8101214161820
Concurr. Function Executions Concurr. Function Executions
400 T T T 111711000 400 T T T 1T 1711000
<3320 <4800 ~ —~320f X| .
§3 0 B0 L) 800 2 §3 0 800 =
42401 1600 = 4240 4600 2
2160/ 4400 5 Z160F 1400 =
E‘J MEM (%) =} 6 MEM (%) £
80— <1200 & 80 41200 &
= =
N T Y T ol iy
246 8101214161820 2 46 8101214161820

Concurr. Function Executions Concurr. Function Executions

(a) Sentiment Analysis (SA)

Raspberry Pi 4B Jetson Nano
T T T T 17 T 71T 1T T T T 17 1T 1T T1T7T
PR 3% 1
Z 60} < 60- -
I 2
= 401 i B = 40
1111 il
0 [0 Gl ot G0 Dot G Uof ol [0 m Ml H ol el Gl bl bl
246 8101214161820 246 8101214161820
Concurr. Function Executions Concurr. Function Executions
400 T T T T T 1T T T 1 2500 400 1T T T T 17 1T 1T 7177 2500
§320 ~ [CPU (%) -12000 @ ;\;320 r -12000 é\
._m'240* * 1500% _13240* a 1500%
3160~ MEM (%) 410005 3160~ 10005
® £0 g
|- — Lo} - — Q
80 500 s 80 500 s
| | 1 1 | | I

| 0
246 8101214161820
Concurr. Function Executions

1
246 8101214161820
Concurr. Function Executions

(b) Object Detection (OD-CPU)

Fig. 6. Benchmark results of concurrent function executions for two EdgeFaaSBench workloads. (a) SA workload with concurrent executions, (b) OD-CPU

workload with concurrent executions

TABLE I
BENCHMARK RESULTS OF THE COLD AND WARM START TIME OF
WORKLOADS ON TWO DEVICES. (SQN: SQUEEZENET, ALN: ALEXNET)

Raspberry Pi 4B Jetson Nano
| Cold Start | Warm Start | Cold Start | Warm Start |

MM 7.8s 1.4s 7.3s 1.3s
FFT 9.2s 1.8s 8.0s 1.4s
FPO-SINE 7.6s 0.2s 5.6s 0.2s
SORT 7.9s 0.3s 5.7s 0.3s
DD 7.4s 0.4s 5.8s 0.4s
Ip 8.5s 0.8s 8.0s 0.9s
SA 11.5s 2.1s 11.9s 2.3s
ST 7.6s 0.3s 6.4 0.3s
Iégﬁ)U 10.3s 1.9s 10.6s 2.3s
I&fﬁf 30.0s 5.3s 42.1s 7.7s
OD-CPU 4.0s 0.1s 3.2s 0.1s

CPU/memory utilization. In this evaluation, we ran each
benchmark workload 100 times to get reliable benchmark
results. The results include all benchmark workloads except for
GPU-enabled workloads (IC-GPU, OD—-GPU), and IPERF.

As shown in the figure, while both devices showed sim-
ilar response times for CPU-based workloads, RPI provided
about 10% faster response time (except for IC-CPU with
SqueezeNet) than J.Nano. This is mainly because RPI has a
slightly faster CPU with a newer version of ARM cores. For
the CPU and memory utilization, EdgeFaaSBench reported
similar statistics for most of the workloads.

Cold and Warm Start Time. The next benchmark measures
serverless functions’ cold and warm start times on edge
devices. The capability to measure the cold and warm start
times is particularly important since the cold start overhead is
recognized as the major performance overhead of serverless

applications. To measure the cold start time, EdgeFaaSBench
recorded the initial function invocation time collected by
OpenFaaS when no serverless container was running. After
this recording, EdgeFaaSBench compared the time with the
first recorded time internally measured in the function in the
benchmark workloads. For measuring the warm start time,
EdgeFaaSBench also recorded the request invocation time in
OpenFaaS and compared it with the first recorded time in a
warm serverless container.

Table II shows the cold and warm start times on both
devices measured by EdgeFaaSBench. While the cold and
warm start times vary with different benchmark workloads,
both devices showed an order of magnitude slower cold
start times compared to the warm start times. For example,
RPI and J.Nano had 16.9x and 13.6x slower cold start
times, respectively. Such slower cold start times are consistent
with existing measurement studies on serverless platforms on
clouds [62]. As identified by prior work [63], the significantly
slower cold start times are mostly because of container and
package initialization used in the serverless functions. In par-
ticular, benchmark workloads like IC—CPU with AlexNet and
SqueezeNet and SA require various packages in the serverless
functions, so that they needed more time to initialize the
serverless container and showed higher cold start times.

For comparing start times between two devices, J.Nano
showed equivalent and slightly faster cold start times except
for two IC—CPU workloads and SA, and both devices showed
similar warm start times.

Concurrent Function Executions. Next, we measured the
impact of concurrent invocation of serverless functions on
edge devices. In this evaluation, EdgeFaaSBench generated
the concurrent function invocations, gradually increasing from

TABLE III
DEEP LEARNING INFERENCE THROUGHPUT COMPARISON BETWEEN CPU
(IC-CPU) AND GPU (IC-GPU) ON JETSON NANO (J.NANO).

DL Inference Throughput (# Infer/sec.)
with SqueezeNet | with AlexNet

Jetson Nano CPU

(Tc-CPU) 3.06 2.78
Jetson Nano GPU

(1C-GPU) 27.65 8.80

1 to 20, and measured response time and resource utilization.

Fig. 6 shows the benchmark results of two workloads, which
are SA and OD—-CPU. We omit the results of other benchmark
workloads due to the page limitation, and the results from
other workloads showed a similar pattern to the two workloads
reported in the figure. As expected, the response times of con-
current functions increase with a higher level of concurrency.
Also, resource utilization (CPU and memory) increases with
more concurrent functions. An interesting observation is that
CPU utilization was close to the maximum with a lower level
of concurrency (e.g., 4 or 6 concurrent functions) on both
devices. However, both devices were still able to process more
functions while they showed such high CPU utilization. This is
mainly because the memory usage did not reach the maximum.
The devices were able to handle more concurrent functions
unless the memory resources were not saturated. Based on this
observation, we expect that the maximum degree of concurrent
functions that can be processed by the edge devices will be
determined by memory utilization, indicating that the upper
bound of concurrent function executions can be determined
when memory utilization becomes 100%.

Moreover, between the devices, J.Nano showed better per-
formance to handle concurrent function executions. Interest-
ingly, while the response time to handle a single function
on J.Nano was slightly slower than RPI, J.Nano showed a
15% faster response time for SA and a 55% faster response
time for OD-CPU with concurrent functions. For OD-CPU,
we clearly observed that J.Nano showed 15% — 20% more
efficient memory utilization with concurrency.

Comparison of CPU and GPU Performance. The last
benchmark result is to show EdgeFaaSBench’s capability to
compare the DL inference performance on CPU and GPU. We
performed this comparison on J.Nano executing IC-CPU and
IC-GPU, by leveraging its CPU and GPU resources. In this
evaluation, we report the end-to-end DL processing latency
as well as DL throughput on CPU and GPU by performing
multiple executions of 200 batches of images.

Fig. 7 shows the end-to-end DL processing latency of
IC-CPU and IC-GPU on J.Nano. The end-to-end latency is
the sum of DL loading inference (DL framework and model)
and DL inference latency. IC-GPU (running on J.Nano’s
GPU) showed 3.2x and 1.2x faster processing latency with
SqueezeNet and AlexNet compared to IC-CPU (only running
on CPU), showing the benefit of leveraging GPU accelerator
for DL inference tasks. Interestingly, the loading latency (blue

(a) Image Classification (SqueezeNet) (b) Image Classification (AlexNet)

90 T T 90 T T

g 80 [Infer. Time | g‘ 80 [Infer. Time |
<701 Load Time] < 70 Load Time |
2 60+ | 4 3 60F 7
5 5

E 50 * 5 50 =
& 40 1 e 40+ .
'z 301 1 2 30r 7
g 20 o :‘_g’ 20 -
A 10r | [4 & 10f B

0 L L 0 [L
J.Nano CPU J.Nano GPU J.Nano CPU J.Nano GPU
(IC-CPU) (IC-GPU) (IC-CPU) (IC-GPU)

Fig. 7. End-to-end deep learning processing latency comparison between
CPU and GPU on Jetson Nano (J. Nano). DL processing latency is composed
of load and inference latency.

portion of Fig. 7) of IC-GPU was significantly slower than
that of IC—-CPU. For example, IC-GPU’s loading latency was
over 100x slower than the loading latency of IC-CPU when
using SqueezeNet. This is because the GPU accelerator on
J.Nano was much slower to initialize and load DL models.
Therefore, Pytorch’s initialization latency with GPU is much
slower than that with CPU. However, once the DL model is
loaded and the framework is initialized, the inference latency
with IC-GPU is much faster than the inference latency of
IC-CPU. The inference latency of IC-GPU was 7.1x (with
SqueezeNet) and 1.8x (with AlexNet) shorter than those of
IC-CPU. We also observed that the loading and inference la-
tency could be varying with different DL models. In particular,
the latency was significantly changed with DL model sizes.
We also confirm another benefit of enabling GPU on
edge devices by reporting the throughput differences between
IC-GPU and IC-CPU. As shown in Table III, IC-GPU
processed 9x (with SqueezeNet) and 3.2x (with AlexNet)
more images compared to IC-CPU, clearly indicating the
benefit of GPU accelerator for the Al at the edge processing.

V. RELATED WORK

The research community has proposed various benchmark
suites for edge computing environments. This section sum-
marizes the state-of-the-art benchmark suites [39]-[44] and
discusses our novelty over the state-of-the-arts.

DeFog [41] is a comprehensive fog/edge computing bench-
mark suite containing six different edge applications. DeFog
focuses on benchmarking the performance of edge computing
with three different deployment modes; edge-cloud, cloud-
only, and edge-only. DeFog performed an experimental study
on three deployment modes using two edge devices (e.g.,
Raspberry Pi 3 Model B and Odroid XU 4) and an Amazon
cloud server, and the experiment results showed the perfor-
mance variations of benchmark applications with different
deployment modes. While DeFog has broader benchmark cov-
erage than EdgeFaaSBench in supporting different edge com-
puting scenarios, EdgeFaaSBench has the following novelty
over DeFog. First, we focus on benchmarking the performance
of edge devices and their diverse resource types (e.g., CPU
and GPU). And, differing from DeFog, all the benchmark

TABLE IV
COMPARISON OF EDGE COMPUTING BENCHMARK SUITES

Benchmark Edge | Edge + | Micro-Benchmarks | Application Benchmarks | Serverless Support | Serverless GPU Open

Only Cloud (# of Apps.) (# of Apps.) on Edge Device Metrics Support | Source
DeFog [41] Yes Yes No Yes (6) No No - Yes
Edge AlIBench [43] Yes No No Yes (6) No No Yes No
pCAMP [54] Yes No No Yes (4) No No Yes No
Subedi et al. [10] Yes No No Yes (4) No No Yes No
EdgeBench’18 [40] Yes Yes No Yes (3) No No No Yes
EdgeBench’20 [42] Yes Yes No Yes (2) Yes No No No
Carpio et al. [44] Yes No No Yes (2) Yes No - No
EdgeFaaSBench Yes No Yes (7) Yes (7) Yes Yes Yes Yes

workloads in EdgeFaaSBench are serverless applications,
and EdgeFaaSBench can measure diverse serverless-oriented
performance metrics. i.e., cold and warm startup times of
serverless applications.

Due to the broader adoption of artificial intelligence (AI) at
the edge paradigm [7], benchmark suites that are centered on
measuring Al inference performance in edge computing have
also been proposed [10], [43], [54]. Edge AlBench [43] is a
benchmark suite with four realistic Al deployment scenarios
for edge computing and offers capabilities to measure the end-
to-end Al performance of various edge-computing scenarios.
pCamp [43] conducted benchmarking the performance of ma-
chine learning (ML) packages and frameworks when running
image classification tasks on edge devices and mobile devices.
This work reported latency (including model loading time),
memory usage, and energy consumption from different ML
packages. Subedi et al. [10] also provided the benchmarking
results of Al inference tasks on edge devices by using multiple
deep neural networks (DNN) models on various combinations
of four edge devices and two Al accelerators for edge devices
(e.g., Coral EdgeTPU Accelerators [60]). Moreover, the work
performed by Subedi et al. focused on characterizing the multi-
tenancy aspects of DNN models’ executions on the devices.
While AI benchmark workloads are part of our benchmark
suite, EdgeFaaSBench can perform benchmarks with broader
FaaS applications models, offering Al-based, traditional appli-
cations, and micro-benchmarks. EdgeFaaSBench also focuses
on measuring the feasibility and performance of FaaS offering
on edge devices so that it can report various serverless-centric
metrics, including cold/warm function startup times and per-
formance variation with concurrent function executions.

EdgeBench’18 [40], EdgeBench’20 [42], and Carpio et
al. [44] proposed earlier FaaS adoption to benchmark suites
for edge computing. However, these works have limitations
in correctly understanding the FaaS offering on edge devices
because these benchmarks focused on collaborative cloud-edge
environments. For example, EdgeBench’18 [40] relied on FaaS
offerings from public cloud providers, such as AWS Green-
grass with AWS Lambda. EdgeBench’20 [42] was designed
to benchmark the efficacy of diverse cloud-edge workflows
that can be used in edge computing deployment. Moreover,
the benchmark suite by Carpio et al. [44] contains only two
benchmark applications, hence not sufficient to capture various
aspects of FaaS behaviors on edge devices.

We summarize the differences between EdgeFaaSBench
and previous benchmark suites in Table IV. As shown in
the table, EdgeFaaSBench employs more comprehensive
benchmark workloads ranging from micro-benchmarks to
application-level benchmarks (including Al workloads), which
help edge users correctly identify the behavior of FaaS char-
acteristics and performance on edge devices. Moreover, by
supporting GPU capability on edge devices, EdgeFaaSBench
can evaluate FaaS performance variations on heterogeneous
edge devices if GPU resources are available.

VI. CONCLUSION

Due to the fast development of serverless computing and
edge devices (especially with Al accelerators), there is in-
creasing demand for serverless edge computing. To evaluate
the performance of serverless computing on edge devices,
we present EdgeFaaSBench, a novel benchmark suite for
edge devices with serverless computing. EdgeFaaSBench is
prototyped on a modern container engine/orchestration and a
widely used open-source serverless framework.

EdgeFaaSBench comprises 14 serverless workloads to cor-
rectly benchmark diverse aspects of edge devices’ perfor-
mance. Among the 14 workloads, 7 of them are micro-
benchmark, and the others are application-level benchmark
workloads. Micro-benchmark workloads evaluate the perfor-
mance of a specific resource type (e.g., CPU) on edge de-
vices, and application-level benchmark workloads evaluate the
edge devices’ performance with realistic application scenarios
like DL inference and sentiment analysis. EdgeFaaSBench
can collect diverse tradition and serverless-specific metrics
reflecting the performance of edge devices. In particular,
EdgeFaaSBench can collect cold and warm start times of
serverless applications and performance degradation with con-
current function executions, which are the important perfor-
mance bottleneck of serverless applications on edge devices.
In addition, EdgeFaaSBench also enables GPU to benchmark
the scenarios of Al at edge computing.

We performed a benchmark study on two widely used
edge devices to show the effectiveness of EdgeFaaSBench
and reported diverse performance metrics and serverless char-
acteristics on the edge devices. Finally, EdgeFaaSBench
is publicly available at https://github.com/kaustubhrajput46/
EdgeFaaSBench.

https://github.com/kaustubhrajput46/EdgeFaaSBench
https://github.com/kaustubhrajput46/EdgeFaaSBench

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and constructive suggestions.
This research was in part supported by the U.S. Department
of Agriculture (USDA), under award number 2021-67019-
34342, and the Academy of Finland (AoF), under grants
317432 and 318937. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the view of the USDA
or AoF.

—
—

[6]

[10]

(11]
(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A Vision, Architectural Ele-
ments, and Future Directions. Future Generation Computer Systems,
29(7):1645-1660, 2013.

Rajiv Ranjan and et al. The Next Grand Challenges: Integrating the
Internet of Things and Data Science. IEEE Cloud Computing, 5(3):12—
26, 2018.

Danny Yuxing Huang, Noah J. Apthorpe, Frank Li, Gunes Acar, and
Nick Feamster. IoT Inspector: Crowdsourcing Labeled Network Traffic
from Smart Home Devices at Scale. ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies (IMWUT), 4(2):46:1-46:21, 2020.
Mahadev Satyanarayanan. The Emergence of Edge Computing. [EEE
Computer, 50(1):30-39, 2017.

Marcos Dias de Assuncdo, Alexandre Da Silva Veith, and Rajkumar
Buyya. Distributed Data Stream Processing and Edge Computing: A
Survey on Resource Elasticity and Future Directions. Journal of Network
and Computer Applications, 103:1-17, 2018.

Andy Rosales Elias, Nevena Golubovic, Chandra Krintz, and Rich
Wolski. Where’s The Bear?: Automating Wildlife Image Processing
Using IoT and Edge Cloud Systems. In ACM/IEEE International
Conference on Internet-of-Things Design and Implementation (IoTDI),
Pittsburgh, PA, USA, April, 2017. ACM.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge Intelligence: Paving the Last Mile of Artificial Intelligence With
Edge Computing. Proceedings of IEEE, 107(8):1738-1762, 2019.
Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong
Shi. Edge Computing for Autonomous Driving: Opportunities and
Challenges. Proceedings of IEEE, 107(8):1697-1716, 2019.

Jianwei Hao, Piyush Subedi, In Kee Kim, and Lakshmish Ramaswamy.
Characterizing Resource Heterogeneity in Edge Devices for Deep Learn-
ing Inferences. In International Workshop on Systems and Network
Telemetry and Analytics (SNTA@HPDC), Virtual Event, June, 2021.
Piyush Subedi, Jianwei Hao, In Kee Kim, and Lakshmish Ramaswamy.
AI Multi-Tenancy on Edge: Concurrent Deep Learning Model Exe-
cutions and Dynamic Model Placements on Edge Device. In IEEE
International Conf. on Cloud Computing (CLOUD), September, 2021.
AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2022-03-01.
Azure Functions. https://azure.microsoft.com/en-us/services/functions.
Accessed: 2022-03-01.

Google Cloud Functions. https://cloud.google.com/functions. Accessed:
2022-03-01.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. Occupy the Cloud: Distributed Computing for the 99%. In
ACM Symposium on Cloud Computing (SoCC), Santa Clara, CA, USA,
Septempber, 2017.

Paul C. Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. The rise of serverless computing. Communications of ACM,
62(12):44-54, 2019.

Johann Schleier-Smith and et al. What serverless computing is and
should become: the next phase of cloud computing. Communications of
ACM, 64(5):76-84, 2021.

Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. Adnn:
Achieving predictable distributed DNN training with serverless archi-
tectures. IEEE Transactions on Computers, 71(2):450-463, 2022.
Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
Sprocket: A Serverless Video Processing Framework. In ACM Sympo-
sium on Cloud Computing (SoCC), Carlsbad, CA, USA, October, 2018.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In USENIX Annual
Technical Conference (ATC), Virtual Event, July, 2021.

Anirban Bhattacharjee, Yogesh D. Barve, Shweta Khare, Shunxing Bao,
Aniruddha Gokhale, and Thomas Damiano. Stratum: A Serverless
Framework for the Lifecycle Management of Machine Learning-based
Data Analytics Tasks. In USENIX Conference on Operational Machine
Learning (OpML), Santa Clara, CA, USA, May, 2019.

Ingo Miiller, Renato Marroquin, and Gustavo Alonso. Lambada: Interac-
tive Data Analytics on Cold Data Using Serverless Cloud Infrastructure.
In International Conf. on Management of Data (SIGMOD), Portland,
OR, USA, June, 2020.

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
‘Wood, Daniel Hagimont, No€l De Palma, Bernabé Batchakui, and Alain
Tchana. OFC: an opportunistic caching system for FaaS platforms. In
Sixteenth European Conference on Computer Systems (EuroSys), Virtual
Event, April, 2021.

Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar,
Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski,
Sasko Ristov, and Radu Prodan. A Serverless Real-Time Data Analytics
Platform for Edge Computing. IEEE Internet Computing, 21(4):64-71,
2017.

Luciano Baresi and Danilo Filgueira Mendonca. Towards a Serverless
Platform for Edge Computing. In IEEE International Conference on
Fog Computing (ICFC), Czech Republic, June, 2019.

Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz.
NanoLambda: Implementing Functions as a Service at All Resource
Scales for the Internet of Things. In IEEE/ACM Symposium on Edge
Computing (SEC), San Jose, CA, USA, November, 2020.

Bin Wang, Ahmed Ali-Eldin, and Prashant J. Shenoy. LaSS: Running
Latency Sensitive Serverless Computations at the Edge. In International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), Virtual Event, June, 2021.

Nabil El Ioini, David Héstbacka, Claus Pahl, and Davide Taibi. Platforms
for Serverless at the Edge: A Review. In European Conference on
Service-Oriented and Cloud Computing (ESOCC), Heraklion, Crete,
Greece, September, 2021.

Zhe Zhou, Bingzhe Wu, Zheng Liang, Guangyu Sun, Chenren Xu,
and Guojie Luo. Is FaaS Suitable for Edge Computing? In USENIX
Workshop on Hot Topics in Edge Computing (HotEdge), Virtual Event,
June, 2020.

Mohammad Sadegh Aslanpour, Adel Nadjaran Toosi, Claudio Cic-
conetti, Bahman Javadi, Peter Sbarski, Davide Taibi, Marcos Dias
de Assungdo, Sukhpal Singh Gill, Raj Gaire, and Schahram Dustdar.
Serverless Edge Computing: Vision and Challenges. In 2027 Aus-
tralasian Computer Science Week Multiconference (ACSW), Dunedin,
New Zealand, February, 2021.

Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob
Aitken, and Gabriel Parmer. Challenges and Opportunities for Efficient
Serverless Computing at the Edge. In 38th International Symposium on
Reliable Distributed Systems (SRDS), Lyon, France, October, 2019.
Luciano Baresi and Danilo Filgueira Mendonca. Towards a Serverless
Platform for Edge Computing. In IEEE International Conference on
Fog Computing (ICFC), Prague, Czech Republic, June, 2019.

Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander
Rashed, and Schahram Dustdar. Towards a Serverless Platform for Edge
AL In USENIX Workshop on Hot Topics in Edge Computing (HotEdge),
Renton, WA, USA, November, 2019.

Raj Jain. The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing. John Wiley & Sons, 1990.

Lizy Kurian John and Lieven Eeckhout. Performance Evaluation and
Benchmarking. Taylor & Francis, 2005.

Jeongchul Kim and Kyungyong Lee. FunctionBench: A Suite of
‘Workloads for Serverless Cloud Function Service. In IEEE International
Conference on Cloud Computing (CLOUD), Milan, Italy, July, 2019.
Pascal Maissen, Pascal Felber, Peter G. Kropf, and Valerio Schiavoni.
FaaSdom: A Benchmark Suite for Serverless Computing. In ACM Inter-
national Conference on Distributed and Event-based Systems (DEBS),
Montreal, Quebec, Canada, July, 2020.

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions
https://cloud.google.com/functions

[37

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]

[53]

[54]

[55]

[56]

(571

[58]

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. SeBS: A Serverless Benchmark Suite
for Function-as-a-Service Computing. CoRR, abs/2012.14132, 2020.
Tianyi Yu and et al. Characterizing Serverless Platforms with Server-
lessbench. In ACM Symposium on Cloud Computing (SoCC), Virtual
Event, October, 2020.

Blesson Varghese, Nan Wang, David Bermbach, Cheol-Ho Hong, Eyal
de Lara, Weisong Shi, and Christopher Stewart. A Survey on Edge
Performance Benchmarking. ACM Computing Surveys, 54(3):66:1—
66:33, 2021.

Anirban Das, Stacy Patterson, and Mike Wittie. Edgebench: Benchmark-
ing Edge Computing Platforms. In IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), Zurich,
Switzerland, December, 2018.

Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal de Lara, and
Blesson Varghese. DeFog: Fog computing benchmarks. In ACM/IEEE
Symposium on Edge Computing (SEC), Washington DC, USA, Novem-
ber, 2019.

Qirui Yang, Runyu Jin, Nabil Gandhi, Xiongzi Ge, Hoda Aghaei
Khouzani, and Ming Zhao. Edgebench: A Workflow-based Benchmark
for Edge Computing. arXiv preprint arXiv:2010.14027, 2020.

Tianshu Hao and et al. Edge AlBench: Towards Comprehensive End-
to-End Edge Computing Benchmarking. In International Symposium
on Benchmarking, Measuring and Optimization (BENCH), Seattle, WA,
USA, December, 2018.

Francisco Carpio, Marc Michalke, and Admela Jukan. Engineering and
Experimentally Benchmarking a Serverless Edge Computing System.
CoRR, abs/2105.04995, 2021.

Chanh Nguyen Le Tan, Cristian Klein, and Erik Elmroth. Multivari-
ate LSTM-Based Location-Aware Workload Prediction for Edge Data
Centers. In IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), Larnaca, Cyprus, May, 2019.

Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog
Function: Serverless Fog Computing for Data Intensive IoT Services. In
IEEE International Conference on Services Computing (SCC), Milan,
Italy, July, 2019.

Mohammad Shahrad, Rodrigo Fonseca, Ifiigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Characteriz-
ing and Optimizing the Serverless Workload at a Large Cloud Provider.
In USENIX Annual Technical Conference (ATC), Virtual Event, July
2020.

Shivani Arbat, Vinodh Kumaran Jayakumar, Jaewoo Lee, Wei Wang, and
In Kee Kim. Wasserstein Adversarial Transformer for Cloud Workload
Prediction. In The Thirty-Fourth Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-22), Vancouver, BC, Canada,
February, 2022.

OpenFaaS. https://www.openfaas.com/. Accessed: 2022-03-01.
Swarm mode overview. https://docs.docker.com/engine/swarm/. Ac-
cessed: 2022-03-01.

Raspberry Pi 4. https://www.raspberrypi.org/products/raspberry-pi-4-
model-b/, 2022. Accessed: 2022-03-01.

Jetson Nano — Nvidia Developer. https://developer.nvidia.com/
embedded/jetson-nano, 2022. Accessed: 2022-03-01.

Omid Setayeshfar, Karthika Subramani, Xingzi Yuan, Raunak Dey,
Dezhi Hong, Kyu Hyung Lee, and In Kee Kim. ChatterHub: Privacy
Invasion via Smart Home Hub. In IEEE International Conference on
Smart Computing (SMARTCOMP), Virtual Event, August, 2021.
Xingzhou Zhang, Yifan Wang, and Weisong Shi. pCamp: Performance
Comparison of Machine Learning Packages on the Edges. In USENIX
Workshop on Hot Topics in Edge Computing (HotEdge), Boston, MA,
USA, July, 2018.

Pinchao Liu, Dilma Da Silva, and Liting Hu. DART: A Scalable and
Adaptive Edge Stream Processing Engine. In USENIX Annual Technical
Conference (ATC), Virtual Event, July, 2021.

Gaurav Somani, Xinghui Zhao, Satish Narayana Srirama, and Rajkumar
Buyya. Integration of Cloud, Internet of Things, and Big Data Analytics.
Software: Practice and Experience, 49(4):561-564, 2019.

Norman P. Jouppi and et al. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In 44th International Symposium on Computer
Architecture (ISCA), Toronto, ON, Canada, June, 2017.

Nvidia Jetson TX2. https://developer.nvidia.com/embedded/jetson-tx2,
2022. Accessed: 2022-03-01.

[59]
[60]

[61]
[62]

[63]

[64]

[65]

[66]

NVIDIA Jetson Xavier NX. https://developer.nvidia.com/embedded/
jetson-xavier-nx, 2022. Accessed: 2022-03-01.

Coral USB Accelerator datasheet. https://coral.ai/docs/accelerator/
datasheet/, 2022. Accessed: 2022-03-01.

Docker. https://docs.docker.com/. Accessed: 2022-03-01.

Anirban Das, Shigeru Imai, Stacy Patterson, and Mike P Wittie. Perfor-
mance Optimization for Edge-Cloud Serverless Platforms via Dynamic
Task Placement. In IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), Melbourne, Australia, May,
2020.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael M. Swift. Peeking Behind the Curtains of Serverless Platforms.
In USENIX Annual Technical Conference (ATC), Boston, MA, USA,
July, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Annual
Conference on Neural Information Processing Systems (NIPS), Lake
Tahoe, Nevada, USA, December, 2012.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <IMB model size. CoRR,
abs/1602.07360, 2016.

Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. CoRR, abs/1804.02767, 2018.

https://www.openfaas.com/
https://docs.docker.com/engine/swarm/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://coral.ai/docs/accelerator/datasheet/
https://coral.ai/docs/accelerator/datasheet/
https://docs.docker.com/

	Introduction
	Design of EdgeFaaSBench
	Edge Computing Architecture and the Focus of Benchmark
	Overview of EdgeFaaSBench
	Benchmark Metrics and Procedure of EdgeFaaSBench
	System Resource Utilization
	Serverless Application Performance
	Serverless-related Metrics

	Benchmark Workloads in EdgeFaaSBench
	Benchmark Results
	Benchmark Edge Devices
	Benchmark Results

	Related Work
	Conclusion
	References

