
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 1

Forecasting Cloud Application Workloads with
CloudInsight for Predictive Resource Management

In Kee Kim, Member, IEEE, Wei Wang, Member, IEEE, Yanjun Qi, Member, IEEE,
and Marty Humphrey, Member, IEEE

Abstract—
Predictive cloud resource management has been widely adopted to overcome the limitations of reactive cloud autoscaling. The
predictive resource management is highly relying on workload predictors, which estimate short-/long-term fluctuations of cloud
application workloads. These predictors tend to be pre-optimized for specific workload patterns. However, such predictors are still
insufficient to handle real-world cloud workloads whose patterns may be unknown a priori, may dynamically change over time and may
be irregular. As a result, these predictors often cause over-/under-provisioning of cloud resources. To address this problem, we create
CloudInsight, a novel cloud workload prediction framework, leveraging the combined power of multiple workload predictors.
CloudInsight creates an ensemble model using multiple predictors to make accurate predictions for real workloads. The weights of the
predictors in CloudInsight are determined at runtime with their accuracy for the current workload using multi-class regression. The
ensemble model is periodically optimized to handle sudden changes in the workload. We evaluated CloudInsight with various real
workload traces. The results show that CloudInsight has 13%–27% higher accuracy than state-of-the-art predictors. Moreover, the
results from trace-based simulations with a cloud resource manager show that CloudInsight has 15%–20% less
under-/over-provisioning periods, resulting in high cost-efficiency and low SLA violations.

Index Terms—Cloud Computing, Workload Prediction, Ensemble Prediction Model, Predictive Resource Management, Autoscaling,
Performance Evaluation

F

1 INTRODUCTION

Over the past decade, cloud computing has become a
popular infrastructure for industry and research organiza-
tions due to its appealing capabilities such as scalability,
flexibility, pay-as-you-go billing model [1]. In particular,
elasticity [2, 3] has attracted application developers to move
towards clouds to deploy their applications. Autoscaling [4–
6], offered by public cloud providers (e.g., AWS), is the
most common approach for attempting to achieve elastic-
ity [7–13]. Autoscaling mechanisms and triggers monitor
the utilization and behavior of current resources and adjust
the size/amount of resources according to the fluctuation
of workloads (e.g., job1 requests) and user-defined rules
(e.g., upper-/lower-bound of CPU usage). However, au-
toscaling can often be sub-optimal because of its reactive
nature [14]. The reactive nature often results in over- and
under-provisioning of cloud resources, in turn, low cost-
efficiency and high SLA (Service Level Agreement) vio-
lations. Therefore, many predictive approaches have been
proposed [15–32] for addressing the limitations of reactive
autoscaling.

The predictive approaches consist of two components;
one is a workload predictor, which forecasts future job arrival

• I. K. Kim is with the Department of Computer Science, University of
Georgia, Athens, GA 30602. E-mail: inkee.kim@uga.edu

• W. Wang is with the Department of Computer Science, Univer-
sity of Texas at San Antonio, San Antonio, TX 78249. E-mail:
wei.wang@utsa.edu

• Y. Qi and M. Humphrey are with the Department of Computer Sci-
ence, University of Virginia, Charlottesville, VA 22904. E-mail: yan-
jun@virginia.edu, humphrey@cs.virginia.edu

1. We use a job, user request, and workload interchangeably.

time/rate; and the other is a resource management compo-
nent, which allocates/deallocates cloud resources and maps
user workloads to specific cloud resources. To achieve de-
sired resource utilization and SLA satisfaction, it is crucial
that the workload predictor should be optimized for the
behavior of application workloads.

Existing predictive autoscaling managers often create
and/or use a single static (or “one-size-fits-all” style) work-
load predictor with a simple assumption that the target
workload has a stable pattern (e.g., increasing, cyclic bursty,
and on-and-off) over time. Therefore, this prediction model
is typically built offline and often requires significant efforts
and resources to build. Furthermore, since cyclic bursty is
known as a typical workload pattern for cloud applica-
tions [33, 34], time-series based approaches are widely used
as the one-size-fits-all workload predictor to handle cyclic
workloads [15, 22–29, 35–44].

However, the “one-size-fits-all” approach is insufficient to
address real-world cloud application workloads because the
patterns of real workloads are usually unknown a priori.
To confirm this problem, we quantified the accuracy of
various predictors operating in different workload patterns.
The measurement results (in Section 2) show that without
prior knowledge of the workload pattern, a user is hard-
pressed to pick a proper one-size-fits-all predictor for his/her
workloads. Additionally, real workloads are complicated in
that they may experience dynamic pattern-shift/fluctuation
over time. This dynamic nature of real workloads can
be confirmed with traces from real-world cloud applica-
tions [45–48]. Figure 1 illustrates the job arrival rate of the
traces within Google [49] and Facebook [50]. Neither trace
follows regular patterns, and both traces are more likely to

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 2

0
1K
2K
3K
4K
5K

0 200K 400K 600K

of

 J
ob

 R
eq

ue
st

s

Time (Second)

(a) Google WL

100
200
300
400
500

0 20K 40K 60K 80K
Time (Second)

(b) Facebook WL

Fig. 1. Job arrival rate from cloud workload traces; (a) Google cluster
trace [49] with 30-minutes of time interval and (b) Facebook Hadoop
trace [50] with 5-minutes of time interval

be composed of short-lived interleaving patterns that have
different characteristics. This dynamic fluctuation makes it
difficult for a single static predictor to achieve high predic-
tion accuracy through the lifetime of a cloud application.
As Figure 1 shows, real workloads may not have clear
and stable trend/seasonality. The lack of trend/seasonality
implies that time-series models may not be the best choice
for the cloud workloads in practice.

Consequently, a new approach is required to improve the
accuracy of workload prediction for real-world workloads that have
a variety of workload patterns and dynamic fluctuations. To this
end, we have created the CloudInsight framework, inspired
by a “mixture of experts” problem [51, 52]. Observing that
different predictors excel at predicting different workload
patterns, CloudInsight leverages the combined power of a di-
verse set of workload predictors. More specifically, CloudIn-
sight dynamically creates an ensemble model that combines
multiple predictors to predict the job arrival rate for the
next time interval in the future. The weight of a predictor
in the ensemble model is calculated at runtime based on the
predictor’s accuracy for the current workload at previous
time intervals. To determine the weights, we design a novel
evaluation approach based on a SVM (Support Vector Ma-
chine) multiclass regression model. The ensemble model is
recreated periodically to handle the dynamic fluctuations in
a workload. Since CloudInsight is an open-architecture, any
different predictors from users’ choice can be used in it.

This paper is based on our previous work [53], and we
take a step further in the holistic performance evaluation
of CloudInsight, particularly focused on how CloudInsight
improves the overall performance in cloud resource man-
agement by minimizing the under-/over-provisioning state
of the resources. More specifically, in this work, we provide
an in-depth analysis of CloudInsight’s contribution to cloud
resource management by measuring cost-efficiency and SLA
satisfaction based on trustworthy simulation with represen-
tative cloud resource management mechanisms. The im-
provement aims to obtain a complete understanding of
predictive resource management and workload predictors’
impacts in real clouds, as well as a better understanding of
the effectiveness of our solution.

We have conducted comprehensive evaluations of the
performance of CloudInsight with diverse real-world work-
load traces collected from cluster [49, 50], HPC (High-
Performance Computing) [54], and web applications [55].
The experiment results show that CloudInsight outperforms
existing time-series, machine learning, and specific custom
predictors in every workload. CloudInsight has 13% to 27%

better prediction accuracy with low overhead. Moreover, we
also perform a trace-based simulation in combination with
a representative resource management module. The results
from the simulation study show that CloudInsight incurs 15%
– 20% less under-/over-provisioning, resulting in 16% better
cost-efficiency and 17% fewer SLA violations.

As a result, this work has the following contributions.
• High accuracy and low overhead: the CloudInsight

framework is an online, multi-predictor based approach
that performs highly accurate workload prediction with
low overhead under dynamic cloud workloads with
various patterns.

• Online ensemble model: a novel online mechanism
to create an ensemble workload predictor. This mech-
anism dynamically assigns weights to each predictor
by accurately estimating that the predictor’s relative
accuracy for the next time interval using multi-class
regression.

• Thorough performance evaluation: we perform a com-
prehensive evaluation of the accuracy and overhead
of CloudInsight with various workload traces collected
from real cloud applications, including cluster, HPC,
and web applications.

• A simulation study of resource management: a trace-
based simulation with an autoscaling component con-
firms the actual benefit of CloudInsight to the resource
management for cloud applications.

We structure the rest of the paper as follows. Section 2
describes the motivation of this work. Section 3 presents the
framework details and implementation of CloudInsight. In
Section 4, we evaluate CloudInsight with real-world work-
load traces. We further evaluate CloudInsight with cloud
resource management in Section 5. In Section 6, we perform
a sensitivity analysis of CloudInsight with more diverse
predictors. Section 7 provides discussion and future work
of CloudInsight. In Section 8, we summarize related work.
Finally, Section 9 concludes this paper.

2 MOTIVATION: NO ONE PREDICTOR FITS ALL
CLOUD WORKLOAD PATTERNS

We first investigated the degree to which a single exist-
ing predictor could be used across multiple typical cloud
workload patterns. That is, if an existing predictor could
perform moderately well even in a worst-case cloud work-
load environment, then a reasonable approach would be to
configure this predictor, deploy the application, and hope
for a decent-case cloud workload, knowing that in worst-
case it will still suffice. To determine if such a predictor
already exists in the community, we evaluated the pre-
diction accuracy of 21 widely-used prediction algorithms,
including two naive2, six regression3, seven time-series4,
and six machine-learning5 models. We used four well-

2. mean and kNN (Nearest Neighbors).
3. Global and local models of linear, quadratic, and cubic regressions.
4. WMA (Weighted Moving Average), ES (Exponential Smoothing),

BRDES (Brown’s Double Exponential Smoothing), HWDES (Holt-
Winters Double Exponential Smoothing), AR (Autoregressive), ARMA
(Autoregressive and Moving Average), and ARIMA (Autoregressive
Integrated Moving Average).

5. Linear and Gaussian SVMs, Decision Trees, Extra Trees, Gradient
Boosting, and Random Forest models.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 3

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

of

 J
ob

s

Time (Unit: Minute)

(a) Increasing WL

 0

 50

 100

 150

 0 10 20 30 40 50 60 70
Time (Unit: Minute)

(b) On and Off WL

 0
 200
 400
 600
 800

 1000
 1200

0 20 40 60 80 100 120
Time (Unit: Minute)

(c) Cyclic Bursty WL

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50
Time (Unit: Minute)

(d) Random WL

Fig. 2. Four synthetic cloud application workload patterns. The x-axis means the number of arrived jobs, and the y-axis indicates the time elapsed
(unit: minutes).

known/synthetic cloud workload patterns [56, 57]. Figure 2
shows four patterns used in this evaluation. The x-axis in the
graphs indicates the time elapsed (unit: minutes), and the y-
axis means the number of arrived jobs. It is worth noting
that Figure 2 only shows part of the workloads in order to
confirm the characteristics of the four workload patterns.
The total duration of each workload is from 6 to 12 hours.

The performance of all predictors with four workload
patterns is measured by MAPE (Mean Absolute Percentage
Error)6. The evaluation results are reported in Table 1,
showing the best three predictors and an average accuracy
from all the evaluated predictors regarding the four differ-
ent workloads. The result shows that top predictors vary
considerably for different workload patterns. There is no
single best workload predictor for all workload patterns –
each workload pattern has its own best workload predictor. More-
over, the top three workload predictors for each workload
pattern often show similar performance for the workload
prediction, implying that best predictors could be changing
if the workload contained more randomness or short-term
burstiness [3]. It is also worth noting that in Table 1, the best
predictors usually contain non-time-series models, such as
SVMs or linear regression, because of the lack of trend and
seasonality in certain patterns.

These results indicate that a single predictor, i.e., the
“one-size-fits-all” style predictor, is not sufficient to address
diverse workload patterns that current cloud applications
often experience. Additionally, if an application experiences
a change in their workload, a one-size-fits-all predictor that
performs well for the past workload may be suboptimal
for the future workload. Based on the results, it can be
argued that a new prediction mechanism is needed. The
new mechanism should dynamically determine the best
predictors for a given time and also quickly change this
setting in the event of dynamic fluctuation and/or phased
change. However, to design such a multi-predictor-based
approach, further research questions must be answered:
• RQ #1 – How to determine the top (most accurate)

workload predictor(s) when a workload is changing over
time? (e.g., from a pattern to another one)

• RQ #2 – How to combine (ensemble) the top workload
predictors when it is unsafe to assume any of the top predictors
is the best due to the random noises in a workload?

In the rest of this paper, we will describe how our ap-
proach – CloudInsight – addresses these problems to predict
dynamic and diverse workloads.

6. MAPE = 1
n

∑n
i=1

∣∣∣Actuali−Predictedi
Actuali

∣∣∣× 100%

TABLE 1
MAPE results of workload predictors under four different workload
patterns. (L-SVM: Linear SVM, G-SVM: Gaussian SVM, BRDES:
Brown Double Exponential Smoothing, LR: Linear Regression)

Increasing Workload On and Off Workload
L-SVM 28% G-SVM 22%

AR 29% ARMA 30%
ARMA 30% L-SVM 44%

Average 51% Average 69%
Cyclic Bursty Workload Random Workload
ARIMA 38% G-SVM 45%
BRDES 41% LR 46%
L-SVM 43% L-SVM 46%

Average 75% Average 52%

3 APPROACH: CloudInsight
This section provides a detailed description of CloudInsight.
Figure 3 illustrates the end-to-end architecture of CloudIn-
sight. This framework consists of four main components: 1)
a predictor pool, 2) a workload repository, 3) a model builder, and
4) CloudInsight workload predictor. The input of this frame-
work is the actual/current workloads (e.g., job arrivals),
and the output is the prediction for a near-future workload.
The predictor pool is a collection of workload predictors. The
workload repository stores the job history of the workload
and the prediction history of all local predictors in the
predictor pool. The model builder is responsible for creating an
ensemble prediction model by evaluating the performance
of the predictors in the predictor pool. CloudInsight workload
predictor provides the forecast for the near-future workload
using an ensemble model created by the model builder.
This prediction will be utilized by resource managers for
predictive resource (e.g., VM) scaling.

3.1 Workflow of CloudInsight

Figure 4 depicts the workflow of CloudInsight. The workflow
of CloudInsight runs through the following steps; 1) initial
prediction and measurement (“initial step” in Figure 4), 2)
ensemble model creation (“model creation” in Figure 4), and
3) workload prediction (“prediction” in Figure 4). Once the
first step is finished, CloudInsight repeats the second and the
third steps until the end of the workload. CloudInsight has
two temporal interval parameters: (1) a prediction interval
and (2) a model re-creation interval. The former is the
interval to make a new future workload prediction, and the
latter is the interval to re-create the ensemble model used by
CloudInsight. The CloudInsight users set both intervals when

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 4

Predictor Pool

Workload

CloudInsight Workload Predictor

Local Predictor #1
(e.g., Linear Regression)

Local Predictor #2
(e.g., ARIMA)

Local Predictor #N
(e.g., SVM)

…

Ensemble Model Builder

Workload
Repository

Predictions from
Local Predictors

Update
Local

Prediction
History

Update
Job Arrival
Information

Creating Train/Test Dataset

Soft-Min Normalization

Predictor Evaluation

Ensemble Model Creation

Update
Local

Prediction
History

Request for
Ensemble Model

Ensemble
Model

Resource Management
Component

(e.g., VM Scaling)

Workload
Prediction
(Output)

Job Arrival
(Input)

Job Arrival
(Input)

Fig. 3. Architecture of the CloudInsight Framework

Start of

Workload

Initial Step
Model

Creation

Prediction
End of

Workload

Initial step is finished

Initial

Ensemble model

Workload prediction

at every prediction interval

Ensemble

model

Model

re-creation

request

Fig. 4. Workflow of CloudInsight

the framework starts; normally, the prediction interval is
shorter than the model creation interval.

Initial Prediction and Measurement. When jobs begin to
arrive in a cloud application, a prediction for the future
workload is also initiated. For the initial period (e.g., the
first 30 minutes or 1 hour), CloudInsight either uses a simple
ensemble workload prediction model that all local predic-
tors7 have the equal contribution (weight) or relies on user’s
selection of the weights (the user can allocate a higher
weight for a particular predictor). The use of a simple
ensemble model here is because, during the initial period,
CloudInsight does not have enough accuracy history for the
local predictors. It is impossible to meaningfully assign
weights to the predictors without this history.

Ensemble Model Creation: Once the initial (measure-
ment) step finishes and initial accuracy history is collected,
CloudInsight creates an ensemble prediction model based on
the procedure described in Section 3.4. This ensemble model
is used to predict future workload. After the expiration of
the model re-creation interval, the ensemble model will be
re-created.

Workload Prediction. This step is performed at every pre-
defined prediction interval with the ensemble model, which
is created from the previous step. The ensemble model
combines the predictions from the local predictors in the
predictor pool. This prediction can then be used by a resource
management component for resource scaling.

7. The local predictors indicate the predictors in the predictor pool.
Section 3.2 explains the local predictors in detail.

3.2 Predictor Pool

The predictor pool contains a set of workload predictors,
called “local predictors.” CloudInsight is designed to be
generic and does not have any special dependency with
a particular predictor. Consequently, its predictor pool can
contain any predictors as long as those predictors can pro-
vide predictions for future workloads (e.g., job arrival rates).
In other words, the outputs (prediction results) of local
predictors in CloudInsight should be numerical values, and
the outputs will be used to create a specific data structure
for evaluating the performance of local predictors. This
procedure will be further explained in Section 3.3. We have
experimented with various workload predictors, including
time-series, regressions, and machine-learning models. As
shown later in Section 4, CloudInsight can properly han-
dle all these types of predictors and considerably improve
workload prediction accuracy. Because of CloudInsight’s gen-
erality, users can add any workload predictors to the pre-
dictor pool. Note that, more local predictors may increase
the overhead of workload prediction and ensemble model
creation. Although CloudInsight’s overhead is negligible in
our evaluation with 21 predictors (in Section 6), users may
want to limit the size of the predictor pool when there are
hundreds of potential local predictors, and the overhead
becomes non-trivial.

When actual workload comes to our target applications,
all local predictors in the predictor pool make their predic-
tions for future job arrival rates. However, because different
local predictor works best for different workload patterns
(or a particular part application workloads), the model builder
would selectively consider the best ones and combine them
with different contributions (weights). The model builder is
responsible for properly selecting and combining them. We
will describe how we address this issue.

3.3 Workload Repository

This component contains the prediction history of the all
local predictors in the predictor pool. The prediction history
is represented as a normalized performance vector.
Performance Vector (PV). The PV is a fundamental element
of training and prediction input datasets for the evaluation
step and is a feature matrix composed of prediction errors

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 5

of all local predictors for past prediction history. The perfor-
mance vector is an n×m matrix as formulated below:

PV =

PE1,1 PE1,2 · · · PE1,m

PE2,1 PE2,2 · · · PE2,m

...
...

. . .
...

PEn−1,1 PEn−1,2 · · · PEn−1,m

PEn,1 PEn,2 · · · PEn,m

 (1)

, where n is the number of the local predictors and m is the
past (consecutive) prediction points. PEi,j , an element of
PV matrix, is the prediction error of ith local predictor at
jth prediction point. PEi,j is measured by squared error
((Predictioni,j − Actuali,j)

2). A single PV represents a
set of prediction errors of all n local predictors for past
m prediction points. (In our evaluation, CloudInsight uses
a window size of 50 for m in PV . This configuration works
well for our case.)
Soft-Min Normalization. An issue of PV is that each ele-
ment (PE) of the PV matrix is the absolute squared error of
each local predictor at certain prediction point. Since a PE
represents the absolute prediction errors at a particular time
interval, two PEs from two different time intervals cannot
be directly compared to determine which is more accurate
(i.e., which has smaller error). Therefore, we normalize PEs
so that they can be directly compared. To normalize all PEs
in a PV , we use a soft-min normalization function that
transforms each element (PE) into a real number between
0 and 1. The soft-min function is shown in Equation (2).

Soft−Min(PEi,j) = 1− e−PEi,j∑n
k=1 e

−PEk,j
(2)

The input of Equation (2) is an element (PEi,j) of PV .
The numerator is the exponentially inverse transform of the
PE that we want to normalize. The dominator is the sum of
exponentially inverse transforms for all PEs at a particular
prediction point (a single column in the PV .) Also, this
normalized value is subtracted from 1 so that higher values
mean better performance (smaller prediction errors) of the
local predictors. The upper bound of the normalized soft-
min value is 1, while the lower bound is 0. A local predictor
always has a soft-min value between 0 and 1. After this step,
the sum of each column in a PV is 1. Intuitively, the soft-
min value for a predictor at a particular prediction point
can be viewed similarly as the probability of it being the
best predictor for this prediction point.

3.4 Ensemble Predictor Builder
The model builder evaluates the local predictors, determines
the best predictors among them, and creates an ensemble
prediction model of top predictors with different weights.
This model builder is inspired by a mixture of experts (MOE)
problems [51, 52]. The essential insight of the MOE is that a
collective result (e.g., ensemble) of all local experts is often
better than a decision from a single expert [58]. In our case,
each local predictor can be considered as a local expert in
the MOE problem. Unlike a general MOE approach, which
leverages a simple linear combination of all local experts, we
create an ensemble model combined by the local predictors
with different weights, because different local predictors
work best for different workload patterns (or a particular

t-1t-2t-3t-m-1t-m-2t-m-3t-m-lt-m-l-1

Training PVl

Length = m

Testing PV

Training PVl-1

Training PV2

Training PV1

l Vectors

for Training

Length = m

.

. . .

Time

Fig. 5. Temporal coverage of PV s (Performance Vectors) for training and
prediction input dataset. (m: length of row for PV , indicating m temporal
points for past predictions, l: the size of training dataset, indicating the
number of PVs in training dataset)

part of dynamic real-world workloads). A higher weight of
a local predictor indicates better performance for the current
workload, and thus potentially better for the future.

Evaluating the local predictor is the most important step
of the model builder to create an ensemble prediction model.
We formulate this evaluation as a multiclass regression
problem and use Gaussian SVM regression model [59]. The
following paragraphs give a detailed description of how
the ensemble model is trained and used to make workload
predictions.

Training Dataset and Prediction Inputs. Both training
dataset and the prediction input dataset are represented as
a collection of PV s as discussed in Section 3.3. However,
these two datasets use separable PV s that cover different
temporal windows. Suppose time t indicates the current
prediction point, l is the size of training dataset, and m
means the length of columns in PV s. The training dataset
covers the history of the local predictors’ performance be-
tween at t − m − l − 1 and t − 2. The training dataset
is expressed as {PVt−m−l−1, PVt−m−l, ..., PVt−3, PVt−2}.
The prediction input dataset, which is used to predict the job
arrival rate at time t, is the PV at t− 1 prediction point and
is expressed as {PVt−1}. Figure 5 illustrates the temporal
coverage of the training data set and prediction input data
set.

Evaluation of Local Predictors. As we mentioned previ-
ously, we reduce the “evaluating local predictors” prob-
lem to the “multiclass regression” problem. A multiclass
regression problem gives the probabilities of whether an
observation belongs to a set of categories. Consequently,
with a “multiclass regression” model, we can evaluate the
probability that a local predictor is the most accurate predic-
tor for the future workload. More specifically, we employ
Gaussian SVM model for this classification problem. The
evaluation with the SVM model follows a typical machine
learning process; training and prediction. The SVM model
is trained with the aforementioned training dataset. After
training, this model can provide its projection for all local
predictors. The output vector of this model is shown below.

Y =

ω1

ω2

...
ωn−1

ωn

 (3)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 6

The output of this SVM model is a n× 1 matrix. Thanks
to the soft-min normalization, all items in this output matrix
are real numbers (ω) between 0 and 1. A higher value
of ωi (close to 1) indicates that ith predictor has a higher
possibility to be the best predictor for workload prediction.
Likewise, a lower value of ωj (close to 0) suggests that jth
predictor has a lower probability of being the best.
Creating an Ensemble Model for Workload Prediction. The
ensemble workload predictor directly uses the output from
the evaluation results of the local workload predictors. This
ensemble model is constructed with Equation (4).

Ensemble Model:
∑n

i=1 ωipi∑n
i=1 ωi

(4)

ωi is the output from the previous step, and pi is the predic-
tion from a local predictor. By employing ωi, this ensemble
model gives higher weights to potentially more accurate
local predictors and lowers weights to potentially less ac-
curate local predictors. The result of this ensemble model
is the prediction of the current and near-future job arrival
rates, which can be utilized by other resource management
components (e.g., VM scaling). Also, the predictions of the
local predictors in the ensemble model will be updated to
the workload repository for further evaluation of the local
predictors. Note that the ensemble model is not necessarily
created at every prediction point since this model requires
the entire process of evaluating the local predictors, which is
time-consuming. The ensemble model will be re-created pe-
riodically with a predefined time interval. In our evaluation
(Section 4), we recreate the ensemble model after finishing
every five predictions, which works well for our case.

3.5 Implementation of CloudInsight
We implemented CloudInsight with Python 2.7 on Ubuntu
16.04 LTS. To implement the local predictors in the predictor
pool and the evaluation step of the model builder, the fol-
lowing statistics and machine learning libraries are used;
NumPy, Statsmodels, Pandas, and scikit-learn.

For implementing the local predictors, while our goal
is to improve/maximize the prediction accuracy, a deter-
ministic processing time of the local predictors is desir-
able. This requirement is because CloudInsight collaborates
with a resource manager that should adequately prepare
cloud resources before the actual job arrives. We use a
grid search [60] to determine the parameters for the local
predictors with a tradeoff between the accuracy and the
prediction overhead. We consider parameters of 0 < α < 1
for BRDES, 1st to 3rd order for other time-series models
(AR, ARMA, ARIMA) and 10e−3 to 10e3 for soft margin
and kernel parameters in SVMs.

For the implementation of the ensemble predictor
builder (the SVM multi-regression model), we aim more
at improving the performance of an ensemble model. To
this end, we also take the same approach (grid search) with
the way of tuning the local predictors, but we examine a
broader range for soft margin and kernel parameters of SVM
model 10e−6 to 10e6 to yield better results. We use various
synthetic workloads [56, 57] to guide the above processes
of parameter selection. To ensure fair evaluation and avoid
over-fitting, we did not use real workloads in parameter

selection. Real workloads [45, 46, 54, 55] are only used to
evaluate CloudInsight.

4 PERFORMANCE EVALUATION

4.1 Evaluation Setup
4.1.1 Workload Datasets
To evaluation CloudInsight, we used three categories of
workload traces from real-world cloud applications: 1) Clus-
ter workload traces from Google [49] and Facebook [50],
2) Scientific/HPC workloads from the Grid Workloads
Archive [61] and 3) Wikipedia web traces from Wik-
iBench [62]. These three groups of workload datasets al-
low us to evaluate CloudInsight with diverse scenarios of
application deployment on clouds. We provide details on
the characteristics of these workloads in Section 4.2.

4.1.2 Local Predictors
In this evaluation, we select 8 well-known workload pre-
dictors from the regression, time-series, and machine learn-
ing, and add them to the predictor pool in CloudInsight.
The 8 local predictors are Linear regression [18, 63–66],
WMA [28, 42, 43], BRDES [22, 23, 36], AR [24, 37, 67, 68],
ARMA [25, 26, 38–40], ARIMA [27, 29, 41], Linear SVM [69],
and Gaussian SVM [19, 70]. These predictors are chosen
based on their performance with four different simulated
workloads in the motivation measurement (Section 2). On
average, these 8 predictors showed the highest accuracy for
predicting four simulated workloads. More details about
these local predictors are described in Appendix A.1.

4.1.3 Evaluation Goals
We have two goals in evaluating the performance of CloudIn-
sight. First, we measure the accuracy of CloudInsight regard-
ing the forecasting future job arrival rate (Section 4.3). We
then evaluate the overhead of CloudInsight since prediction
within deterministic time is a prerequisite of workload
predictors (Section 4.4).

4.1.4 Performance Metrics
To measure the prediction accuracy of job arrive rate, we
employ both MAPE and RMSE (Root Mean Square Error)8.
Once we obtain RMSE results, all results are normalized
over the result from CloudInsight to see the relative differ-
ences. 1.0 means the results of CloudInsight.

To evaluate the overhead of CloudInsight, we define the
processing overhead as the time for “job arrival rate predic-
tion process” and “ensemble model recreation process.” We
measure the actual processing time on a Linux Server with
8 CPUs (AMD Opteron Processor 4386) and 16G RAM.

4.1.5 Baselines
We compare CloudInsight against four predictors; ARIMA,
SVM, FFT (Fast Fourier Transform), and RSLR (Robust Step-
wise Linear Regression). We choose ARIMA and SVM from
the local predictors because they are widely used in many
predictive approaches [19, 27, 29, 69, 70] as well as the two
best “one-size-fits-all” predictors that we have experimented

8. RMSE =
√

1
n

∑n
i=1(Predictedi −Actuali)2

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 7

TABLE 2
Statistics of 13 evaluated workloads, collected from cluster, web, and HPC applications

Workload Duration # Jobs Predictor Setting
Prediction Interval Model Recreation Interval

Cluster

Google 1 month 2M

30 to
1200 sec.

At every
5 Preds.

Facebook #1

1 day

5.9K
Facebook #2 6.6K
Facebook #3 24K
Facebook #4 25K

Web
Wiki Global

3 days
823K 30 to

1200 sec.
At every
5 Preds.Wiki German 76.5K

Wiki Japanese 51K

HPC

Grid 5000 22 days 62.5K 30 to
1200 sec.

or
1 to 12 hrs

(AuverGrid)

At every
5 Preds.

NorduGrid 60 days 122K
AuverGrid 365 days 2.3M
SHARCNet 11 days 188K

LCG 33 days 435K

0
0.3K
0.6K
0.9K
1.2K
1.5K

0 1 2 3#
of

 U
se

r A
cc

es
se

s

Time (Day)

(a) Wiki Global WL

 0
 50

 100
 150
 200

0 1 2 3
Time (Day)

(b) Wiki German. WL

 0
 50

 100
 150
 200
 250
 300
 350

0 1 2 3
Time (Day)

(b) Wiki Japan. WL

Fig. 6. Wikipedia traces with a 5-minutes of time interval.

with. We choose FFT [17, 21] and RSLR [15] from state-of-
the-art approaches, which provide a robust and accurate
prediction for cloud resource scaling.

4.2 Evaluated Workloads
While the workload datasets contain various characteristics,
this work focuses on its temporal characteristics. i.e., job ar-
rival rate. We extract temporal behaviors of job submissions
in the workloads. Table 2 describes the summary of the char-
acteristics of the workloads. We also choose workloads with
a variable length of duration (lifetime) and density of job
arrivals to show the generality of CloudInsight. The following
paragraphs outline the backgrounds of such workloads.

4.2.1 Cluster Workloads
These workloads represent the behaviors of cloud appli-
cations for cluster and big data analytics (e.g., Hadoop).
We use Google Cluster trace [49] and Facebook Hadoop
traces [50]. Google workload contains 2 millions of job ar-
rival data for a one-month period. Facebook dataset contains
1 million of job submissions. Particularly for the Facebook
workload, we use 4 sample traces (two traces from 2009
and two traces from 2010), each represents 1-day job sub-
missions. The examples of visualizing such workloads are
shown in Figure 1 in Section 1 (Introduction). We only show
two of the cluster workload, but the other three workloads
from Facebook have similar characteristics with Figure 1(b).
The cluster workloads are varying significantly and have a
dynamic nature of job submissions.

4.2.2 Web Workloads
These workloads represent the behaviors of web applica-
tions, which is a common application model on clouds.

0
0.2K
0.4K
0.6K
0.8K
1.0K
1.2K

5 10 15 20

Jo

b
Re

qu
es

ts
Time (Day)

(a) Grid 5000 WL

0
0.4K
0.8K
1.2K
1.6K
2.0K

1 2 3 4 5 6 7 8
Time (Week)

(b) NorduGrid WL

0
2.0K
4.0K
6.0K
8.0K

2 4 6 8 1012

Jo

b
Re

qu
es

ts

Time (Month)

(c) AuverGrid WL

0
1K
2K
3K
4K
5K

 6 12 18 24 30
Time (Day)

(d) SHARCNet WL

0
0.1K
0.2K
0.3K
0.4K
0.5K

 0 2 4 6 8 10
Time (Day)

(e) LCG WL

Fig. 7. HPC workload traces. (Grid 500 with 3600 sec. of time interval,
NorduGrid with 7200 of time interval. AuverGrid with 12 hrs. of time
interval, LCG with 600 sec. of time interval and SHARCNet with 900
sec. of time interval.)

We use three days of Wikipedia traces in September 2007.
We focus on access log for (global) Wikipedia pages [71],
German [72], and Japanese main page [73] of Wikipedia.
The datasets have 823K (global), 76.5K (German), and 51K
(Japanese) of user accesses. These Wikipedia workloads
are illustrated in Figure 6. Wikipedia workloads generally
show strong seasonality and trend characteristics, but the
Japanese main page has an unexpected spike of user access.

4.2.3 HPC Workloads
The clouds are also actively used by many HPC appli-
cations to support diverse areas of scientific computing.
Five workloads are used for HPC scenarios on the clouds.
i.e., Grid5000 [74], NorduGrid [75], AuverGrid [76], SHAR-
CNet [77], and LCG (LHC Computing Grid) [78]. These
workloads respectively contain 62.5K jobs, 122K jobs, 2.3-
million jobs, 188K jobs, and 435K jobs for various periods.
These workloads are illustrated in Figure 7. HPC workloads
have similar characteristics with two previous workloads
but have more dynamic natures.

4.3 Prediction Accuracy of CloudInsight
To compare the accuracy of CloudInsight, with the baselines,
we use various time intervals for the workload prediction,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 8

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Google Facebook#1 Facebook#2 Facebook#3 Facebook#4 Average
1.

14 1.
21

1.
19 1.
28

1.
13 1.
20

1.
16 1.
25

1.
14 1.
22

1.
18 1.

30

1.
12 1.

24
1.

19 1.
26

1.
13 1.
19

1.
20 1.
25

1.
13 1.
21

1.
19 1.
27CloudInsight

(1.00)

N
or

m
. R

M
SE

CloudInsight
ARIMA

SVM
FFT

RSLR

Fig. 8. Normalized RMSE results in cluster workloads (1.00 means the result from CloudInsight and higher values indicate worse performance.
FB indicates Facebook. CI means CloudInsight.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

Absolute Error

(a) Google WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120
Absolute Error

(b) Facebook #1 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120
Absolute Error

(c) Facebook #2 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120
Absolute Error

(d) Facebook #3 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150
Absolute Error

(e) Facebook #4 WL

CloudInsight
ARIMA

SVM
FFT

RSLR

Fig. 9. CDF of prediction errors in cluster workloads (Absolute Error = |Predictiont −Actualt|)

TABLE 3
MAPE results with cluster workloads

Workload Cloud-
Insight ARIMA SVM FFT RSLR

Google 20% 28% 29% 34% 33%
Facebook #1 54% 62% 58% 65% 68%
Facebook #2 48% 55% 62% 70% 65%
Facebook #3 46% 56% 68% 51% 74%
Facebook #4 32% 38% 42% 50% 48%

as shown in Table 2. This prediction interval may affect
its prediction accuracy because a longer prediction interval
may provide a smoothing effect on the workload patterns.
Evaluation with the various time interval minimizes this
impact and averaging them offsets the variation. In general,
we use the prediction intervals from 30 seconds to 1200
seconds with a step of 30 seconds. Especially for AuverGrid
with one year period, we use the prediction intervals with a
range from 3600 seconds (1 hour) to 86400 (24 hours) with a
step of 3600 seconds. For the model re-creation interval, we
recreate and update the SVM model for evaluating the local
predictors at every five predictions of future workloads.

4.3.1 Accuracy with Cluster Workload

The RMSE results of job arrival rate predictions of the five
approaches are shown in Figure 8 (all RMSE results are
normalized to CloudInsight). On average, CloudInsight is 13%
– 27% more accurate than the four baselines. Because the
cluster workloads do not have a stable seasonality and a
trend, it is difficult for a single model (ARIMA, SVM, FFT, or
RSLR) to accurately detect certain patterns from the cluster
workloads to predict future changes. However, CloudInsight
can keep adjusting the weights for each predictor and create
a new ensemble model periodically to fit the changes in the
workload. Therefore, CloudInsight can show better perfor-
mance for workload prediction.

Table 3 reports MAPE results of all five predictors with
cluster workloads. CloudInsight shows the lowest MAPE

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Wiki Global Wiki German Wiki Japan Average

1.
11 1.

22
1.

12
1.

14

1.
09 1.
16

1.
11

1.
13 1.
16

1.
17

1.
11

1.
12

1.
12 1.
17

1.
12

1.
13

CloudInsight
(1.00)

N
or

m
. R

M
SE

CloudInsight
ARIMA

SVM
FFT

RSLR

Fig. 10. Normalized RMSE results in web workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400

C
D

F

Absolute Error

(a) Wiki Global

CI
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 80 160 240
Absolute Error

(b) Wiki German

CI
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100
Absolute Error

(c) Wiki Japanese

CI
ARIMA

SVM
FFT

RSLR

Fig. 11. Normalized RMSE results and CDF of prediction errors in web
workloads

against four baselines and has 4% to 32% more accurate than
others. While CloudInsight is the most accurate predictor, it
also shows high prediction errors (over 40% of MAPE) for
three cluster workloads (e.g., Facebook #1, #2, and #3). This
is mainly due to the dynamic nature of cluster workloads,
and the job arrival rate is highly fluctuating. For the three
Facebook workloads, other baselines show even higher er-
rors like 60% to 70% of MAPE.

Figure 9 shows the CDF (Cumulative Distribution Func-
tion) of prediction errors in cluster workloads. We only
show four results (without Facebook #4) from cluster work-
loads due to page limitations. The results from Facebook
#4 shows a similar graph with the other three Facebook
workloads. The x-axis represents absolute prediction er-
ror, i.e., |Predictiont −Actualt|, while the y-axis gives the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 9

TABLE 4
MAPE results with web workloads

Workload Cloud-
Insight ARIMA SVM FFT RSLR

Wiki Global 4% 6% 8% 6% 7%
Wiki German 15% 20% 23% 21% 20%
Wiki Japanese 19% 26% 34% 28% 24%

TABLE 5
MAPE results with HPC workloads

Workload Cloud-
Insight ARIMA SVM FFT RSLR

Grid 5000 54% 62% 58% 65% 68%
NorduGrid 20% 28% 29% 34% 33%
AuverGrid 48% 55% 62% 70% 65%
SHARCNet 46% 56% 68% 51% 74%

LGC 32% 38% 42% 50% 48%

cumulated probability of the errors. As Figure 9 shows,
the curves for CloudInsight are skewed to the left than the
baselines, meaning the majority of CloudInsight’s prediction
errors are smaller than the baselines. Also, the results from
the baselines have longer tails, indicating they yield more
extreme prediction errors.

4.3.2 Accuracy with Web Workload
The RMSE results for web workloads are shown in Fig-
ure 10, and CloudInsight outperforms the baselines again. On
average, CloudInsight has 12% – 17% of fewer errors than the
baselines. Because web workloads usually have strong sea-
sonality and trends, all baselines perform better than when
predicting cluster workloads. Especially, both FFT and LRSR
have a significant improvement in their accuracy. However,
although web workloads have relatively stable seasonality
and trends, such characteristics can still change over time,
albeit less abruptly. Also, as shown in the Wiki Japanese
workload, web workload could have a sudden spike of user
accesses. CloudInsight can identify the seasonality and trends
as well as detect the changes (or spikes) in them. Thus, it can
provide better prediction results.

Table 4 describes the MAPE results with three web
workloads. Similar to the RMSE results, CloudInsight out-
performs all the baselines. In particular, CloudInsight shows
4%, 15%, and 19% of MAPE results with Wikipedia global
page, Wikipedia German page, and Wikipedia Japanese
page, respectively. These results indicate, on average, a 6%
improvement over four baselines.

Figure 11 illustrates the CDF of prediction errors in web
workloads. Similarly, the majority of CloudInsight’s errors are
still smaller than those of the baselines.

4.3.3 Accuracy with HPC Workload
Figure 12 shows the normalized RMSE results in the five
HPC workloads; Grid 5000, NorduGrid, AuverGrid, LCG,
and SHARCnet. On average, CloudInsight is 19% more accu-
rate than the four baselines with all the five HPC workloads.
Our HPC workloads exhibit a broad range of characteris-
tics. The Grid 5000, AuverGrid, and SHARCNet workloads
are bursty and random. They also lack seasonality and
trends. The NorduGrid and LCG workloads have relatively
clearer seasonality (among HPC workloads), although it is

TABLE 6
Prediction overhead of five approaches

Cluster Web HPC Average
CloudInsight 29 ms 37 ms 36 ms 34 ms

ARIMA 25 ms 24 ms 29 ms 26 ms
SVM 0.35 ms 0.4 ms 0.4 ms 0.38 ms
FFT 4.2 ms 5.9 ms 8.8 ms 6.3 ms

RSLR 22 ms 18 ms 22 ms 21 ms

much more bursty and noisier than web workloads. The
measurement results with various HPC workloads indicate
that CloudInsight can correctly assign weights to the local
predictors based on current workloads behaviors so that it
can predict with the best predictors for the future workload.

Table 5 contains MAPE results with HPC workloads
from the five predictors. In this evaluation, CloudInsight
can maintain the lowest MAPE results among all the pre-
dictors by providing the most accurate predictions. Similar
to the cluster workloads, CloudInsight also shows high
MAPE results (over 40%) for Grid 5000, AuverGrid, and
SHARCNet workloads. The high MAPE results are mainly
due to the characteristics of workloads that job arrivals in
HPC workloads can be dynamically fluctuating with several
bursty (e.g., sudden traffic spike) and intermittent periods
(e.g., no job submissions) so that predicting workloads with
such characteristics are very challenging for all workload
predictors. And it is also important to emphasize that,
on average, MAPE of CloudInsight is 12.8% lower (more
accurate) than MAPE from the baselines.

Figure 13 shows the CDF of the prediction errors in
the HPC workloads. The results from HPC workload traces
are similar to the two previous cluster and web workload
types. The curves for CloudInsight are more skewed to the
left, indicating that CloudInsight has fewer errors than other
baselines. Please note that in Figure 13, we only show results
from four HPC workload traces and exclude the CDF result
from NorduGrid due to page limitation. However, the CDF
of prediction errors in NorduGrid shows a similar trend
with other HPC workloads.

4.4 Overhead of CloudInsight
Forecasting future workloads within a short and determin-
istic amount of time is also a very critical property for all
predictive resource scaling systems. Here, we evaluate the
overhead of CloudInsight and the four baselines. For the
baselines, we only consider “prediction overhead” for this
evaluation as there is no additional overhead due to the
ensemble model reconstruction for them. We define “predic-
tion overhead” as the time that it takes to make predictions
at a given time point. For CloudInsight, we measure both
“prediction overhead” and “modeling overhead.” We define
the modeling overhead as the time that CloudInsight takes to
create a new ensemble prediction model.

4.4.1 Prediction Overhead
Table 6 gives the average prediction overhead for all the
approaches. On average, CloudInsight takes 34ms to make
a prediction, while other methods show lower prediction
overhead. i.e., ARIMA takes 26ms, RSLR takes 21ms, FFT
takes, 6.3ms and SVM takes 0.38ms. Although SVM has

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Grid 5000 NorduGrid AuverGrid SHARCNet LCG Average
1.

14 1.
19 1.
26 1.
29

1.
12 1.
19

1.
14 1.
21

1.
17 1.
20

1.
16 1.
22

1.
19

1.
13

1.
15

1.
11

1.
13 1.
20

1.
18 1.

30

1.
15 1.
18

1.
18 1.
23CloudInsight

(1.00)

N
or

m
. R

M
SE

CloudInsight
ARIMA

SVM
FFT

RSLR

Fig. 12. Normalized RMSE results in HPC workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

C
D

F

Absolute Error

(a) Grid 5000 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000
Absolute Error

(b) NorduGrid WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200
Absolute Error

(c) AuverGrid WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500
Absolute Error

(d) SHARCNet WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300
Absolute Error

(e) LCG WL

CloudInsight
ARIMA

SVM
FFT

RSLR

Fig. 13. CDF of prediction errors in HPC workloads

 0
 200
 400
 600
 800

 1000
 1200
 1400

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

1105

805.7
955.7

M
od

el
in

g
O

ve
rh

ea
d

(m
s) (a) Max Overhead

 0

 50

 100

 150

 200

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

155 150 147

(b) Average Overhead

Fig. 14. Modeling overhead of CloudInsight

the lowest overhead among the approaches, it has less
accuracy than CloudInsight and the others for the majority of
our workloads. Even though CloudInsight leverages 8 local
predictors, it takes only 12ms more time as compared to
ARIMA. This prediction overhead (34ms) is achieved with
parallel processing of all local predictors. When predicting
the future job arrival, CloudInsight invokes all local predic-
tors, and then each predictor forecasts the next job arrival
individually. Thus, the prediction overhead of CloudInsight
is significantly affected by the prediction overhead of the
slowest local predictor. In our case, ARMA was the slowest
predictor among the eight local predictors, and it has about
30ms of prediction overhead. Once all the predictors finish
their prediction, CloudInsight calculates the weight of each
predictor and generates the final prediction result.

Although CloudInsight has the longest prediction time
among five predictors, the absolute prediction time (34ms)
is still negligible compared to workload prediction intervals
and resource reconfiguration intervals. Because the over-
head from cloud infrastructure is usually higher than 30
seconds (e.g., VM startup time [79]), autoscaling resource
managers often reconfigure their resources at an interval
higher than 30 seconds. As CloudInsight’s prediction time is
much shorter than the prediction interval, it imposes a very
limited impact on an autoscaling resource manager.

Predictive Scaling
Module

Cloud Workload Generator
(Cluster, HPC)

Workload
Repository

Job
Portal

Workload Predictor
(CloudInsight,

SVM,
ARIMA,

FFT,
RSLR)

Scaling Decision
Maker

Training/
Testing

Sample for
Predictions

Prediction
ResultsResource

Management
Module

(e.g., Job Scheduling,
VM Scaling and
Management)

Job
(Duration,
Deadline)

Job Arrival
Information

Predictive
Scaling

Decision

Job
(Duration,
Deadline)

Cloud Resource Management System

+/- VMs,
Job Assign.

Cloud Infrastructure

VM
J1 J2 …

Job Queue

Fig. 15. Simulation model of a predictive cloud resource management
system with workload predictors

4.4.2 Ensemble Modeling Overhead
The ensemble modeling overhead of CloudInsight is defined
as the time to create a new ensemble model. The results of
this overhead are shown in Figure 14. Limited by space, we
only show the results from the largest workloads, which are
Google, Wiki Global Main, and AuverGrid. The overheads
results from the other workloads are smaller than these
three workloads. In the worst cases, it takes 0.8-1.1 seconds
to create a new ensemble model. The average modeling
time is less than 155ms. This overhead is still negligible
in practice because CloudInsight creates a new ensemble
model and make predictions within the autoscaling resource
reconfiguration intervals as stated previously.

5 CASE STUDY: PREDICTIVE RESOURCE MAN-
AGEMENT WITH CloudInsight
This section performs further analysis of CloudInsight.
Specifically, we conduct a simulation-based study with

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 11

predictive resource management and evaluate the benefit
brought by CloudInsight to cloud resource management.

5.1 Simulation Setup

We design a representative resource management system of
cloud resources as shown in Figure 15. We embed CloudIn-
sight and the four baselines (SVM, ARIMA, FFT, and RSLR)
to the simulation model of the resource management mod-
ule. All these experiments are conducted on a trace-based
simulator [80], which closely resembles the behaviors of real
cloud applications. Our simulation model is composed of
three sub-components; (1) workload generator, (2) resource
manager, and (3) cloud infrastructure (public cloud).

The workload generator creates user requests (job ar-
rivals) as per the workload traces (e.g., cluster and HPC
workloads) and uses the same configuration with Table 2.
Each job is also associated with a randomly generated dead-
line. The resource manager is responsible for determining
predictive scaling decisions to handle the incoming work-
loads. The workload predictors (e.g., CloudInsight, the four
baselines) are part of this resource manager. For the scaling-
out operation, the workload predictor forecasts the future
job arrival rate, and the manager adds more resources if the
demand is higher than the currently available VM resources.
For the scaling-in operation, the manager checks the status
of VMs in every minute and terminates the VM if the VM
has no further jobs to process. For the cloud infrastructure
(public cloud) setting, we use an on-demand homogeneous
VM type for the simplicity of this evaluation and use a
minute-based pricing model for the cost calculation.

5.2 Simulation Results

We used three metrics to evaluate the effectiveness of the
resource manager; (1) cloud usage cost, (2) job deadline miss
rate, and (3) under-/over-provisioning time. A higher cloud
usage cost means that the VMs are more likely to be over-
provisioned (poor cost-efficiency). A higher job deadline
miss rate indicates that the VMs are more like to be under-
provisioned (more SLA violations). Figure 16 and 17 depict
the costs and job deadline miss rates of all approaches
with cluster and HPC workloads. The results show that
the resource manager using CloudInsight has the lowest cost
and lowest job deadline miss rate. On average, CloudInsight
shows 14% – 22% better cost-efficiency and 12% – 21% less
job deadline miss rate as compared to the baselines. Ta-
ble 7 shows the normalized under-/over-provisioning time
of baselines. These accumulated under-/over-provisioning
periods (from the baselines) are normalized over the results
from CloudInsight. As the results show, CloudInsight has 15%
– 19% less under-/over-provisioning periods compared to
the baselines. These results imply that as CloudInsight in-
creases the accuracy of future job arrival rate predictions, it
can significantly reduce the under-/over-provisioning of the
cloud resources. The low under- and over-provisioning pe-
riods also mean that the resource manager with CloudInsight
always provisions the proper and accurate amount of VM
resources according to the actual workload changes while
retaining a high SLA satisfaction rate and cost-efficiency.

TABLE 7
Normalized sum of under-/over-provisioning time

ARIMA SVM FFT RSLR
Google 18% 27% 18% 32%

Facebook #1 9% 14% 13% 18%
Facebook #2 14% 13% 14% 17%
Facebook #3 17% 20% 17% 18%
Facebook #4 15% 17% 22% 27%

Grid 5000 13% 16% 12% 14%
NorduGrid 14% 15% 12% 16%
AuverGrid 16% 18% 14% 16%
SHARCNet 20% 17% 18% 14%

LCG 15% 16% 14% 19%
Average 15% 18% 15% 19%

6 SENSITIVITY ANALYSIS OF CloudInsight WITH
MORE PREDICTORS

In Section 4, we use only 8 local predictors to measure the
performance (accuracy and overhead) of CloudInsight. How-
ever, the group of local predictors may affect the accuracy of
CloudInsight. As CloudInsight has no limitation in leveraging
the number of predictors, we perform a sensitivity analysis
of CloudInsight with more number of local predictors to
confirm how this change affects its performance.

To evaluate the impact of the composition of local predic-
tors, we measured the accuracy and overhead of CloudInsight
by adding 13 more local predictors (in total 21 local predic-
tors) that are mentioned in Section 2. As we discussed in
Section 2, these 13 predictors9 showed lower average accu-
racy than the 8 predictors used by CloudInsight. In practice,
it may be difficult for a user to determine which predictors
are better than the others for his/her workload. Therefore,
a user may be inclined to include all known predictors,
many of which could have low accuracy. By including more
predictors, this evaluation aims at determining whether
CloudInsight can still correctly pick the best predictors from
a large pool of mixed predictors.

6.1 Accuracy Sensitivity
Figure 18 shows the normalized accuracy of using 21 predic-
tors. CloudInsight with 21 predictors has similar or even bet-
ter accuracy than predictions using 8 predictors. In particu-
lar, when predicting Web and HPC workloads, CloudInsight
with 21 predictors produces better accuracy than CloudIn-
sight with 8 predictors. The improved results show that the
model builder of CloudInsight can correctly evaluate the accu-
racy of local predictors and correctly assign higher weights
for good predictors and lower weights for poor predictors.
Furthermore, for certain parts of a workload, a predictor
from the additional 13 predictors may perform better than
any of the 8 averagely-best predictors. The higher accuracy
in web and HPC workloads indicates that CloudInsight can
correctly catch the accuracy benefits from the additional 13
predictors for certain parts of the workloads and utilize their
better accuracy to improve overall prediction results. These

9. The 13 more predictors include mean-based model, kNN, poly-
nomial and quadratic regression, local regression models, exponen-
tial moving average, Holt-Winters DES, decision tree, and three en-
semble models (gradient boosting, extra-trees, random forest). More
details about these additional 13 local predictors are described in
Appendix A.2.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 12

 0.6
 0.8

 1
 1.2
 1.4

Google FB#1 FB#2 FB#3 FB#4 Grid 5000 NorduGrid AuverGrid SHARCNet LCG Average

CloudInsight (1.00)

Cluster Workloads HPC Workloads

N
or

m
al

iz
ed

C
lo

ud
 C

os
t

ARIMA SVM FFT RSLR

Fig. 16. Cost usage of the resource management with five approaches.

 0.6
 0.8

 1
 1.2
 1.4

Google FB#1 FB#2 FB#3 FB#4 Grid 5000 NorduGrid AuverGrid SHARCNet LCG Average

CloudInsight (1.00)

Cluster Workloads HPC Workloads

N
or

m
al

iz
ed

Jo
b

D
L

M
is

s
Ra

te

ARIMA SVM FFT RSLR

Fig. 17. Job deadline miss rate of the resource management with five approaches.

 0.5

 0.75

 1

Goo
gle

Fa
ce

bo
ok

 #1

Fa
ce

bo
ok

 #2

Fa
ce

bo
ok

 #3

Fa
ce

bo
ok

 #4

Wiki
Glob

al

Wiki
Germ

an

Auv
erG

rid LC
G

SHARCNetRe
la

tiv
e

Pe
rfo

rm
an

ce
(N

or
m

al
iz

ed
 R

M
SE

) with 8 predictors with 21 predictors

Fig. 18. Result of sensitivity analysis of CloudInsight with the more
number of local predictors. Note that lower values mean better accuracy
and vice versa

results also show that CloudInsight is a generic framework
that can be used with a myriad of types of predictors.

However, we also experience that CloudInsight with 21
predictors can perform slightly worse than CloudInsight with
8 averagely-best predictors. This case is found in the evalu-
ation with Facebook #2, and CloudInsight with 21 predictors
shows a slightly lower (1.3%) performance than the original
CloudInsight. This worse performance may happen when
evaluating the future accuracy of local predictors (described
in Section 3.4), CloudInsight may incorrectly weight more
on poor predictors, which slightly impact on the overall
prediction accuracy of the final ensemble model. This case
indicates that CloudInsight still has room for improvement.

6.2 Overhead with More Predictors

While using more predictors does not hurt (sometimes
even improves) prediction accuracy, using more predictors
increases the prediction overhead of CloudInsight. With 21
predictors, CloudInsight was 3.85x slower than only using
8 predictors. We observe that most overhead comes from
re-creating the ensemble model: more local predictors expo-
nentially increases the overhead for model re-creation. It is
worth noting that even though using 21 predictors is slower,

the absolute time for prediction and model re-creation is
still much smaller than the prediction and model re-creation
intervals (or resource reconfiguration interval). Therefore,
the overhead of 21 predictors has a limited impact on
practical usage. However, if a user has a much larger set
of potential local predictors, he/she may want to limit the
number of predictors employed to reduce overhead. In the
future, we will investigate how to determine the optimal
types/numbers of local predictors for CloudInsight.

7 DISCUSSION AND FUTURE WORK

7.1 Determining the Prediction and Modeling Intervals
CloudInsight requires two user inputs, which are an ensemble
model re-creation interval and a prediction interval (de-
scribed in Section 3.1). These two intervals play an impor-
tant role since they may impact on the overall accuracy of
and the overhead of CloudInsight. Regarding the model re-
creation interval, a smaller value of the re-creation interval
is better for CloudInsight than a larger value of the interval
because CloudInsight will create the ensemble model more
frequently (with a smaller interval), in turn, can have a more
accurate final model. However, to determine the interval of
the model re-creation, the overhead caused by CloudInsight
also needs to be considered. So we recommend users to
determine a tradeoff value for this interval. Regarding the
decision of the prediction interval, the CloudInsight users
should consider application dynamics (as you commented),
resource management and job scheduling, as well as work-
load dynamics.

To help CloudInsight users’ decisions on two intervals,
we will develop an automated approach, which is to
find optimal (or near-optimal) parameters and dynamically
tune/update the values for the intervals. The automated
approach is not only to maximize the overall prediction
accuracy but also overhead caused by CloudInsight needs
to be manageable. We will investigate Bayesian Optimiza-
tion with hyperparameter tuning [81] and/or reinforcement

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 13

learning [82] to optimize and tune the values for two inter-
vals at run-time.

7.2 Deployment of CloudInsight on Production Cluster

When deploying CloudInsight on a production cluster to
predict future workload to real-world applications, CloudIn-
sight may need to collaborate with open-source monitoring
tools like Sysdig [83], cAdvisor [84], and Prometheus [85].
These monitoring tools offer capabilities to monitor network
IOs of managed applications, and the network IOs can be
a feature to be interpreted as job arrivals. Thus, we will
first investigate whether the change of network IOs has a
correlation with job arrivals in the managed applications. If
there is a correlation between network IO changes and job
arrival, the monitoring tools can be potentially integrated
with CloudInsight. Then, we can develop CloudInsight’s APIs
to communicate with target monitoring tools and translate
network IOs into (numerical) forms, so that local predictors
can take the network IOs as input parameters. With these
two steps, in the near future, we will improve CloudInsight
in order to provide proper instructions and APIs that can
support various open-source monitoring tools to support
user applications running on production clusters.

8 RELATED WORK

A wide variety of predictive approaches has been proposed
with an emphasis on accurately forecasting temporal and
other properties (e.g., resource needs, data size) of cloud
workloads. Most notably, employing a “one-size-fits-all” style
workload predictor is the mainstream of such proposals. Di-
verse models from statistical and machine learning domains
are used to design the workload predictor. These models
are generally relying on regression, time-series, and ma-
chine learning [69, 70, 86, 87]. Among them, time-series ap-
proaches are the most popular approach. (ES [22, 23, 35, 36],
AR [24, 37, 67, 68], ARMA [25, 26, 38–40], ARIMA [27, 29, 41]
and others [28, 42, 43].) However, as discussed in Section 2,
such single predictor based approaches are not sufficient to
address the dynamics and burstiness of cloud workloads
and can show poor performance for unknown workload
patterns. Further, several custom predictive approaches are
developed to address dynamic cloud workload patterns.
PRESS [21] and CloudScale [17] employ a custom predictor
composed of FFT and Markov model. FFT is used to detect
a signature of workload patterns, and the Markov model is
to address a short-term change of the workloads. However,
in practice, it is challenging for cloud users to determine
the transition probability of the Markov model correctly.
Wood et al. [15] developed a hybrid approach, combining
robust linear stepwise regression and model refinement.
This technique requires offline profiling for the initial linear
model creation, but CloudInsight is a purely online model
that does not require such offline profiling steps.

To overcome the limitations of the “one-size-fits-all”
predictors, multi-predictor approaches are also proposed.
These approaches are in the spirit similar to CloudInsight be-
cause they are designed to provide more generic and adap-
tive nature to their target application and resource manage-
ment infrastructure. Khan et al. [88], Herbst et al. [89], Liu et

al. [63], and Züfle et al. [44] proposed an adaptive model for
workload prediction. These approaches employ a classifica-
tion, clustering (e.g., decision tree), and/or recommendation
system based on incoming workloads, and these approaches
statically allocate the best predictor for the particular type of
workloads to increase the performance of workload predic-
tion. However, for real workloads without clear seasonality
and trend, it is hard to enumerate all possible classes a
priori. Therefore, these approaches are not general enough to
handle unknown, varying, and/or non-typically-patterned
real workloads. CloudInsight, on the other hand, makes no
assumption about the class/type/patterns and thus can
handle these real workloads. Moreover, the extra step of
classification and clustering adds additional overhead to
each job arrival prediction.

ASAP [90] and Vadara [91] are two ensemble approaches
with multiple workload predictors. These two approaches
use a simple assumption to determine contributions from
each individual predictor, i.e., recent the best predictors
(e.g., the lowest cumulative error during the previous mon-
itoring interval [30]) will perform the best for the near
future. However, we observe that this assumption is not al-
ways true. Especially, the workloads with short-term bursti-
ness [3] can break this assumption. Unlike these approaches,
we utilize a much longer history in CloudInsight and employ
a multi-class regression model to predict the future accuracy
of local predictors. Therefore, CloudInsight can provide more
robust weights and more accurate predictions.

Due to the proliferation of deep learning [92], there are
several approaches to apply deep learning models to cloud
workload prediction [93–98]. In particular, LSTM [99] or
LSTM-variants [93, 95, 98] are considered as a powerful tool
for predicting future workloads because of LSTM’s capa-
bility for time-series prediction. However, deep learning-
based models, including LSTM, require a massive amount of
(workloads) training dataset and computing resources. On
the other hand, CloudInsight is a lightweight (as evaluated in
Section 4.4.1 and 4.4.2), and it can be promptly adapted to
sudden changes in the cloud workloads.

9 CONCLUSION

This paper presents CloudInsight– an online workload pre-
diction framework to address dynamic and highly variable
cloud workloads. CloudInsight employs a number of local
predictors and creates an ensemble prediction model with
them by dynamically determining the proper weights (con-
tributions) of each local predictor. To determine the weights,
we formulate this problem as a multi-class regression prob-
lem with a SVM classifier.

We have performed a comprehensive study to measure
the performance and overhead of this framework with a
broad range of real-world cloud workloads (e.g., cluster,
web, and HPC workloads). Our evaluation results show that
CloudInsight has 13% – 27% of better accuracy than state-
of-the-art one-size-fits-all style predictors, and it also has
low overhead for predicting future workload changes (<
100ms) and (re)creating a new ensemble model (< 1.1sec.).

In conclusion, the mechanism and evaluation results of
CloudInsight show that our approach is capable of addressing
real-world cloud workloads that have dynamic and high

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 14

variable nature. This work will help other cloud researchers
and practitioners design a new predictive method for man-
aging and scaling cloud resources autonomously.

REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.

Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A View of
Cloud Computing. Communications of the ACM, 53(4):50–58, 2010.

[2] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elas-
ticity in Cloud Computing: What It Is, and What It Is Not. In
International Conference on Autonomic Computing (ICAC ’13), San
Jose, CA, USA, June 2013.

[3] Sadeka Islam, Srikumar Venugopal, and Anna Liu. Evaluating
the Impact of Fine-scale Burstiness on Cloud Elasticity. In ACM
Symposium on Cloud Computing (SoCC ’15), Hawaii, August 2015.

[4] AWS auto scaling. https://aws.amazon.com/autoscaling, 2019.
[5] Microsoft azure autoscale. https://azure.microsoft.com/en-us/

features/autoscale, 2019.
[6] Google. Google cloud platform – autoscaling groups of instances.

https://cloud.google.com/compute/docs/autoscaler, 2019.
[7] Luwei Cheng, Jia Rao, and Francis C.M. Lau. vScale: Automatic

and Efficient Processor Scaling for SMP Virtual Machines. In
ACM European Conf. on Computer Sys. (EuroSys), London, UK,
Apr. 2016.

[8] Tayler H. Hetherington, Mike O’Connor, and Tor M. Aamodt.
MemcachedGPU: Scaling-up Scale-out Key-value Stores. In ACM
Symposium on Cloud Computing (SoCC ’15), Kohala Coast, Hawaii,
USA, August 2015.

[9] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke. Centi-
man: Elastic, High Performance Optimistic Concurrency Control
by Watermarking. In ACM Symposium on Cloud Computing (SoCC
’15), Kohala Coast, Hawaii, USA, August 2015.

[10] Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji,
Zbigniew Jerzak, and Christof Fetzer. Online Parameter Opti-
mization for Elastic Data Stream Processing. In ACM Sympo.
Cloud Computing (SoCC ’15), Kohala Coast, Hawaii, August 2015.

[11] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In International
Conf. on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), Salt Lake City, UT, March 2014.

[12] Ganesh Ananthanarayanan, Christopher Douglas, Raghu Ra-
makrishnan, Sriram Rao, and Ion Stoica. True Elasticity in Multi-
Tenant Data-Intensive Compute Clusters. In ACM Symposium on
Cloud Computing (SoCC ’12), San Jose, CA, USA, October 2012.

[13] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No
One (Cluster) Size Fits All: Automatic Cluster Sizing for Data-
intensive Analytics. In ACM Symposium on Cloud Computing
(SoCC ’12), Cascais, Portugal, October 2011.

[14] Marco A. S. Netto, Carlos Cardonha, Renato L. F. Cunha, and
Marcos D. Assuncao. Evaluating Auto-scaling Strategies for
Cloud Computing Environments. In IEEE International Symp.
Modelling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS ’14), Paris, France, September 2014.

[15] Timothy Wood, Ludmila Cherkasova, Kivanc M. Ozonat, and
Prashant J. Shenoy. Profiling and Modeling Resource Usage of
Virtualized Applications. In The 9th ACM Middleware Conference
(Middleware ’08), Leuven, Belgium, December 2008.

[16] Waheed Iqbala, Matthew N. Daileya, David Carrerab, and Paul
Janeceka. Adaptive resource provisioning for read intensive
multi-tier applications in the cloud. Future Generation Computer
Systems, 27(6):871–879, 2011.

[17] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John
Wilkes. CloudScale: Elastic Resource Scaling for Multi-Tenant
Cloud Systems. In ACM Symposium on Cloud Computing (SoCC
’11), Cascais, Portugal, October 2011.

[18] Nohhyun Park, Irfan Ahmad, and David J. Lilja. Romano:
Autonomous Storage Management using Performance Prediction
in Multi-Tenant Datacenters. In ACM Symposium on Cloud Com-
puting (SoCC ’12), San Jose, CA, USA, October 2012.

[19] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy
Katz. Wrangler: Predictable and Faster Jobs using Fewer Re-
sources. In ACM Symposium on Cloud Computing (SoCC), Seattle,
WA, November 2014.

[20] Daniel Jacobson, Danny Yuan, and Neeraj Joshi. Scryer: Net-
flix’s predictive auto scaling engine. The Netflix Tech Blog,

November 2013. Posted at http://techblog.netflix.com/2013/
11/scryer-netflixs-predictive-auto-scaling.html.

[21] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: PRedic-
tive Elastic ReSource Scaling for cloud systems. In International
Conference on Network and Service Management (CNSM), Niagara
Falls, Canada, Oct. 2010.

[22] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang,
and Wenguang Chen. Cost-effective Cloud HPC Resource Provi-
sioning by Building Semi-Elastic Virtual Clusters. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’13), Denver, CO, USA, November 2013.

[23] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic
Placement of Virtual Machines for Managing SLA Violations. In
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), Munich, Germany, May 2007.

[24] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas,
Lin Xiao, and Feng Zhao. Energy-Aware Server Provisioning and
Load Dispatching for Connection-Intensive Internet Services. In
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), San Francisco, CA, USA, April 2008.

[25] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu,
Mustafa Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant.
Automated Control of Multiple Virtualized Resources. In ACM
European conference on Computer Systems (Eurosys ’09), Nurem-
berg, Germany, April 2009.

[26] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient
Autoscaling in the Cloud using Predictive Models for Workload
Forecasting. In IEEE International Conference on Cloud Computing
(CLOUD ’11), Washington DC, USA, June 2011.

[27] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajku-
mar Buyya. Workload Prediction Using ARIMA Model and Its
Impact on Cloud Applications’ QoS. IEEE Transactions on Cloud
Computing, 3(4):449–458, 2015.

[28] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and
Michael A. Kozuch. AutoScale: Dynamic, Robust Capacity
Management for Multi-Tier Data Centers. ACM Transactions on
Computer Systems, 30(4):14:1–14:26, 2012.

[29] Hong Xu Di Niu, Baochun Li, and Shuqiao Zhao. Quality-
Assured Cloud Bandwidth Auto-Scaling for Video-on-Demand
Applications. In IEEE International Conference on Computer Com-
munications (INFOCOM ’12), Orlando, FL, USA, June 2012.

[30] Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. Au-
toscaling Web Applications in Heterogeneous Cloud Infrastruc-
tures. In IEEE International Conference on Cloud Engineering (IC2E
’14), Boston, MA, USA, March 2014.

[31] Maryam Amiri, Leili M. Khanli, and Raffaela Mirandola. An
online learning model based on episode mining for workload
prediction in cloud. Future Gen. Comp. Syst., 87:83–101, 2018.

[32] Jitendra Kumar and Ashutosh Kumar Singh. Workload pre-
diction in cloud using artificial neural network and adaptive
differential evolution. Future Gen. Comp. Syst., 81:41–52, 2018.

[33] Ahmed Ali-Eldin, Ali Rezaie, Amardeep Mehta, Stanislav
Razroev, Sara Sjostedt de Luna, Oleg Seleznjev, Johan Tordsson,
and Erik Elmroth. How will your workload look like in 6 years?
Analyzing Wikimedia’s workload. In IEEE International Conf. on
Cloud Engineering (IC2E ’14), Boston, MA, March 2014.

[34] Yexi Jiang, Chang S. Perng, Tao Li, and Rong N. Chang. Cloud
Analytics for Capacity Planning and Instant VM Provisioning.
IEEE Trans. on Net. and Service Manage., 10(3):312–325, Aug. 2013.

[35] Eyal Zohar, Israel Cidon, and Osnat Mokryn. The Power of
Prediction: Cloud Bandwidth and Cost Reduction. In ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’11), Toronto,
ON, Canada, August 2011.

[36] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi,
and Lin Yuan. Online Self-reconfiguration with Performance
Guarantee for Energy-efficient Large-scale Cloud Computing
Data Centers. In IEEE International Conference on Services Com-
puting (SCC ’10), Maiami, FL, USA, July 2010.

[37] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and
Mazin Yousif. Black-box and Gray-box Strategies for Virtual
Machine Migration. In USENIX Symp. on Networked Systems
Design and Implementation (NSDI), Cambridge, MA, April 2007.

[38] Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. RPPS: A Novel
Resource Prediction and Provisioning Scheme in Cloud Data
Center. In IEEE International Conference on Services Computing
(SCC ’12), Honolulu, HI, USA, June 2012.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 15

[39] Juan M. Tirado, Daniel Higuero, Florin Isaila, and Jesus Car-
retero. Predictive Data Grouping and Placement for Cloud-based
Elastic Server Infrastructures. In IEEE/ACM Intl’ Symp. on Cluster,
Cloud and Grid Comp. (CCGrid), Newport Beach, CA, May 2011.

[40] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D.
Schlichting, and Calton Pu. Mistral: Dynamically Managing
Power, Performance, and Adaptation Cost in Cloud Infrastruc-
tures. In International Conference on Distributed Computing Systems
(ICDCS ’10), Genova, Italy, June 2010.

[41] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu,
Raouf Boutaba, and Joseph L. Hellerstein. Dynamic Energy-
Aware Capacity Provisioning for Cloud Computing Environ-
ments. In International Conference on Autonomic Computing (ICAC
’12), San Jose, CA, USA, September 2012.

[42] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura
Keys, David E. Culler, and Randy H. Katz. NapSAC: Design and
Implementation of a Power-Proportional Web Cluster. Computer
Communication Review, 41(1):102–108, 2011.

[43] Yang Peng, Kai Chen, Guohui Wang, Wei Bai, Zhiqiang Ma, and
Lin Gu. HadoopWatch: A First Step Towards Comprehensive
Traffic Forecasting in Cloud Computing. In IEEE Conference on
Computer Comm. (INFOCOM), Toronto, ON, Canada, April 2014.

[44] Marwin Züfle, André Bauer, Veronika Lesch, Christian Krupitzer,
Nikolas Herbst, Samuel Kounev, and Valentin Curtef. Autonomic
forecasting method selection: Examination and ways ahead. In
2019 IEEE International Conference on Autonomic Computing, ICAC
2019, Umeå, Sweden, June 16-20, 2019, 2019.

[45] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H.
Katz, and Michael A. Kozuch. Heterogeneity and Dynamicity of
Clouds at Scale: Google Trace Analysis. In ACM Symposium on
Cloud Computing (SoCC ’13), San Jose, CA, USA, October 2013.

[46] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy
Katz. The Case for Evaluating MapReduce Performance Using
Workload Suites. In IEEE International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS ’11), Singapore, July 2011.

[47] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive Ana-
lytical Processing in Big Data Systems: A Cross-Industry Study
of MapReduce Workloads. VLDB Endowment, 5(12), August 2012.

[48] Zujie Ren, Xianghua Xu, Jian Wan, Weisong Shi, and Min Zhou.
Workload Characterization on a Production Hadoop Cluster:
A Case Study on Taobao. In IEEE International Symposium on
Workload Characterization (IISWC), Portland, OR, Sep. 2013.

[49] John Wilkes. More Google cluster data. Google research blog,
November 2011. Posted at http://googleresearch.blogspot.com/
2011/11/more-google-cluster-data.html.

[50] SWIMProjectUCB. Workloads repository. https://github.com/
SWIMProjectUCB/SWIM/wiki/Workloads-repository, 2019.

[51] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and
Geoffrey E. Hinton. Adaptive Mixtures of Local Experts. Neural
Computation, 3(1):79–87, 1991.

[52] Robert A. Jacobs. Methods for Combining Experts’ Probability
Assessments. Neural Computation, 7(5):867–888, 1995.

[53] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey.
CloudInsight: Utilizing a Council of Experts to Predict Future
Cloud Application Workloads. In IEEE International Conference on
Cloud Computing (CLOUD ’18), SF, CA, USA, July 2018.

[54] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin
Dumitrescu, Lex Wolters, and Dick H.J. Epema. The Grid Work-
loads Archive. Future Generation Comp. Sys., 24(7):672–686, 2008.

[55] Erik-Jan van Baaren. WikiBench: A Distributed, Wikipedia based
Web App. Benchmark. MS Thesis, VU Univ. Amsterdam, 2009.

[56] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. Empiri-
cal Evaluation of Workload Forecasting Techniques for Predictive
Cloud Resource Scaling. In IEEE International Conference on Cloud
Computing (CLOUD ’16), 2016.

[57] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schu-
peck, and Peter Arbittera. Cloud Computing Patterns: Funda-
mentals to Design, Build, and Manage Cloud Applications. 2014.

[58] Yu Hen Hu, Surekha Palreddy, and Willis J. Tompkins. A Patient-
Adaptable ECG Beat Classifier Using a Mixture of Experts Ap-
proach. IEEE Trans. on Biomedical Engineering, 44(9):891–900, 1997.

[59] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Element of Statistical Learning: Data Mining, Inference, and
Prediction. 2011.

[60] James Bergstra, Remi Bardenet, Yoshua Bengio, and Balazs Kegl.
Algorithms for Hyper-Parameter Optimization. In Neural Infor-

mation and Processing Systems (NIPS), Granada, Spain, Dec. 2011.
[61] The Grid Workloads Archive. http://gwa.ewi.tudelft.nl, 2019.
[62] WikiBench. http://www.wikibench.eu, 2019.
[63] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen,

Bo Cheng, and Junliang Chen. An Adaptive Prediction Approach
based on Workload Pattern Discrimination in the Cloud. Journal
of Network and Computer Applications, 80, 2017.

[64] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Zexiang Mao, and
Junliang Chen. Workload Predicting-Based Automatic Scaling
in Service Clouds. In IEEE International Conference on Cloud
Computing (CLOUD ’13), Santa Clara, CA, USA, June 2013.

[65] Peter Bodik, Rean Griffith, Charles A. Sutton, Armando Fox,
Michael I. Jordan, and David A. Patterson. Statistical Machine
Learning Makes Automatic Control Practical for Internet Data-
centers. In USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’09), Santa Diego, CA, USA, June 2009.

[66] Sireesha Muppala, Xiaobo Zhou, and Liqiang Zhang. Regression
Based Multi-tier Resource Provisioning for Session Slowdown
Guarantees. In IEEE International Performance Computing and
Communications Conference (IPCCC), Santa Diego, CA, June 2010.

[67] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic
Resource Allocation for Shared Data Centers Using Online Mea-
surements. In International Conference on Quality of Service (IWQoS
’03), Monterey, CA, USA, June 2003.

[68] Peter A. Dinda and David R. O’Hallaron. Host Load Prediction
using Linear Models. Cluster Computing, 3(4):265–280, 2000.

[69] Ali Yadavar Nikravesh, Samuel A. Ajila, and Chung-Horng
Lung. Towards an Autonomic Auto-Scaling Prediction System
for Cloud Resource Provisioning. In Int’l Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’15),
Firenze, Italy, May 2015.

[70] Akindele A. Bankole and Samuel A. Ajila. Cloud Client Predic-
tion Models for Cloud Resource Provisioning in a Multitier Web
Application Environment. In IEEE Int’l Symposium on Service-
Oriented System Engineering (SOES ’13), Firenze, Italy, May 2013.

[71] Wikipedia. https://www.wikipedia.org/, 2019.
[72] Wikipedia german page. https://de.wikipedia.org/, 2019.
[73] Wikipedia japanese page. https://ja.wikipedia.org/, 2019.
[74] Grid5000. https://www.grid5000.fr, 2019.
[75] NorduGrid. http://www.nordugrid.org, 2019.
[76] AuverGrid. http://www.auvergrid.fr, 2019.
[77] SHARCNet. https://www.sharcnet.ca, 2019.
[78] CERN. LHG Computing Grid. http://wlcg.web.cern.ch, 2019.
[79] Ming Mao and Marty Humphrey. A Performance Study on the

VM Startup Time in the Cloud. In IEEE International Conference
on Cloud Computing (CLOUD ’12), Honolulu, HI, USA, 2012.

[80] In Kee Kim, Wei Wang, and Marty Humphrey. PICS: A Public
IaaS Cloud Simulator. In IEEE International Conference on Cloud
Computing (CLOUD ’15), New York, NY, USA, 2015.

[81] JJacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q.
Weinberger, and John P. Cunningham. Bayesian Optimization
with Inequality Constraints. In 31th International Conference on
Machine Learning (ICML 2014), Beijing, China, June 2014.

[82] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter
Abbeel. Benchmarking deep reinforcement learning for continu-
ous control. In Maria-Florina Balcan and Kilian Q. Weinberger,
editors, 33nd International Conference on Machine Learning (ICML
2016), NYC, NY, June 2016.

[83] Sysdig. https://sysdig.com/, 2020.
[84] cadvisor. https://github.com/google/cadvisor, 2020.
[85] Prometheus. https://prometheus.io/, 2020.
[86] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical

Prediction models for Adaptive Resource Provisioning in the
Cloud. Future Generation Computer Systems, 28(1):155–162, 2012.

[87] Sheng Di, Derrick Kondo, and Walfredo Cirne. Host Load
Prediction in a Google Compute Cloud with a Bayesian Model. In
International Conference on High Performance Computing Network-
ing, Storage and Analysis (SC), Salt Lake City, UT, November 2012.

[88] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
Characterization and Prediction in the Cloud: A Multiple Time
Series Approach. In IEEE Network Operations and Management
Symposium (NOMS ’12), Maui, Hi, USA, April 2012.

[89] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and
Erich Amrehn. Self-Adaptive Workload Classification and Fore-
casting for Proactive Resource Provisioning. In ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’13), Prague,
Czech Republic, April 2013.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. YY, XYZ 2020 16

[90] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang.
ASAP: A Self-Adaptive Prediction System for Instant Cloud
Resource Demand Provisioning. In IEEE Int’l Conference on Data
Mining (ICDM ’11), Vancouver, BC, Canada, December 2011.

[91] Joao Loff and Joao Garcia. Vadara: Predictive Elasticity for Cloud
Applications. In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom ’14), Singapore, December 2014.

[92] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learn-
ing. Nature, 521, 521, 2015.

[93] Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate
LSTM-Based Location-Aware Workload Prediction for Edge Data
Centers. In IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID ’19, Larnaca, Cyprus, May 2019.

[94] Siddhant Kumar, Neha Muthiyan, Shaifu Gupta, Dileep A.D.,
and Aditya Nigam. Association Learning based Hybrid Model
for Cloud Workload Prediction . In IJCNN ’18.

[95] Xiaoyong Tang. Large-Scale Computing Systems Workload Pre-
diction Using Parallel Improved LSTM Neural Network. IEEE
Access, 7, 2019.

[96] Jing Bi, Shuang Li, Haitao Yuan, Ziyan Zhao, and Haoyue Liu.
Deep Neural Networks for Predicting Task Time Series in Cloud
Computing Systems. In ICNSC ’19.

[97] Qingchen Zhang, Laurence T. Yang, Zheng Yan, Zhikui Chen,
and Peng Li. An Efficient Deep Learning Model to PredictCloud
Workload for Industry Informatics. IEEE Trans. on Industrial
Informatics, 14, 2018.

[98] Hoang Minh Nguyen, Gaurav Kalra, and Daeyoung Kim. Host
load prediction in cloud computing using Long Short-Term
Memory EncoderDecoder. Journal of Super Computing, 2019.

[99] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8), 1997.

[100] Prasad Saripalli, GVR Kiran, Ravi Shankar R, Harish Narware,
and Nitin Bindal. Load Prediction and Hot Spot Detection Mod-
els for Autonomic Cloud Computing. In IEEE 4th International
Conference on Utility and Cloud Computing (UCC 2011), Melbourne,
Australia, December 5-8, pages 397–402, 2011.

In Kee Kim received a Ph.D. in Computer Sci-
ence from University of Virginia in 2018. He is
currently an Assistant Professor at the Depart-
ment of Computer Science of the University of
Georgia. His research areas include cloud com-
puting, large-scale distributed systems, IoT/edge
computing, and machine learning systems. He is
a member of the IEEE.

Wei Wang holds a Ph.D. in computer science
from University of Virginia in 2015. He is cur-
rently an Assistant Professor at the Computer
Science Department of the University of Texas
at San Antonio. His research interests include
system software, cloud computing, computer ar-
chitecture and software engineering. He is a
member of the IEEE.

Yanjun Qi is an assistant professor at University
of Virginia, Department of Computer Science
from summer 2013. Her research interests are
in machine learning, data mining, and passion-
ate in applying learning techniques to real-world
problems of significant biomedical impacts. She
obtained her Ph.D. degree from School of Com-
puter Science at Carnegie Mellon University in
2008 and her Bachelor with high honors from
Computer Science Department at Tsinghua Uni-
versity, Beijing. She was a researcher in the

Machine Learning Department at NEC Labs America, Princeton, NJ
from 2008 to 2013. She has served as PCs and reviewers for multiple
renowned international conferences/journals and has co-chaired the
NIPS Machine Learning for Computational Biology workshops. Dr. Qi
has received CAREER award from NSF, a Best Paper Award at NIPS
workshop for Transparent and interpretable Machine Learning and a
Best Paper Award at International Conference on BodyNet.

Marty Humphrey is an Associate Professor in
the Department of Computer Science at the Uni-
versity of Virginia. He received a B.S. and M.S.
degree in Electrical Engineering from Clarkson
University in 1986 and 1989, respectively. He
received his Ph.D. degree in Computer Science
from the University of Massachusetts in 1996.
From 1996-1998, he was an Assistant Professor
of Computer Science and Engineering at the
University of Colorado at Denver. From 1998-
2002, he was a Research Assistant Professor at

UVA. He has co-authored over 80 publications and has been a principal
investigator on a number of projects funded through government agen-
cies (such as the National Science Foundation and the Department of
Energy) and private sector (such as Sun Microsystems and Microsoft
Corporation).

